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Proper communication between neurons depends upon appropriate patterning of

dendrites and correct distribution and structure of spines. Schizophrenia is a

neuropsychiatric disorder characterized by alterations in dendrite branching and spine

density. Nitric oxide synthase 1 adaptor protein (NOS1AP), a risk gene for schizophrenia,

encodes proteins that are upregulated in the dorsolateral prefrontal cortex (DLPFC)

of individuals with schizophrenia. To elucidate the effects of NOS1AP overexpression

observed in individuals with schizophrenia, we investigated changes in actin dynamics

and spine development when a long (NOS1AP-L) or short (NOS1AP-S) isoform of

NOS1AP is overexpressed. Increased NOS1AP-L protein promotes the formation

of immature spines when overexpressed in rat cortical neurons from day in vitro

(DIV) 14 to DIV 17 and reduces the amplitude of miniature excitatory postsynaptic

currents (mEPSCs). In contrast, increased NOS1AP-S protein increases the rate of

actin polymerization and the number of immature and mature spines, which may be

attributed to a decrease in total Rac1 expression and a reduction in the levels of active

cofilin. The increase in the number of mature spines by overexpression of NOS1AP-S

is accompanied by an increase in the frequency of mEPSCs. Our findings show that

overexpression of NOS1AP-L or NOS1AP-S alters the actin cytoskeleton and synaptic

function. However, the mechanisms by which these isoforms induce these changes

are distinct. These results are important for understanding how increased expression

of NOS1AP isoforms can influence spine development and synaptic function.
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INTRODUCTION

Nitric Oxide Synthase 1 Adaptor Protein (NOS1AP) was originally identified as a negative regulator
of the interaction between the enzyme neuronal nitric oxide synthase (NOS1; nNOS) and PSD-95
(Jaffrey et al., 1998). Multiple isoforms of NOS1AP exist, including long (NOS1AP-L) and short
(NOS1AP-S) isoforms (Figures 1A,B). NOS1AP-L consists of 501 amino acids and contains an
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FIGURE 1 | Expression of NOS1AP-L or NOS1AP-S in COS-7 cells decreases F-actin. (A) Schematic of NOS1AP-Long and NOS1AP-Short protein domains.

The long isoform of NOS1AP produces a protein with a PTB domain, CPE-binding region, and a PDZ-binding motif (NOS1AP-L). The short isoform of NOS1AP

produces a protein with only the PDZ-binding motif (NOS1AP-S). The first 17 amino acids of NOS1AP-S are not present in NOS1AP-L. (B) Upper, extracts from

cultures of transfected COS-7 cells expressing GFP (control), NOS1AP-L, or NOS1AP-S were resolved by SDS-PAGE and analyzed by Western blotting using

antibodies that recognize actin or GAPDH. Representative blot is shown. Lower, densitometry analysis of multiple blots represented in upper. Error bars indicate ±

s.e.m. n = 6 for all conditions. a.u., arbitrary units. (C) Upper, extracts from cultures of transfected HEK293T cells expressing GFP (control), NOS1AP-L, or

NOS1AP-S were resolved by SDS-PAGE and analyzed by Western blotting using antibodies that recognize actin or GAPDH. Representative blot is shown. Lower,

densitometry analysis of multiple blots represented in upper. Error bars indicate ± s.e.m. n = 5 for all conditions. a.u., arbitrary units.

amino-terminal phosphotyrosine-binding (PTB) domain and a
carboxyl-terminal PDZ-binding motif. NOS1AP-S consists of
211 amino acids and also contains the PDZ-binding motif at
its carboxyl-terminus. The PTB domain of NOS1AP-L binds to
Dexras1, synapsin, and Scribble (Fang et al., 2000; Jaffrey et al.,
2002; Richier et al., 2010) and is responsible for the disruption of
neuronal migration by NOS1AP-L during cortical development
(Carrel et al., 2015). The PDZ-binding motif is important for
stabilization of the binding of NOS1AP to neuronal nitric oxide
synthase 1 (NOS1; Jaffrey et al., 1998; Li et al., 2015), influencing
nNOS localization, and therefore, mediating nitric oxide (NO)
signaling. Overexpression of NOS1AP-L negatively regulates
dendrite branching during multiple developmental stages in
rat hippocampal neurons, while overexpression of NOS1AP-S
only affects early dendrite development (Carrel et al., 2009).
In addition, NOS1AP-L associates with the tumor suppressor
protein, Scribble, to regulate spine development (Richier et al.,
2010).

Dynamic reorganization of the actin cytoskeleton of neurons
is essential for numerous developmental processes that are
regulated by NOS1AP isoforms, such as dendritic growth
and spine development (Georges et al., 2008; Hotulainen and
Hoogenraad, 2010). Furthermore, changes in the structure or
number of spines have implications for altered synaptic plasticity
and function (Kasai et al., 2010). The Rho family of GTPases is
composed of key intracellular regulators of spine development
(Nakayama et al., 2000; Tashiro et al., 2000), such as Rac1, that
act by influencing the actin cytoskeleton (Hall, 1994). A common
signaling pathway among several small GTPases involves the
regulation of cofilin activity. Cofilin is a member of the actin
depolymerizing factor (ADF)/cofilin family of proteins that
enhances the rate of actin filament turnover, both in vivo and
in vitro, by severing and depolymerizing actin filaments (Carlier
et al., 1997; Lappalainen and Drubin, 1997). The activity of cofilin
is regulated by the phosphorylation of its Ser-3 residue, resulting
in its inactivation (Moriyama et al., 1996). The inactivation
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of cofilin promotes increased stabilization of actin filaments
and actin polymerization (Tybulewicz and Henderson, 2009).
In neurons, cofilin has been shown to be important for spine
remodeling and synaptic plasticity. Activity-dependent spine
growth is coupled to cofilin phosphorylation, which induces actin
polymerization (Chen et al., 2007; Calabrese et al., 2014).

NOS1AP is a protein encoded by a schizophrenia susceptibility
gene (Brzustowicz et al., 2000; Zheng et al., 2005; Miranda
et al., 2006; Kremeyer et al., 2008; Wratten et al., 2009).
We have previously shown that the expression of NOS1AP-
L and NOS1AP-S is upregulated in postmortem tissue from
the dorsolateral prefrontal cortex (DLPFC) of individuals with
schizophrenia (Hadzimichalis et al., 2010). Since schizophrenia
is believed to be a neurodevelopmental disorder (Benes, 1991;
Murray et al., 1991; Bunney et al., 1995; Brent et al., 2014), in
the present study, we investigate the effects of overexpression
of these isoforms on actin dynamics, dendritic spine number
and morphology, and resulting electrophysiology. We report
that both NOS1AP-L and NOS1AP-S associate with filamentous
actin (F-actin) and that increased protein levels of NOS1AP-L
or NOS1AP-S result in reorganization of the actin cytoskeleton.
In addition, overexpression of either NOS1AP-L or NOS1AP-S
differentially perturbs spinogenesis in rat cortical neurons,
resulting in altered synaptic function. Interestingly, we find
that the mechanisms by which NOS1AP-L and NOS1AP-S may
influence these processes differ at themolecular level. Specifically,
the overexpression of NOS1AP-S results in the down regulation
of Rac1 protein expression and reduced levels of the active,
non-phosphorylated form of cofilin.

MATERIALS AND METHODS

Antibodies
Rabbit polyclonal NOS1AP (sc-9138) and goat polyclonal
DNase I antibodies were from Santa Cruz Biotechnology (Santa
Cruz, CA). Mouse monoclonal GAPDH antibody was from
Millipore (Billerica, MA), mouse monoclonal anti-alpha-actinin-
4 from Abcam (Cambridge, MA), and mouse monoclonal
anti-actin from Sigma-Aldrich (St. Louis, MO). Chicken and
goat polyclonal green fluorescent protein (GFP) antibodies
were from Rockland Immunochemicals (Limerick, PA). Rabbit
polyclonal actin and mouse monoclonal Rac1 antibodies were
from Cytoskeleton, Inc (Denver, CO). Alexa Fluor R© 647
phalloidin, chicken secondary antibody conjugated to Alexa-
Fluor R© 488, and mouse monoclonal anti-nNOS were from Life
Technologies (Grand Island, NY). Mouse monoclonal cofilin
antibody was from BD Biosciences (San Jose, CA) and rabbit
monoclonal Phospho-cofilin (Ser3) antibody was from Cell
Signaling Technology (Danvers, MA).

DNA Constructs
pCAG-GFP was obtained by subcloning EGFP from pEGFP-
C1 (Clontech; Mountain View, CA) into a vector with
CMV–actin–β-globin promoter (pCAG). cDNAs encoding long
and short isoforms of human NOS1AP (NOS1AP-L and

NOS1AP-S), NOS1AP-S-1-197 (NOS1AP-S-1PDZ), NOS1AP-
L-214-end (NOS1AP-L-1PTB), NOS1AP-L-1-487 (NOS1AP-L-
1PDZ), and NOS1AP-L-181-307 (NOS1AP-M) were sub cloned
into pCAG-GFP as described previously (Carrel et al., 2009).

Transfection of COS-7 Cells and
Immunocytochemistry
COS-7 cells were plated onto 0.1mg/ml poly-d-lysine
hydrobromide (Sigma-Aldrich)-coated coverslips at 10,550
cells/cm2 and transfected with pCAG-GFP, pCAG-NOS1AP-L,
pCAG-NOS1AP-S, pCAG-NOS1AP-S-1PDZ, pCAG-NOS1AP-
L-1PTB, pCAG-NOS1AP-L-1PDZ, or pCAG-NOS1AP-Musing
Lipofectamine 2000 (Life Technologies) following the
manufacturer’s protocol. Forty-eight hours after transfection,
cells were fixed with 4% paraformaldehyde in phosphate-buffered
saline for 15min and immunostained for GFP using chicken anti-
GFP and Alexa-Fluor R© 488 anti-chicken and for filamentous
actin (F-actin) using Alexa-Fluor R© 647-Phalloidin, followed by
nuclear staining with Hoechst dye. Coverslips were mounted
onto glass slides using Fluoromount G (Southern Biotechnology;
Birmingham, AL).

Measurement of F-Actin and Quantitation
of Protrusions in COS-7 Cells
Cells were imaged at 600x with a fixed exposure time among
experimental conditions using an Olympus Optical (Tokyo,
Japan) IX50 microscope with a Cooke Sensicam CCD cooled
camera, fluorescence imaging system, and ImagePro software
(MediaCybernetics; Silver Spring, MD). For F-actin content
analysis, the outer boundaries of individual transfected cells were
traced using ImageJ (NIH; Bethesda, MD) with the experimenter
blinded to the condition to quantify the mean fluorescence
intensity of Alexa Fluor R© 647-phalloidin staining within each
cell. Mean fluorescence intensity is defined as the sum of the
gray values of all the pixels in the selection divided by the
total number of pixels. For each image, an average of the
mean fluorescence intensity of the background was calculated
and subtracted from the mean fluorescence intensity of the
transfected cell. To quantify the protrusion index, the outer
boundary of a transfected cell (including all branched and
unbranched protrusions; area A) was traced and the periphery
of that cell excluding all protrusions was traced (area B). The two
areas were calculated, and the latter area was subtracted from the
former to give the area occupied by the protrusions. This area
was divided by the length of periphery of B to give the protrusion
index (Lin et al., 2010).

Western Blotting of COS-7 Cell Lysates
COS-7 cells were cultured in 60 mm dishes and transfected at
30–50% confluency with pCAG-GFP, pCAG-GFP-NOS1AP-L,
or pCAG-GFP-NOS1AP-S using Lipofectamine 2000 following
the manufacturer’s protocol. Cells were collected 2 days after
transfection and lysed, and expression of actin, GFP, and GAPDH
was detected by immunoblotting after resolving proteins using
SDS-PAGE. After electrophoresis, proteins were transferred to
PVDF membranes (Immobilon-P; Millipore). After blocking
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with 2% bovine serum albumin (BSA) in Tris-buffered saline
(500 mM Tris, pH 7.4, 60 mM KCl, 2.8 M NaCl) with 1%
Tween-20 (TBST), membranes were incubated with primary
antibodies overnight at 4◦C: 1:1000 for mouse anti-actin, 1:1000
for mouse anti-GAPDH, or 1:500 for goat anti-GFP. After
washing, horseradish peroxidase-linked secondary antibody was
applied at 1:5000 for 1 h at RT. Immunoreactive bands were
visualized using HyGlo quick spray (Denville Scientific; South
Plainfield NJ) and quantified using Image Pro software (Media
Cybernetics).

Western Blotting of HEK293T Cell Lysates
HEK293T cells were transfected (30–50% confluency) with
pCAG-GFP, pCAG-GFP-NOS1AP-L, or pCAG-GFP-NOS1AP-S
using the calcium phosphate method (Kwon and Firestein, 2013),
incubated overnight, and incubated in serum-free medium for
an additional 24 h. Medium was changed to serum-containing
medium for 10 min before scrape-harvesting protein. Cells
were harvested in lysis buffer (50 mM Tris pH 7.5, 10 mM
MgCl2, 0.5 M NaCl, and 2% Igepal) supplemented with protease
inhibitors (62 µg/ml Leupeptin, 62 Ég/ml Pepstatin A, 14
mg/ml Benzamidine, and 12 mg/ml tosyl arginine methyl ester)
and 1 mM sodium orthovanadate, pH 10. Western blotting
was performed for total Rac1 using mouse anti-Rac1, cofilin
using mouse anti-cofilin, phosphorylated-cofilin using rabbit
anti-Phospho-cofilin (Ser3), and GAPDH using mouse anti-
GAPDH. Immunoreactive bands were quantified using Image
Pro software.

F-Actin Immunoprecipitation
Adult rat brain tissue was homogenized and lysed in F-actin
stabilization/lysis buffer (50 mM PIPES pH 6.9, 50 mM KCl, 5
mM MgCl2, 5 mM EGTA, 5% (v/v) glycerol, 0.1% nonidet P40,
0.1% Triton X-100, 0.1% Tween 20, 0.1% 2-mercaptoethanol,
and 1 mM ATP) supplemented with 1 Complete, Mini, EDTA-
free protease inhibitor tablet (Roche Diagnostics, Mannheim,
Germany). Extracted proteins were diluted two-fold, and 500
µl extract was incubated without (negative control) or with
5 µg biotin labeled-phalloidin (Sigma-Aldrich) followed by
precipitation of captured complexes with 20 µl streptavidin-
linked magnetic beads (Dynabeads R© M-280 Streptavidin, Life
Technologies). Beads were washed three times with PBS, pH
7.4, with samples used for biochemical analysis after third wash.
Precipitated fractions were subjected to Western blotting to
detect NOS1AP isoforms, alpha-actinin-4, Dnase I, and actin.

Rat Brain Co-immunoprecipitation
Rat brain was homogenized in TEEN [25 mM Tris-HCl,
pH 7.4, 1 mM EDTA, 1 mM EGTA, 100 mM NaCl),
1 mM phenylmethylsulfonylfluoride (PMSF), 1 mM sodium
orthovanadate, pH 10, and one protease inhibitor tablet (Roche
Diagnostics)]. Triton X-100 was added to a final concentration
of 1%, and proteins were extracted at 4◦C for 1 h. Detergent-
insoluble material was pelleted by centrifugation at 12,000 ×

g at 4◦C for 15 min. Lysate was pre-cleared with protein G
agarose 50% slurry (GE Healthcare, Piscataway, NJ) for one
and a half hour and then subjected to immunoprecipitation

with monoclonal nNOS antibody or mouse IgG at 4◦C for 2
h. Immunoprecipitates were washed three times with TEEN
containing 0.1% Triton X-100, and bound proteins were eluted
with protein loading buffer. Eluates were subjected to Western
blotting to detect nNOS and NOS1AP isoforms.

In vitro Pyrene-Actin Polymerization
Assays
The rate of non-muscle actin polymerization in the presence
of lysates from cultures overexpressing GFP, GFP-NOS1AP-L,
or GFP-NOS1AP-S was monitored according to the methods
outlined in the Actin Polymerization Biochem Kit (Cytoskeleton,
Inc.). HEK293T cells were cultured in 10 cm dishes and
transfected at 30–50% confluency with NOS1AP constructs
using calcium phosphate method. Forty-eight hours later, total
protein was extracted in Buffer A [20 mM Tris-HCl, pH 7.5,
20 mM NaCl, 1% Triton X-100, 1 mM phenylmethylsulfonyl
fluoride (PMSF)]. Protein lysates were diluted to 1.5mg/ml
with Buffer A lacking Triton X-100 for final 0.1% [Triton
X-100]. Pyrene-labeled rabbit muscle actin and human non-
muscle actin (Cytoskeleton, Inc.) were mixed 1:10 to monitor
non-muscle actin polymerization. The pyrene-muscle actin and
unlabeled non-muscle actin mixture was diluted to 0.45mg/ml
in G-buffer. Pyrene muscle actin will not polymerize efficiently
on its own at the concentration used in this assay, so the
reaction is dependent on non-muscle actin polymerization for
F-actin formation. In vitro polymerization assays (200 µl)
were performed in black with clear bottom 96-well plates
(Corning; Corning, NY). Duplicate or triplicate wells were
assayed for G-buffer; pyrene-actin, lysis buffer (20 mM Tris-
HCl, pH 7.5, 20 mM NaCl, 0.1% Triton X-100, 1 mM PMSF);
pyrene-actin, GFP; pyrene-actin, NOS1AP-L; and pyrene-actin,
NOS1AP-S. Polymerization reactions were started 30 s prior to
measurement by addition of 20 µl 10X actin polymerization
buffer. Increase in fluorescence following polymerization was
measured with CytoFluor Series 4000 fluorescence plate reader
(Applied Biosystems, Life Technologies): excitation, 360 ± 40
nm, emission, 460 ± 40 nm every 30 s. To quantify changes
in polymerization rate, linear regression was performed using
GraphPad, Prism (San Diego, CA) to calculate the Vmax for the
growth phase of polymerization.

Primary Cortical Neuron Culture and Spine
Analysis
Neuronal cultures were plated from cortices of rat embryos
at 18 days gestation on glass coverslips (12 mm diameter;
53,000 cells/cm2), as previously reported (Carrel et al., 2009).
At day in vitro (DIV) 14, cultures were transfected with
indicated constructs using calcium phosphate method. Neurons
were fixed at DIV 17 and immunostained for GFP. Images of
dendritic segments were taken with a high numerical aperture
objective lens (40x C. Apochromat, N.A. 1.2) on a laser scanning
confocal microscope, LSM510 META (Carl Zeiss Microscopy;
Thornwood, NY). X-,Y-, and Z-resolution was set as 0.1, 0.1,
and 0.3µm, respectively, to define dendritic spines. Additionally,
images of dendritic segments of neurons transfected with
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NOS1AP-S or NOS1AP-S-1PDZ were taken using a 60x
plan apochromatic oil-immersion objective (NA 1.4) using a
Yokogawa CSU-10 spinning disk confocal head attached to an
inverted fluorescence microscope (Olympus IX50). X-, Y-, and
Z-resolution were set as 0.067, 0.067, and 0.1 µm, respectively,
to define dendritic spines. Spines along dendritic segments were
counted and classified starting from 20 to 50 µm from the
soma. Spines were classified as immature or mature based on
morphology. Long, thin, and filopodia-like spines were classified
as immature, whereas mushroom-shaped and stubby spines were
classified as mature (Galvez and Greenough, 2005; Majewska
et al., 2006; Ron et al., 2011). We cannot rule out the fact
that some of the immature spines observed may be in the
process of extension or retraction. Spine densities and types were
manually counted from at least 10 neurons for each experimental
condition, and analysis was performed with the experimenter
blinded to the condition.

Electrophysiology
Whole cell patch-clamp recordings were made on the soma of
cortical neurons. For recordings, cells were bathed in artificial
cerebrospinal fluid containing (in mM): 140 NaCl, 5 KCl, 2
CaCl2, 2 MgCl2, 10 HEPES, and 10 glucose (pH 7.4 adjusted
with NaOH; 290–310 mOsmol). Recording electrodes (3–5 M�)
contained a K+-based internal solution composed of (in mM):
126 K-gluconate, 4 KCl, 10 HEPES, 4 ATP-Mg, 0.3 GTP-Na2,
10 phosphocreatine, and 10 QX-314 bromide (pH 7.2; 280–300
mOsmol). To record miniature excitatory postsynaptic currents
(mEPSCs), we blocked action potentials with 1 µM tetrodotoxin
(Tocris, R & D Systems; Minneapolis, MN). The membrane
potential was held at –70 mV throughout all experiments. Data
were amplified and filtered at 2 kHz by a patch-clamp amplifier
(Multiclamp 700B), digitalized (DIGIDATA 1440A), stored, and
analyzed by pCLAMP (Molecular Devices; Union City, CA).
Data were discarded when the input resistance changed >20%
during recording.

Statistical Analysis
All statistical analyses were performed using GraphPad Prism
software (GraphPad Software, Inc., San Diego, CA). Analysis was
performed using Student t test for two groups or with ANOVA
followed by the appropriate multiple comparisons test for p-value
adjustment for groups of more than two conditions. Tests used
for experiments are clearly stated in figure legends. Statistical
significance was set at p < 0.05.

Ethics Approval Statement
This studywas carried out in accordance with the recommendations
of the National Institute of Health’s Guide for the Care and Use
of Laboratory Animals (DHHS Publication No. [NIH] 85-23 and
all subsequent revisions thereof) and to the Public Health Service
Policy on Humane Care and Use of Laboratory Animals followed
by Rutgers Institutional Animal Care and Use Committee. The
protocol was approved by the Rutgers Institutional Animal Care
and Use Committee.

RESULTS

NOS1AP Alters Actin Organization and Cell
Morphology When Overexpressed in
COS-7 Cells
We reported that NOS1AP-L and NOS1AP-S regulate dendrite
branching (Carrel et al., 2009), and others reported that
NOS1AP-L regulates dendritic spine development (Richier
et al., 2010) in rat hippocampal neurons. To gain insight
into how NOS1AP plays a role in these two cytoskeleton-
based processes, we overexpressed NOS1AP-L or NOS1AP-S in
COS-7 cells and HEK293T cells and analyzed actin expression
48 h post-transfection. We found no difference in total actin
protein when either isoform is overexpressed in either cell line
(Figures 1B,C and Supplementary Figure 1). We normalized
to GAPDH, which represents total protein, although we find
that the total NOS1AP-L expression is lower than GFP and
NOS1AP-S expression. During new dendritic branch or spine
formation in neurons, distinct types of reorganization of the
actin cytoskeleton need to occur (Hotulainen and Hoogenraad,
2010). To investigate the role of NOS1AP isoforms in regulating
actin organization, we characterized shape and measured F-actin
content of cells overexpressing NOS1AP isoforms. Control
cells exhibit typical fibroblast-like morphology (Figure 2A),
and the actin cytoskeleton is characterized by the presence
of stress fibers and diffuse F-actin immunofluorescence, which
we note as “actin organization.” Expression of NOS1AP-L or
NOS1AP-L-1PDZ, lacking the PDZ-binding motif, induces
thin, long, and sometimes branched membrane protrusions
(Figures 2A,B), accompanied by a decrease in F-actin content
(Figures 2A,C), suggesting that the PDZ-binding motif is non-
essential. Cells expressing NOS1AP-S, NOS1AP-S-1PDZ, or
NOS1AP-L-1PTB, lacking the PTB domain, show normal shape,
although the organization of actin is altered as shown by
the decrease in F-actin staining (Figures 2A,C–F). Expression
of NOS1AP-M, the middle region in NOS1AP-L responsible
for the effects of NOS1AP-L on dendrite branching (Carrel
et al., 2009), has no effect on cell shape or actin organization.
Here we show that the PTB domain is responsible for the
induction of membrane protrusions observed with NOS1AP-L
overexpression, while an unknown shared region between
NOS1AP-L and NOS1AP-S is responsible for the reduction in
the diffuse F-actin staining. Our data suggest that NOS1AP-L and
NOS1AP-S play roles in regulating actin organization via distinct
actions.

NOS1AP-S Decreases Total Rac1 Protein
and Increases the Proportion of Inactive
Cofilin
The Rho family of GTPases, including Rac1, are regulators of
dendritic development by influencing the actin cytoskeleton
(Nakayama and Luo, 2000; Tashiro et al., 2000; Negishi and
Katoh, 2005; Zhang et al., 2005; Sekino et al., 2007). However,
reorganization of the actin cytoskeleton may occur in a Rac1-
independent manner (Papakonstanti and Stournaras, 2002). It
has been reported that NOS1AP-L increases the activation of
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FIGURE 2 | Effects of NOS1AP-L or NOS1AP-S overexpression on protrusion index and F-actin. (A) Representative images of Alexa Fluor® 647 phalloidin

staining of cells expressing GFP (Control), NOS1AP-L, NOS1AP-M, NOS1AP-L-1PTB, or NOS1AP-1PDZ. (B) Quantitation of protrusion indices from COS-7 cells

(Continued)
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FIGURE 2 | Continued

48 h after transfection with plasmids encoding the indicated proteins. ***p < 0.001 vs. control. p-values were determined by one-way ANOVA followed by Dunnett’s

Multiple Comparisons test. Error bars indicate ± s.e.m from three experiments. n = 10 cells, GFP; n = 16, NOS1AP-L; n = 12, NOS1AP-S; n = 10, NOS1AP-M;

n = 14, NOS1AP-L-1PTB; n = 11, NOS1AP-1PDZ. (C) Intracellular F-actin content determined by Alexa Fluor® 647 phalloidin fluorescence intensity 48 h after

transfection of COS-7 cells with plasmids encoding the indicated proteins. ***p < 0.001 vs. Control. p-values were determined by one-way ANOVA followed by

Dunnett’s Multiple Comparisons test. Error bars indicate ± s.e.m from three experiments. n = 36 cells, GFP; n = 36, NOS1AP-L; n = 36, NOS1AP-S; n = 36,

NOS1AP-M; n = 34, NOS1AP-L-1PTB; n = 35, NOS1AP-1PDZ. Scale bar = 10 µm. (D) Representative images of Alexa Fluor® 647 phalloidin staining of cells

expressing GFP (Control), NOS1AP-S, or NOS1AP-S-1PDZ. (E) Quantitation of protrusion indices from COS-7 cells 48 h after transfection with plasmids encoding

the indicated proteins. Error bars indicate ± s.e.m from three experiments. n = 31 cells, GFP; n = 34, NOS1AP-S; n = 32, NOS1AP-S-1PDZ. (F) Intracellular F-actin

content determined by Alexa Fluor® 647 phalloidin fluorescence intensity 48 h after transfection of COS-7 cells with plasmids encoding the indicated proteins. *p <

0.05 vs. Control. p-values were determined by one-way ANOVA followed by Dunnett’s Multiple Comparisons test. Error bars indicate ± s.e.m from three experiments.

n = 68 cells, GFP; n = 49, NOS1AP-S; n = 55, NOS1AP-S-1PDZ.

Rac1 (Richier et al., 2010). To investigate whether NOS1AP-S
activates Rac1, we expressed NOS1AP-L or NOS1AP-S in
HEK293T cells and measured the levels of GTP-bound Rac1. We
did not observe a change in activated Rac1 levels after NOS1AP-S
overexpression and failed to observe consistent activation of
Rac1 after NOS1AP-L overexpression (data not shown). This
may be due to variability in the responsiveness of the cells to
Rac1 activation, although cells were subjected to the standard
procedure for serum-starvation before examining activation of
Rac1.

Activation of Rac1 is not the sole mechanism by which Rac1
may act to alter actin organization. Decreased total Rac1 levels,
rather than amount of Rac1 activation, have been shown to
inhibit the stabilization of actin-rich protrusions, affecting overall
actin organization (Yip et al., 2007). As such, we examined
whether overexpression of either NOS1AP isoform results in
changes to overall Rac1 levels, with transfection efficiency of
cells being similar for all constructs used (Figure 3A). Cells
overexpressing NOS1AP-S, but not NOS1AP-L, demonstrate
a decrease in total Rac1 protein (Figures 3B,C). To further
investigate how a reduction in Rac1 levels, resulting from
overexpression of NOS1AP-S, can disrupt actin dynamics, we
assessed the activation state of cofilin, a common downstream
effector of Rac1 and other Rho family GTPases. Cofilin is a
member of the actin depolymerizing factor (ADF)/cofilin family
of proteins and enhances the rate of actin filament turnover,
both in vivo and in vitro, by severing, and depolymerizing
actin filaments (Carlier et al., 1997; Lappalainen and Drubin,
1997). The activity of cofilin is regulated by phosphorylation
of its Ser-3 residue, resulting in its inactivation (Moriyama
et al., 1996). When NOS1AP-S is overexpressed, a decrease
in total cofilin protein levels results; however, there is no
change in levels of the inactive, phosphorylated form of
cofilin (P-cofilin; Figures 3D–F). In contrast, overexpression of
NOS1AP-L results in no change in total cofilin levels or P-
cofilin levels (Figures 3D–F). To elucidate any changes in cofilin
activity, we normalized P-cofilin levels to total cofilin, which
allows for the analysis of the active, non-phosphorylated form
of cofilin. We found that overexpression of NOS1AP-S decreases
the levels of the active cofilin, resulting in an increase in the
ratio of inactive cofilin to total cofilin (Figure 3G), a measure
of cofilin activity standard in the literature. Taken together,
our data suggest that NOS1AP-S, but not NOS1AP-L, acts to

downregulate levels of total Rac1 and cofilin to promote actin
reorganization.

NOS1AP-L and NOS1AP-S Associate with
F-Actin and Regulate Actin Polymerization
Since expression of either NOS1AP isoform can alter F-actin
content, we investigated whether NOS1AP-L or NOS1AP-
S associates with F-actin in rat brain. Previous studies
demonstrated that biotinylated-phalloidin specifically precipitates
F-actin (Fulga et al., 2007; Clarke and Mearow, 2013). Tissue
extract was incubated with or without (negative control)
biotinylated-phalloidin followed by precipitation of captured
complexes with streptavidin-linked magnetic beads. Precipitated
fractions were subjected to Western blotting to detect F-
actin. Pull-down of F-actin (Figure 4A) captured NOS1AP-
S and NOS1AP-L lacking post-translational modifications
(∼55 kDa). Pull-down of F-actin also captured alpha-actinin-
4, a known F-actin binding partner (Maruyama and Ebashi,
1965; Drabikowski et al., 1968). DNAse I, which preferentially
binds to G-actin (Schafer et al., 1975), and a third isoform of
NOS1AP (NOS1AP-S′), previously identified by our laboratory
(Hadzimichalis et al., 2010), were not detected in precipitated
fractions.

To investigate whether the association of NOS1AP with
F-actin influences actin dynamics, as defined by the rate and
amount of actin polymerization, we performed in vitro actin
polymerization assay. Recombinant NOS1AP-L or NOS1AP-S
expression in Escherichia coli could not be achieved; therefore,
HEK293T cell lysates from cultures expressing GFP, NOS1AP-
L, or NOS1AP-S were used for actin polymerization assays
(Figure 4B). Polymerization of actin was initiated by the
addition of polymerization buffer containing 2 mM MgCl
and 50 mM KCl at time 0.5 min (Figure 4C). The presence
of NOS1AP-L or NOS1AP-S enhances polymerization of F-
actin and results in an increased final amount of F-actin
(Figure 4C). Using linear regression analysis, the maximum
velocity, Vmax was calculated for the growth phase of actin
polymerization (Figures 4D,E). Addition of extracts from cells
expressing GFP has no effect on Vmax using buffer alone as a
control (data not shown). Compared to actin polymerization in
the presence of lysates from cultures expressing GFP, addition of
lysates from cultures expressing NOS1AP-S, but not NOS1AP-
L, increases the rate of actin polymerization. Our data suggest
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FIGURE 3 | NOS1AP-S decreases total Rac1 and cofilin protein expression in HEK293T cells. (A) Representative images of HEK293T cells expressing GFP

(control), GFP-NOS1AP-L, or GFP-NOS1AP-S. Scale bar = 100 µm. (B) Lysates from cultures of transfected HEK293T cells expressing GFP (control), NOS1AP-L, or

NOS1AP-S were resolved by SDS-PAGE and analyzed by Western blotting using antibodies that recognize Rac1 and GAPDH to determine total Rac1 protein levels.

Representative blot is shown. (C) Relative quantification of Rac1 normalized to control from multiple blots represented in (B). Error bars indicate ± s.e.m. n = 9 for all

conditions. (D) Lysates from cultures of transfected HEK293T cells (different than those in A) expressing GFP (control), NOS1AP-L, or NOS1AP-S were resolved by

SDS-PAGE and analyzed by Western blotting using antibodies that recognize cofilin, phosphorylated cofilin (P-cofilin), and GAPDH. Representative blots are shown.

(E) Relative quantification of total cofilin normalized to control from multiple blots represented in (D). Error bars indicate ± s.e.m. n = 4 for all conditions. (F) Relative

quantification of P-cofilin normalized to control from multiple blots represented in (D). Error bars indicate ± s.e.m. n = 4 for all conditions. (G) Relative quantification of

normalized P-cofilin/cofilin ratio from multiple blots represented in (D). Error bars indicate ± s.e.m. n = 4 for all conditions. All analyses were performed by first

normalizing to GAPDH as an internal loading control and then comparing experimental condition to GFP control condition. *p < 0.05, **p < 0.01, and ***p < 0.001 vs.

control. p-values were determined by one-way ANOVA followed by Dunnett’s Multiple Comparisons test.
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FIGURE 4 | NOS1AP-L and NOS1AP-S associate with F-actin and promote actin polymerization. (A) Representative blot showing immunoprecipitation of

phalloidin-bound F-actin and NOS1AP from adult rat brain lysate. Tissue was homogenized and cells were lysed in F-actin stabilization buffer. Samples were

incubated with or without (negative control) biotinylated-phalloidin followed by precipitation of the captured complexes with streptavidin-linked magnetic beads.

Precipitated fractions were then subjected to SDS-PAGE and sequentially immunoblotted to detect NOS1AP isoforms (NOS1AP-L, NOS1AP-S, and NOS1AP-S’),

alpha-actinin-4, Dnase I, and actin. Pull down of F-actin also captures alpha-actinin-4 (positive control). BiotPh, biotin–phalloidin; PTMs, post-translational

modifications. (B) Representative images of HEK293T cells expressing GFP (control), GFP-NOS1AP-L, or GFP-NOS1AP-S. Scale bar = 100 µm. (C) Pyrene-actin

polymerization assay was performed using a 1:10 mixture of pyrene-labeled muscle actin to unlabeled non-muscle actin. Polymerization of actin was initiated by the

addition of polymerization buffer at time 0.5 min. The black trace depicts actin in the presence of lysis buffer alone, green trace depicts effect of adding HEK293T cell

lysate from cultures expressing GFP, red trace depicts effect of adding HEK293T cell lysate from cultures expressing GFP-NOS1AP-L, and purple trace depicts effect

of adding HEK293T cell lysate from cultures expressing GFP-NOS1AP-S. (D) Effects of NOS1AP-L and NOS1AP-S on velocity during the growth phase of actin

polymerization. Dotted lines are linear regression of polymerization curves in (B) from time 0.5 to 7.5 min to determine Vmax-values. (E), Vmax data values for actin

polymerization kinetics shown in (D). Error bars indicate ± s.e.m. AFU, arbitrary fluorescence units. n = 10 polymerization reactions, buffer + actin; n = 9, GFP +

actin; n = 13, NOS1AP-L + actin; n = 12, NOS1AP-S + actin. **p < 0.01 vs. GFP + actin. p-values were determined by one-way ANOVA followed by Dunnett’s

Multiple Comparisons test.

that NOS1AP-L and NOS1AP-S regulate actin polymerization,
a process necessary for spine formation and maturation, via
distinct mechanisms.

NOS1AP Influences Spine Formation and
Maturation in Rat Cortical Neurons
Our group and others reported that mRNA and protein levels
of NOS1AP isoforms are increased in postmortem samples

from the DLPFC of subjects with schizophrenia (Xu et al.,
2005; Hadzimichalis et al., 2010). We previously reported that
expression of NOS1AP-L and NOS1AP-S protein increases
during E15 to P14 in rat forebrain, developmental time periods
linked to both dendrite branching and spine formation (Carrel
et al., 2009). Our data now link NOS1AP-L and NOS1AP-S
to actin dynamics, which are important for regulating spine
formation and maturation. Thus, we investigated the role of
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NOS1AP-L and NOS1AP-S in formation and maturation of
dendritic spines in cultured rat embryonic cortical neurons.
Extensive spine formation and maturation occurs from DIV
14 to DIV 21; therefore, we transfected neurons at DIV 14
and performed spine analysis at DIV 17. Dendritic spines
were classified as immature or mature, based on morphology
(Galvez and Greenough, 2005). Cortical neurons overexpressing
NOS1AP-L display more numerous and thinner dendritic spines,
indicative of immature spines, compared to control neurons
(Figures 5A,B,D). Expression of NOS1AP-L-1PTB eliminated
the effects on spine number, suggesting that the PTB domain
is responsible for the formation of new, immature spines
promoted by NOS1AP-L (Figures 5A,B,D). In comparison,
cortical neurons overexpressing NOS1AP-S or NOS1AP-S-
1PDZ display a greater number of mature and immature spines
compared to control neurons (Figures 6A–D). Expression of
NOS1AP-L-1PTB results in a similar increase in the number
of mature spines (Figures 5A,C). Neurons overexpressing
NOS1AP-M show no changes to total spine number and spine
morphology (Figures 5A–D); however, neurons overexpressing
NOS1AP-L-1PDZ display increased total spine number, number
of immature spines, and number of mature spines, suggesting
that the interaction between nNOS and NOS1AP may play a role
in regulating spine number and maturation. Taken together, our
data suggest that NOS1AP-L and NOS1AP-S have distinct, yet
dramatic effects on spine formation and maturation.

NOS1AP Alters Synaptic Properties in Rat
Cortical Neurons
Changes in spine number and morphology promoted by
overexpression of NOS1AP-L or NOS1AP-S could lead to
distinct functional alterations in synaptic transmission. Thus,
we performed whole-cell patch-clamp recordings of miniature
excitatory postsynaptic currents (mEPSCs) in cultured rat
embryonic cortical neurons. In correspondence with our spine
studies, we transfected neurons at DIV 14 and recorded
mEPSCs at DIV 17 (Figure 7A). Neurons overexpressing
NOS1AP-L show no change in the frequency of mEPSCs but
exhibit a significant decrease in the amplitude of mEPSCs
(Figures 7B,C). When either NOS1AP-L-1PTB or NOS1AP-
L-1PDZ is overexpressed, the decrease in mEPSC amplitude
is lost, suggesting that both the PTB domain and the PDZ-
binding motif play roles in altering synaptic properties. Neurons
overexpressing NOS1AP-S, NOS1AP-S-1PDZ, or NOS1AP-L-
1PTB demonstrate increased mEPSC frequency with no change
in amplitude (Figures 7B–E). Interestingly, overexpression of
NOS1AP-L-1PDZ also results in an increase in mEPSC
frequency, similar to that seen with NOS1AP-S or NOS1AP-S-
1PDZ overexpression, indicating that the PDZ-binding motif
is not responsible for the effect. To determine whether the
distinct effects of the two isoforms of NOS1AP are caused
by a difference in their interaction with nNOS, we performed
co-immunoprecipitation experiments. nNOS and NOS1AP-L
co-immunoprecipitate from adult rat brain lysate, whereas
NOS1AP-S does not (Figure 7F), demonstrating that only the
long isoform of NOS1AP exists in a complex with nNOS in the
brain. The observed increase inmEPSC frequency correlates with

our findings of increased number of mature spines resulting from
NOS1AP-S overexpression. Taken together, our results suggest
that NOS1AP-L overexpression decreases synaptic strength and
NOS1AP-S overexpression increases synaptic strength and that
the effects of the two different isoforms may be due to differences
in nNOS binding.

DISCUSSION

In the present study, we link NOS1AP to the regulation of
the actin cytoskeleton, further implicating NOS1AP to the
neurodevelopmental hypothesis of schizophrenia (Fatemi and
Folsom, 2009; Andreasen, 2010). Improper regulation of the
actin cytoskeleton can result in the disruption of several key
neurodevelopmental processes. Changes in normal expression
of proteins involved in early migration of neurons, axonal and
dendritic outgrowth, and synaptogenesis (Fatemi and Folsom,
2009) have been observed in postmortem brain tissues from
individuals with schizophrenia, including a study by our group
showing that expression of three isoforms of NOS1AP is
increased in the DLPFC of individuals with schizophrenia
(Hadzimichalis et al., 2010). Two of these isoforms, NOS1AP-
L and NOS1AP-S, influence dendrite branching and spine
formation (Carrel et al., 2009; Richier et al., 2010). Our results
provide mechanistic insight into how NOS1AP can regulate
these key neurodevelopmental processes. In addition, we have
demonstrated for the first time that NOS1AP can regulate both
spine formation and maturation in rat cortical neurons, resulting
in changes to synaptic function.

NOS1AP Isoforms and the Actin
Cytoskeleton
Remodeling of the actin cytoskeleton is a common biological
pathway shared among several risk factors for schizophrenia
(Zhao et al., 2015). Here we report that both NOS1AP-L
and NOS1AP-S induce remodeling of the actin cytoskeleton
when overexpressed; however, their mechanisms of action are
distinct. Both NOS1AP-L and NOS1AP-S associate with F-actin
in rat brain, linking both isoforms to the actin cytoskeleton.
Specifically, NOS1AP-S, but not NOS1AP-L, exerts its effects
on actin by increasing its polymerization rate. Additionally, a
previous study reported that NOS1AP-L increases the activation
of the small GTPase Rac1 and that the PTB domain of NOS1AP-
L is responsible for this activation (Richier et al., 2010). Our
results demonstrate that a NOS1AP-L mutant lacking the PTB
domain can reorganize the actin cytoskeleton, but cannot
induce membrane protrusions as observed with overexpression
of NOS1AP-L. These results suggest that the PTB domain
of NOS1AP-L is responsible for the induction of membrane
protrusions, and that there are multiple regulatory mechanisms
by which NOS1AP-L can remodel the actin cytoskeleton. In
contrast, we observed a decrease in levels of total Rac1 and
cofilin proteins when NOS1AP-S is overexpressed, suggesting
that the remodeling of the actin cytoskeleton by NOS1AP-
S may be mediated by the regulation of cofilin activity. The
increased proportion of inactive cofilin observed with NOS1AP-
S overexpression is in agreement with our finding that the rate
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FIGURE 5 | NOS1AP-L alter spine number and morphology. (A) Representative images of dendrites from rat cortical neurons (DIV 17) transfected with

pCAG-GFP (control), pCAG-GFP-NOS1AP-L, pCAG-GFP-NOS1AP-M, pCAG-GFP-NOS1AP-L-1PTB, or pCAG-GFP-NOS1AP-1PDZ. Scale bar = 10 µm. (B)

Number of spines per 30 µm segment in cultured neurons expressing indicated proteins. ****p < 0.0001 vs. GFP. p-values were determined by one-way ANOVA

followed by Bonferroni Multiple Comparisons test. Error bars indicate ± s.e.m. (C) Number of mature spines per 30 µm segment in cultured neurons expressing

indicated proteins. ***p < 0.001 and ****p < 0.0001 vs. GFP. p-values were determined by one-way ANOVA followed by Bonferroni Multiple Comparisons test. Error

bars indicate ± s.e.m. (D) Number of immature spines per 30 µm segment in cultured neurons expressing indicated proteins. ****p < 0.0001 vs. Control. p-values

were determined by one-way ANOVA followed by Bonferroni Multiple Comparisons test. Error bars indicate ± s.e.m. n = 50 dendrites, GFP; n = 41, NOS1AP-L; n =

50, NOS1AP-S; n = 37, NOS1AP-M; n = 55, NOS1AP-L-1PTB; n = 35, NOS1AP-1PDZ. Dendrites were analyzed from 12–20 neurons per condition with 2–3

dendrites/neuron.

of actin polymerization is increased in the presence of lysates
expressing NOS1AP-S. In summary, we demonstrate that the
two NOS1AP isoforms act to regulate the actin cytoskeleton via
distinct mechanisms (Figure 8).

Reorganization of the actin cytoskeleton by the Rho family
of GTPases is necessary for the remodeling of dendritic spines
during development. Both the expression and activity of Rac1
are under tight control in dendrites, and altered levels and

activity of Rac1 can influence dendritic development (Urbanska
et al., 2008). Indeed, a previous study reported that conditional
deletion of Rac1 in mice results in increased thin and stubby
spine formation (Golden et al., 2013). Cofilin, a downstream
effector of Rac1 and other small GTPases, is important for
spine remodeling and synaptic plasticity. Activity-dependent
spine growth is coupled to cofilin phosphorylation, which
results in actin polymerization (Chen et al., 2007; Calabrese
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FIGURE 6 | NOS1AP-S alter spine number and morphology. (A) Representative images of dendrites from rat cortical neurons (DIV 17) transfected with

pCAG-GFP (control), pCAG-GFP-NOS1AP-S, or pCAG-GFP-NOS1AP-S-1PDZ. Scale bar = 10 µm. (B), Number of spines per 30 µm segment in cultured neurons

expressing indicated proteins. **p < 0.01 and ****p < 0.0001 vs. GFP. p-values were determined by one-way ANOVA followed by Bonferroni Multiple Comparisons

test. Error bars indicate ± s.e.m. (C) Number of mature spines per 30 µm segment in cultured neurons expressing indicated proteins. ***p < 0.001 and ****p <

0.0001 vs. GFP. p-values were determined by one-way ANOVA followed by Bonferroni Multiple Comparisons test. Error bars indicate ± s.e.m. (D) Number of

immature spines per 30 µm segment in cultured neurons expressing indicated proteins. **p < 0.01 vs. Control. p-values were determined by one-way ANOVA

followed by Bonferroni Multiple Comparisons test. Error bars indicate ± s.e.m. n = 30 dendrites, GFP; n = 30, NOS1AP-S; n = 30, NOS1AP-S-1PDZ. Dendrites

were analyzed from 10–12 neurons per condition with 2–3 dendrites/neuron.

et al., 2014). In addition, both neurons lacking cofilin and
neurons with suppressed cofilin activation exhibit a mature
spine phenotype (Rust et al., 2010; Pontrello et al., 2012).
Here, we show that NOS1AP-S overexpression reduces total
Rac1 protein levels. NOS1AP-S overexpression also increases the
ratio of phosphorylated cofilin to total cofilin, demonstrating
decreased non-phosphorylated cofilin given that total cofilin

decreases whereas P-cofilin stays the same. These changes to
Rac1 and cofilin can contribute to the observed increase both
immature and mature spines in rat cortical neurons. The
perturbations in spine morphology resulting from increased
NOS1AP isoform expressionmay have negative consequences for
spine development and spine remodeling necessary for synaptic
plasticity.
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FIGURE 7 | NOS1AP-S increases synaptic strength, while NOS1AP-L decreases synaptic strength. (A) Representative tracings of miniature excitatory

postsynaptic currents (mEPSCs) from rat cortical neurons (DIV 17) transfected with pCAG-GFP (control), pCAG-GFP-NOS1AP-L, pCAG-GFP-NOS1AP-S,

pCAG-GFP-NOS1AP-S-1PDZ, pCAG-GFP-NOS1AP-M, pCAG-GFP-NOS1AP-L-1PTB, or pCAG-GFP-NOS1AP-1PDZ. (B) Average frequency of mEPSCs in

cultured neurons expressing indicated proteins. (C) Average amplitude of mEPSCs in cultured neurons expressing indicated proteins. Error bars indicate s.e.m. n =

62 cells, Control; n = 14, NOS1AP-L; n = 15, NOS1AP-M; n = 15, NOS1AP-L-1PTB; n = 22, NOS1AP-L-1PDZ. *p < 0.05; ***p < 0.001 vs. Control. p-values were

determined by one-way ANOVA followed by Bonferroni Multiple Comparisons test. Error bars indicate ± s.e.m. (D) Average frequency of mEPSCs in cultured neurons

expressing indicated proteins. (E) Average amplitude of mEPSCs in cultured neurons expressing indicated proteins. Error bars indicate s.e.m. n = 11 cells, Control; n

= 18, NOS1AP-S; n = 19, NOS1AP-S-1PDZ. *p < 0.05; ***p < 0.001 vs. Control. p-values were determined by one-way ANOVA followed by Bonferroni Multiple

Comparisons test. Error bars indicate ± s.e.m. (F) Immunoprecipitated proteins from rat brain by anti-nNOS or IgG were resolved by SDS-PAGE. Western blots were

probed for nNOS and NOS1AP isoforms. A representative Western blot of three individual experiments is shown.

NOS1AP Isoforms and Glutamatergic
Neurotransmission
Numerous studies support the concept that schizophrenia is
a disorder of altered connectivity (Narr and Leaver, 2015;
Zhou et al., 2015), resulting in the impairment of cognitive,
social, and behavioral functions. Connectivity in the brain

can be disrupted by the dysregulation of dendritogenesis,
spinogenesis, or synaptogenesis. In the present study, we report
that overexpression of either NOS1AP-S or NOS1AP-L alters
the number and morphology of spines in rat cortical neurons.
Specifically, overexpression of NOS1AP-S increases the number
of mature spines, which correlates with the down regulation
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FIGURE 8 | Model of the actions of NOS1AP-L and NOS1AP-S on the actin cytoskeleton, dendritic spine number and maturity, and synaptic strength.

Overexpression of NOS1AP isoforms result in distinct changes to neurons. A model of action for NOS1AP-L and NOS1AP-S is shown.

of total Rac1 and cofilin levels. In contrast, overexpression of
NOS1AP-L increases the number of immature spines. When
the PTB domain of NOS1AP-L is deleted, this effect is lost,
further suggesting that the PTB domain is important for the
induction of new membrane protrusions. We also found that
overexpression of NOS1AP-L-1PDZ, which results in a less
stable interaction between nNOS and NOS1AP (Jaffrey et al.,
1998; Li et al., 2015), results in increased total spine number,
number of immature spines, and number of mature spines,
suggesting that the interaction between nNOS and NOS1APmay
play a role in regulating both spine number and maturation.
Additionally, overexpression of NOS1AP-L leads to reduced
amplitude of mEPSCs. This change in amplitude may result from
a decrease in the amount of transmitter contained in presynaptic
vesicles or a change in the function or number of postsynaptic
receptors (Turrigiano and Nelson, 2004). Since transfection
efficiency is<10% andwe do not observe two ormore transfected
neurons making synaptic contacts with each other, changes
in mEPSCs are most likely due to changes in postsynaptic
strength. Therefore, the decrease in mEPSC amplitude observed
with NOS1AP-L overexpression is suggestive of a reduction in
the function or number of postsynaptic glutamate receptors
(Turrigiano and Nelson, 2004). This is consistent with our
findings that overexpression of NOS1AP-L increases the number
of immature spines and can remodel the actin cytoskeleton, a
process that regulates the endocytosis of glutamate receptors in
spines. Interestingly, overexpression of NOS1AP-L-1PDZ does
not reduce the amplitude of mEPSCs. Previous studies have
shown that activation of the NMDA receptor recruits NOS1AP
to nNOS and this interaction enhances NMDA receptor-driven
nitrosylation of a nitric oxide effector (Fang et al., 2000; Li

et al., 2013). These results suggest that NOS1AP-L may regulate
NO signaling through its interaction with NOS1, resulting in
the nitrosylation of NMDA receptors, thereby inhibiting the
activity of the receptor, leading to reduced amplitude of mEPSCs
(Cossenza et al., 2014). Furthermore, we observe an increase in
the number of mature spines and an increase in the frequency of
mEPSCs with NOS1AP-S or NOS1AP-S-1PDZ overexpression,
which suggests there is an increase in the number of functional
synapses.

Implications for Novel Drug Development
Individuals with schizophrenia display a variable number of
symptoms that fall into three main categories: positive, negative,
and cognitive. Currently available antipsychotic medications
largely target the dopamine D2 receptor and are most effective
in treating the positive symptoms of the illness, while there is
little to no improvement in negative or cognitive symptoms
(Horacek et al., 2006; Keefe et al., 2007; Davidson et al., 2009;
Lally and MacCabe, 2015). While it is important to treat the
debilitating effects of the positive symptoms of the illness,
it is necessary to find effective treatments for the negative
and cognitive symptoms to see long-term improvement in
the quality of life for individuals with schizophrenia (Green,
1996; Harvey et al., 1998). As such, investigations into other
molecular targets or cellular processes that are altered in
these individuals could identify new therapeutic strategies. The
DLPFC is a brain region associated with cognitive function and
has been implicated in the pathophysiology of schizophrenia,
showing perturbations at the anatomical, neuropathological, and
neurochemical levels (Bunney and Bunney, 2000). Increased
NOS1AP-L and NOS1AP-S protein expression in the DLPFC
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of individuals with schizophrenia coupled with alterations in
neurodevelopmental processes regulated by NOS1AP isoforms
suggest that NOS1AP isoforms play a role in cognitive
function. To support this notion, it has been reported that
healthy individuals carrying a schizophrenia-associated allele
within NOS1AP show significantly greater activation of the
DLPFC during a task of working memory (Brzustowicz, 2008).
Recently, a the creation of a cre recombinase-conditional
NOS1AP overexpression transgenic mouse has been reported,
but these mice have not been tested for neurocognitive function
(Auer et al., 2014). Studying this mouse in the context of
neurobehavioral studies would significantly strengthen the link
between NOS1AP and cognitive function. Our findings suggest
that identifying potential pathways andmolecular targets affected
by NOS1AP isoforms, as we have done in this study, may prove
important for understanding the cognitive deficits observed in
schizophrenia and can guide future therapeutic studies.
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