
ORIGINAL RESEARCH
published: 09 August 2016

doi: 10.3389/fncel.2016.00194

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 August 2016 | Volume 10 | Article 194

Edited by:

Stephen Ellis Robinson,

National Institutes of Health, USA

Reviewed by:

Seppo P. Ahlfors,

Massachusetts General Hospital, USA

Daniel Baumgarten,

Ilmenau Technical University, Germany

*Correspondence:

Risto J. Ilmoniemi

risto.ilmoniemi@aalto.fi

Received: 26 June 2015

Accepted: 21 July 2016

Published: 09 August 2016

Citation:

Ilmoniemi RJ, Mäki H, Saari J,

Salvador R and Miranda PC (2016)

The Frequency-Dependent Neuronal

Length Constant in Transcranial

Magnetic Stimulation.

Front. Cell. Neurosci. 10:194.

doi: 10.3389/fncel.2016.00194

The Frequency-Dependent Neuronal
Length Constant in Transcranial
Magnetic Stimulation

Risto J. Ilmoniemi 1*, Hanna Mäki 1, 2, Jukka Saari 1, Ricardo Salvador 3 and

Pedro C. Miranda 3

1Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland, 2 A.I.R

Advanced Analytics for IoT, Comptel Corporation, Helsinki, Finland, 3 Faculdade de Ciências, Institute of Biophysics and

Biomedical Engineering, Universidade de Lisboa, Lisbon, Portugal

Background: The behavior of the dendritic or axonal membrane voltage due to

transcranial magnetic stimulation (TMS) is often modeled with the one-dimensional cable

equation. For the cable equation, a length constant λ0 is defined; λ0 describes the axial

decay of the membrane voltage in the case of constant applied electric field. In TMS,

however, the induced electric field waveform is typically a segment of a sinusoidal wave,

with characteristic frequencies of the order of several kHz.

Objective: To show that the high frequency content of the stimulation pulse causes

deviations in the spatial profile of the membrane voltage as compared to the steady

state.

Methods: Wederive the cable equation in complex form utilizing the complex frequency-

dependent representation of the membrane conductivity. In addition, we define an

effective length constant λeff, which governs the spatial decay of the membrane voltage.

We model the behavior of a dendrite in an applied electric field oscillating at 3.9 kHz with

the complex cable equation and by solving the traditional cable equation numerically.

Results: The effective length constant decreases as a function of frequency. For a model

dendrite or axon, for which λ0 = 1.5 mm, the effective length constant at 3.9 kHz is

decreased by a factor 10 to 0.13 mm.

Conclusion: The frequency dependency of the neuronal length constant has to be

taken into account when predicting the spatial behavior of the membrane voltage as a

response to TMS.

Keywords: transcranial magnetic stimulation, TMS, length constant, cable equation, membrane potential

1. INTRODUCTION

In transcranial magnetic stimulation (TMS; Barker et al., 1985), strong, rapidly changing magnetic-
field pulses are delivered to the brain in order to induce an electric field at the target site. The electric
field, in turn, produces electric currents that, when directed through cell membranes, change
transmembrane potentials. If the membranes become sufficiently depolarized, action potentials are
triggered; this neuronal activation is the primary outcome of TMS.
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Typically, the magnetic field is produced with a coil wound in
a figure-of-eight form; if such a coil is placed tangentially over the
scalp, a current pulse in the coil induces a reasonably focal electric
field in the superficial brain. The primary electric field is very
homogeneous on the cellular scale; however, the complicated
conductivity structure of the neurons, to a large extent defined
by cell membranes, changes the local electric current patterns
dramatically. Because the microscopic tissue structure is not
generally available, precise activation patterns usually cannot be
predicted; one has to rely on computing the transmembrane
potentials in assumed, generally highly simplified, neuronal
geometries. Often, the cable equation (e.g., Roth and Basser, 1990;
Nagarajan et al., 1993; Nagarajan and Durand, 1996) is used.

The cable equation, as described in Section 2.1, describes a
passive axon or dendrite as a cylinder defined by a resistive–
capacitive membrane and conducting intracellular fluid. The
analysis leads to two useful concepts, the length constant and
the membrane time constant. The length constant describes the
rate of exponential decay of membrane voltage as a function of
distance from the location where current is injected (typically,
a synapse or site of transmembrane ion flow during an action
potential). The classical length constant is defined in the limit of
low frequencies or for dc currents. The time constant describes
the exponential decay of membrane capacitance via current
leakage through the resistive membrane. This leakage has been
assumed to weaken the effect of TMS when long-risetime pulses
are used.

Here, we also use the cable equation but define the length
constant for alternating currents instead of dc currents. It turns
out that at the characteristic frequencies in TMS, i.e., several
kHz, the length constant is far shorter than at dc. This has
consequences on how neurons are activated since the area of the
the membrane that is depolarized is proportional to the length
constant.

2. METHODS

2.1. Cable Equation
In case of a passive cell, the cable equation is derived as follows:
The axial current Ii inside the cell (see Figure 1) is given by

Ii(x, t) = −
1

ri

∂Vm(x, t)

∂x
+

1

ri
Ex(x, t), (1)

where x is the position along the longitudinal axis of the cell, Vm

is the membrane potential, which equals the potential inside the
cell if the extracellular potential is zero, Ex is the axial component
of the applied electric field, and ri is the axial resistance of the
cytoplasm per unit length. The law of conservation of currents
gives the membrane current per unit length

im(x, t) = −
∂Ii(x, t)

∂x
=

1

ri

∂2Vm(x, t)

∂x2
−

1

ri

∂Ex(x, t)

∂x
, (2)

which, in case of a spatially constant applied electric field over the
length of the axon (∂Ex(x, t)/∂x = 0), reduces to

im(x, t) =
1

ri

∂2Vm(x, t)

∂x2
. (3)

FIGURE 1 | The cylindrical cell model used for deriving the cable

equation.

Themembrane current can be presented also as the sum of ohmic
and capacitive components

im(x, t) = cm
∂Vm(x, t)

∂t
+

Vm(x, t)

rm
, (4)

where cm is the membrane capacitance per unit length of the cell
and rm is themembrane resistance of a segment of the axon times
the length of the segment.

Combining Equations (3) and (4) gives the cable equation

λ20
∂2Vm(x, t)

∂x2
= τ

∂Vm(x, t)

∂t
+ Vm(x, t), (5)

where

λ0 =
√

rm/ri (6)

is the steady-state length constant describing the exponential
decay of the membrane potential as a function of x and

τ = rmcm (7)

is the time constant of the membrane.
However, as we have documented earlier (Saari, 2009) and

as was pointed out also by Meffin and Kameneva (2011), λ0
describes the spatial decay of membrane potential only in the
steady state. This results from the fact that the cellular membrane
has capacitive properties and its conductivity can be described as
a frequency-dependent complex value. Although the quasi-static
approximation is valid at the macroscopic level at the dominant
TMS-pulse frequencies of several kilohertz (Roth et al., 1991),
considerable deviations from the steady-state spatial patterns of
current flow at the cellular level can be expected when TMS is
applied.

In the present work, we study the frequency-dependent
behavior of a neuron and formulate the effective length constant
that governs the spatial decay of the membrane voltage.
Preliminary results of this work have been reported in abstract
form (Ilmoniemi et al., 2011).
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2.2. Frequency-Dependent Membrane
Conductivity and Neuronal Length
Constant
Let us assume that the electric field component parallel to the
neuronal axis (Ex) is constant along the length of the axon or
dendrite and oscillating at angular frequency ω:

Ex(t) = E0e
iωt, (8)

which makes the membrane voltage oscillate at the same
frequency:

Vm(x, t) = Vm(x)e
iωt . (9)

We can express the membrane current per unit length with the
complex frequency-dependent conductivity σm as

im(x) = σmVm(x) =

(

1

rm
+ iωcm

)

Vm(x), (10)

where i is the imaginary unit.
Combining Equations (10) and (3) gives a complex frequency-

dependent cable equation

Vm(x) = λ2f
∂2Vm(x)

∂x2
, (11)

where

λf = λf(ω) =

√

1
ri
rm

+ iωcmri
. (12)

In case of a semi-infinite cable with the end at x = 0, the solution
of Equation (11) is

Vm(x) = De−x/λf , (13)

whereD is a constant that depends on the boundary condition. At
zero frequency (ω = 0), λf = λ0, the steady-state length constant.

Equation (13) can be divided into real and imaginary parts:

Vm(x) = (Re (D) + i Im (D))

(

e−Re(1/λf)x−i Im(1/λf)x
)

= e−Re(1/λf)x [{Re (D) + i Im (D)}{cos (cx)

+ i sin (cx)}] , (14)

where c = −Im (1/λf).
From Equation (14), we see that the real behavior of the

membrane voltage can be expressed as:

Re
(

Vm(x)
)

= e−Re(1/λf)x [Re (D) cos (cx) − Im (D) sin (cx)]

= e−x/λeff [Re (D) cos (cx) − Im (D) sin (cx)] ,
(15)

where λeff is the effective length constant:

λeff =
1

Re (1/λf)
. (16)

Substituting Equation (13) into Equation (9) gives the membrane
voltage as a function of x and time:

Vm(x, t) = De−x/λfeiωt, (17)

which can also be expressed as

Vm(x, t) = e−x/λeff
[

Re(D)eiωt+cx − Im(D)eiωt+cx−π/2
]

, (18)

the real part of which is

Re
(

Vm(x, t)
)

= e−x/λeff
[

Re(D) cos(ωt + cx)

− Im(D) sin (ωt + cx)
]

. (19)

For an applied electric field of arbitrary periodic waveform, which
can be presented as a Fourier series

E(t) =

∞
∑

k= 0

cke
i(ωkt+φk), (20)

where ck and φk are the complex Fourier coefficient and phase
of frequency component ωk, respectively, the membrane voltage
can be written as

Vm(x, t) =

∞
∑

k= 0

D(ωk)e
−x/λf(ωk)cke

i(ωkt+φk). (21)

2.3. Boundary Condition
To solve the constant D in Equations (13–15) and (17–19), let us
consider a leaky end boundary condition. The axial current at the
end of the cell (see Equation 1) equals the current flowing into
the cell through the end (see Equation 4):

Iend(x = 0) = −
1

ri

∂Vm(x = 0)

∂x
+

1

ri
Ex

= −

(

1

Rend
+ iωCend

)

Vm(x = 0), (22)

where Rend and Cend are the resistance and capacitance of the end
of the cable. Substituting Equation (13) into Equation (22) gives

D =
E0

ri/Rend + iriωCend − 1/λf
(23)

= E0
a− ib

a2 + b2
, (24)

where

a =
ri

Rend
− Re

(

1

λf

)

(25)

and

b = riωCend − Im

(

1

λf

)

. (26)
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2.4. Numerical Calculations
The variation of the neuronal membrane potential when
influenced by the electric field induced in TMS can also
be determined by numerically solving a discretized version
of the cable equation, Equation (5) (Nagarajan et al.,
1993).

That was done by employing a similar approach to the one
described in a previous study (Salvador et al., 2011). We started
by creating compartmentalized models of neurons comprising
a myelinated axon, axon hillock, initial segment, soma and an
apical dendrite. The axon, axon hillock and initial segment
were modeled with an active membrane model (Wesselink
et al., 1999). The soma and apical dendrites were modeled as
passive compartments (RC circuits). We then specified a uniform
electric field along a direction parallel to the apical dendrite.
At both ends of the neuron, sealed-end boundary conditions
were enforced (Nagarajan et al., 1993). Since the area of the end
of a dendrite is very small, the difference between sealed-end
and leaking-end boundary conditions (as used in Section 2.3) is
negligible.

The resulting set of non-linear equations was solved using the
Crank-Nicholson method, with a staggered time step approach
(Hines, 1984). This algorithm was implemented in Matlab
(version 2010a, www.mathworks.com). This algorithm has been
validated by comparison with Neuron simulation environment
(www.neuron.yale.edu/neuron/) as described in Salvador et al.
(2011).

The apical dendrite was represented as a 6-mm-long cylinder
with properties described in Table 1 and a resting membrane
voltage of−84 mV. The dendrite was divided into 1000 cylinders
each with a length of 6µm. The cylindrical shape of the simulated
apical dendrite makes the simulation results directly comparable
with our analytical results.

The temporal waveform of the electric field along the neuron
was sinusoidal with frequency f = ω/2π = 3.9 kHz and duration
of 6 ms. This frequency corresponds to the peak frequency of
the power-spectrum of the dI/dt pulse of the Magstim Rapid
stimulator (Figures 2A,B). A time step of 1.5 µs was used in the
simulations. The amplitude of the waveform was adjusted so that
the applied electric field along the neuron was of 61.2 V/m (a
value below stimulation threshold).

All simulations took less than a minute to solve in a
computer with a quad-core CPU clocked at 2 GHz and 8 Gb
of RAM.

The length constant of the numerically calculated membrane
voltage was estimated with exponential curve fitting in Matlab:
nonlinear least-squares fitting with the trust-region algorithm
was applied to the membrane voltage curve near the end of the
dendrite.

TABLE 1 | Properties of the model dendrite.

Radius (r) 4 µm

Axoplasmic resistivity (ρi) 0.33 �m

Ohmic membrane conductance per unit area (Gm) 2.73 S/m2

Membrane capacitance per unit area (Cm) 0.028 F/m2

3. RESULTS

For the model dendrite with properties described in Table 1,
which are connected to ri, rm, and cm in the following way:

ri =
ρi

πr2
, (27)

rm =
1

2πr Gm
, (28)

cm = 2πr Cm, (29)

the steady-state length constant is

λ0 =

√

rm

ri
≈ 1.5 mm. (30)

To show how the length constant is affected by the high-
frequency stimulation, we approximate the TMS pulse as
sine wave of 3.9 kHz, which is the peak frequency of the
biphasic stimulation pulse of the Magstim Rapid stimulator
(Figures 2A,B). The effective frequency-dependent length
constant (Equation 16) at f = 3.9 kHz is

λeff =
1

Re (1/λf)
=

1

Re
(√

ri
rm

+ iωcmri

) ≈ 0.13 mm. (31)

Figure 2C shows how the effective length constant (Equation 16)
decreases when the stimulation frequency increases. In addition,
we see from Equations (15) and (23) that the maximal membrane

FIGURE 2 | (A) The waveform of the electric field induced by the biphasic

stimulation pulse of the Magstim Rapid stimulator. (B) Absolute values of the

Fourier coefficients of the waveform in panel (A). The waveform, sampled at

794 kHz, was zero-padded to 4096 samples to increase the apparent

frequency resolution before applying the fast Fourier transform algorithm. (C)

The effective length constant as a function of frequency, obtained from

Equation (12). (D) The maximal deviation from the resting membrane voltage at

the end of the dendrite as a function of stimulation frequency with E0 = 61.2

V/m, obtained from Equations (15) and (23).
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FIGURE 3 | The spatial decay of the membrane voltage in the steady

state and in case of 3.9-kHz stimulation obtained from Equation (15).

The exponential term in Equation (15) is shown for comparison. Note that the

profile of the membrane potential is time-dependent due to the trigonometric

term in Equation (19).

voltage at the end of the cell decreases as a function of
frequency (Figure 2D). Figure 3 illustrates the spatial decay of
the membrane potential in the steady state and with 3.9-kHz
stimulation obtained from Equation (15).

The numerical results agreed with the analytical ones: The
decay of the membrane voltage at the end of the dendrite (0...0.23
mm) at the time of maximal E(t) (t = 5.7555 ms) was explained
(R2 = 1) with two exponentials, one with a length constant of 0.13
mm [corresponding to the exponential part of Equation (19)] and
the other one with a length constant of 4.9 mm [corresponding to
the sinusoidal part of Equation (19) and the DC component, i.e.,
resting membrane voltage].

4. DISCUSSION

We have shown how the neuronal length constant decreases with
increasing frequency of the stimulation pulse waveform. In TMS,
the applied electric field typically has characteristic frequencies
of the order of kilohertz, in which case the length constant can
be an order of magnitude smaller than the steady-state value.

As a consequence, the segment of a neuron where the TMS
pulse can trigger voltage-dependent sodium channels is much
narrower than one might have previously thought, influencing
the efficacy of the initial inflow of Na+ current in initiating the
action potential. This has potentially two major consequences.
First, the threshold voltage of sodium channels is reached with
less transferred charge with short than with longer pulses; thus,
shorter pulses are more energy-efficient (Barker et al., 1991). On
the other hand, the efficacy of stimulation might be somewhat
reduced if only a very narrow neuronal segment is stimulated.

In our analysis, we made the simplifying assumption that
the extracellular potential is zero or, equivalently, that the
extracellular resistivity is vanishingly small. In the brain, however,

the extracellular resistance per unit length cannot be assumed
much smaller than the intracellular resistance per unit length.
Thus, the extracellular potential is nonzero (Equation 1);
qualitative understanding of TMS-induced effects, however,
remains unchanged even if the extracellular potential is taken
into account (Nagarajan and Durand, 1996).

One should note that the traditional cable equation
(Equation 5) is also correct (which is why the numerical
and analytical results coincide). The frequency dependency of
the length constant can be seen by Fourier-transforming the
traditional cable equation. This is what Meffin and Kameneva
(2011) did. They, however, only calculated an approximation of
the effective length constant. Their result is in agreement with
ours.
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