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The promotion of neurological recovery by enhancing neuroplasticity has recently
obtained strong attention in the stroke field. Experimental studies support the hypothesis
that stroke recovery can be improved by therapeutic interventions that augment neuronal
sprouting. However plasticity responses of neurons are highly complex, involving the
growth and differentiation of axons, dendrites, dendritic spines and synapses, which
depend on the pathophysiological setting and are tightly controlled by extracellular
and intracellular signals. Thorough mechanistic insights are needed into how neuronal
plasticity is influenced by plasticity-promoting therapies in order not to risk the success
of future clinical proof-of-concept studies.
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INTRODUCTION

Following ischemic stroke, neuronal networks in the vicinity and at distance to the stroke are
reorganized. Axons and axon collaterals are enabled to sprout (Reitmeir et al., 2011, 2012) and
dendritic and synaptic processes are reshaped (Li et al., 2010; Overman et al., 2012) leading to an
overall reorganization of the representational map that mediates the recovery of motor functions
in a large number of settings ranging from rodents to primates and humans (Nudo and Milliken,
1996; Nudo et al., 1996; Wang et al., 2010; Overman et al., 2012). These reorganization processes
enroll regions of the contralateral hemisphere (Mohajerani et al., 2011; Reitmeir et al., 2011) and
have been shown to persist at least for several months post-stroke (Rossini et al., 2003; Sawaki et al.,
2014). A wide variety of molecules are involved in these plasticity processes, including cell adhesion
and guidance molecules, growth inhibitors, neurotransmitters and transport proteins (Bacigaluppi
et al., 2009; Li et al., 2010; Sánchez-Mendoza et al., 2010; Reitmeir et al., 2011) that may activate
or inactivate highly complex molecular pathways that enhance or inhibit neuronal sprouting and
therefore local and remote connections (Li et al., 2010; Hermann and Chopp, 2012). Unfortunately,
the natural capacity of the brain to rewire is insufficient. Though a degree of spontaneous sprouting
exists (Li et al., 2010; Reitmeir et al., 2011, 2012) and some spontaneous recovery has been reported
in humans (Duncan et al., 2000), neurological deficits persist in the large majority of stroke events
even following localized or mild ischemic injuries (Hummel et al., 2005).

The intrinsic capacity of brain repair can be efficiently stimulated by exogenous therapeutic
interventions, e.g., by physical exercise, delivery of growth factors, cell-based biologicals
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or pharmacological compounds, which in rodent and primate
models of stroke were shown to enhance neurological recovery
(Bacigaluppi et al., 2009; Reitmeir et al., 2011, 2012; Jaeger
et al., 2015; Wang et al., 2016). Neurological recovery in
the experimental setting can be defined as regain of lost
function of the paretic limb as compared to a baseline defined
previous to the stroke, which should not be confused with
neurological compensation (Murphy and Corbett, 2009), in
which other parts of the limbs (e.g., shoulder or the non-
paretic limb) are recruited to complete a task. Neurological
recovery and compensation can be discriminated by specific
tests that allow the study of the paretic limb in isolation, e.g.,
pellet withdrawal in rodents or digit testing in primates that
measure fine motor skills (Nudo and Milliken, 1996; Biernaskie
et al., 2004), and tests measuring overall motor function,
such as the rotarod, tight rope or hand grip tests (Doeppner
et al., 2014a). There seems to be a critical time window after
stroke in which various interventions, such as voluntary motor
stimulation, pharmacological treatment or transcranial brain
stimulation, can improve neurological recovery (Nudo et al.,
1996; Biernaskie et al., 2004; Hummel et al., 2005; Sawaki et al.,
2014; Wahl et al., 2014). In contrast to acute neuroprotective
therapies, plasticity-promoting therapies have proven efficacy
over weeks or even months post-stroke in animal and human
studies.

Within this perspective article, we would like to briefly
integrate some findings regarding brain remodeling and
plasticity after stroke, elucidating: (a) structural surrogates of
successful neurological recovery depending on the localization
of ischemic lesions; (b) reorganization and plasticity processes
of the cellular, subcellular and network level; (c) critical time
windows for various therapeutic interventions; and (d)modes for
the delivery of biologicals or drugs. We will shortly present (e)
selected molecular signals that are likely mediators of plasticity
processes, since we believe that understanding these signals is
a major hallmark to prevent the failure of treatments in future
clinical studies.

PATHOPHYSIOLOGICAL SETTING
INFLUENCES NEUROLOGICAL
RECOVERY AND BRAIN PLASTICITY

Ischemic stroke can affect both gray and white matter tissue,
which invariably results in diverse patterns of brain injury
and stroke recovery. In both cases, successful stroke recovery
goes along with parenchymal tissue remodeling, involving:
(a) the survival of neurons and axons in the surrounding
of the ischemic lesion, which otherwise exhibit delayed
degeneration; (b) the promotion of perilesional axonal, dendritic
and synaptic plasticity; (c) the outgrowth of axons and axon
collaterals at distance to the stroke; and (d) the modulation of
astroglial and microglial responses, which may both promote
or impede neuronal sprouting, depending on their activation
state (Bacigaluppi et al., 2009; Li et al., 2010, 2014; Liu et al.,
2010; Reitmeir et al., 2011, 2012). In a cornerstone study,
Nudo and Milliken (1996) showed that local neuronal networks
adjacent to the lesion can incorporate surviving neurons into

their representational space. In this study, the authors described
that neurons involved in distal limb movements before the
stroke were recruited into networks involved in proximal
limb movements after the stroke (Nudo and Milliken, 1996).
Early motor training stimulation was found to retain and
expand representational maps of the affected limb (Nudo et al.,
1996).

Depending on the severity of injury, damage to white
matter may result in complete or incomplete fiber tract
lesions. While in the case of complete fiber tract injury
virtually no neuronal outgrowth is possible over larger distances,
incomplete pyramidal tract injury, as induced by transient
middle cerebral artery occlusion, does allow for the de novo
formation of new terminal axon collaterals distal to the lesion
site, as previously shown in studies in which plasticity of
the ipsilateral and contralateral pyramidal tract was analyzed
(Reitmeir et al., 2011, 2012). The delivery of the growth factors
erythropoietin and vascular endothelial growth factor (VEGF)
did not further augment the outgrowth of ipsilesional pyramidal
tract fibers but induced the sprouting of midline-crossing
contralesional pyramidal axon collaterals that accompanied
functional neurological recovery (Figure 1; Reitmeir et al.,
2011, 2012), showing a priming of the contralateral hemisphere
for neuroplasticity responses that could be pharmacologically
enhanced.

PROMOTION OF NEUROLOGICAL
RECOVERY AND BRAIN PLASTICITY:
WHAT TO DO, WHEN AND HOW

Aspects of timing should be carefully addressed on restorative
therapies to take better advantage of the early brain response
to stroke. Several studies indicate a time window of about
1 week after the stroke in animal models and of 1 to 3
months in humans, in which the brain is particularly sensitive
to the initiation of stimulating therapies (Biernaskie et al.,
2004; Murphy and Corbett, 2009; Leasure and Grider, 2010;
Zeiler and Krakauer, 2013; Wahl and Schwab, 2014; Dromerick
et al., 2015; Ng et al., 2015). Thus, rats exposed to an enriched
environment between 7–14 days, but not at 30 days after
stroke, showed a sustained recovery of fine motor skills of
the paretic limb (Biernaskie et al., 2004). Likewise, continuous
training of the paretic limb started 5 days after the stroke lead
to improvement of motor function in primates (Nudo et al.,
1996). Moreover, mild voluntary exercise started 7 days after
stroke improved somatosensory function in aged rats, while
treadmill walking enhanced upper paretic limb skill in humans
even months post-stroke (Ploughman et al., 2008; Leasure and
Grider, 2010). Interestingly, non-invasive transcranial cortical
stimulation, which regulates cortical neurotransmission by a non
pharmacological approach, improves motor capacities both on
acute, subacute and chronic stroke patients (Kang et al., 2016).

The delivery of biologicals or pharmacological agents also
induces a time-dependent response of neurological function.
Following neural precursor cell (NPC) delivery after middle
cerebral artery occlusion in mice, both acute, sub-acute and
post-acute intravenous NPC delivery up to 1 month post-
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FIGURE 1 | Neuronal plasticity features of cortical neurons in response to stroke and neuronal growth stimulation. (A) Organization of the corticospinal
tract previous to the stroke. Ipsilesional fibers are depicted in black and contralesional fibers in blue. (B) After ischemic stroke induced by middle cerebral artery
occlusion, pyramidal tract axons in the ipsilesional hemisphere degenerate (dashed lines), whereas contralesional pyramidal tract axons and dendrites exhibit scarce
sprouting. (C) After growth stimulation, short-distance cortical dendrites exhibit abundant sprouting both ipsilateral (black) and contralateral (green) to the stroke,
whereas long-distance axon collaterals grow out across the midline (exemplified here at the level of the red and facial nuclei and spinal chord) in direction to
denervated target neurons. Post-stroke, the augmentation of contralesional axon collateral sprouting is accompanied by the improvement of motor and coordination
deficits.

stroke enhanced neurological recovery (Bacigaluppi et al., 2009;
Doeppner et al., 2014a,b). While the neurological improvement
was independent of the time-point of NPC delivery, the
underlying mechanisms strongly varied depending on the timing
of NPC grafting. Early delivery of NPCs up to 3 days after
stroke potently induced neuroprotection, stabilized blood-brain
barrier integrity, decreased brain inflammation and attenuated
post-ischemic peripheral immunodepression, whereas post-
acute NPC delivery at 28 days post-stroke induced more
rigorous neuronal differentiation of graftedNPCs associated with
enhanced angiogenesis and axonal plasticity (Bacigaluppi et al.,
2009; Doeppner et al., 2014b).

Potential pitfalls related to the timing of treatment have
been revealed after delivery of neutralizing antibodies against
the axonal growth inhibitor NogoA, which, when administered
prior to stroke, augmented ischemic injury in a mouse model of
transient middle cerebral artery occlusion as a consequence of
the early promotion of energy-requiring neuronal growth that
resulted in the activation of cell death pathways. Importantly,
the post-ischemic delivery of neutralizing NogoA antibodies did
not have any injury-promoting effect (Kilic et al., 2010). That
appropriate timing of physical and pharmacological therapies is
crucial for the therapeutic responses induced was demonstrated
in a combination study in which the delivery of neutralizing
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NogoA antibodies was combined with intense motor training. In
this study, asynchronous NogoA antibody delivery immediately
after stroke, but 2 weeks prior to intensemotor training produced
a remarkable recovery in fine motor function which was
accompanied with contralesional corticospinal tract sprouting,
while NogoA antibody delivery in parallel to motor training
had no additive effect (Wahl et al., 2014). Time-windows
should thoroughly be evaluated in animal studies during the
preparation of subsequent clinical trials (Dromerick et al.,
2015).

MOLECULAR SIGNALS ASSOCIATED
WITH POST-STROKE BRAIN PLASTICITY

Neuronal sprouting tightly correlates with functional
neurological improvement (Hermann and Chopp, 2012). Key
molecular signals that control axonal and dendritic sprouting
and dendritic spine density are Rho GTPases, phosphatidyl-
inositol-3-kinase/Akt and cyclic nucleotides (Tashiro and Yuste,
2004; Yoshimura et al., 2006; Neukirchen and Bradke, 2011;
Averaimo and Nicol, 2014; Spillane and Gallo, 2014). Are
axons, dendrites and synapses consistently resuming the same
ontogenetic programs that are activated during development
(Cramer and Chopp, 2000) or are there also peculiar growth
responses that differ between the developing and the stroke
brain? In fact, post-stroke plasticity strongly depends on
the re-expression of genes that mediate brain connectivity
during normal development, which are down-regulated during
adulthood under physiological states (Li et al., 2010). Yet,
opposite to the developing brain, the post-ischemic brain
represents an inflammatory environment that ultimately alters
the final outcome of neuronal regrowth (Reitmeir et al., 2011,
2012; Lindau et al., 2014; Barbay et al., 2015). The different
pathophysiological setting completely alters patterns of neuronal
growth: while during ontogeny long-distance axonal connections
are formed within the brain, post-stroke plasticity depends to a
strong degree on terminal axon collateral sprouting (Reitmeir
et al., 2011, 2012).

Interventions that modulate post-stroke plasticity share a
number of common molecular merging points, of which
Rho-GTPases deserve particular attention, since they control
cytoskeleton remodeling (Leemhuis et al., 2010; Sun et al., 2012;
Takeuchi et al., 2015). Rho-GTPases are a large family of proteins
of which Rho-A/B, Rac and Cdc42, which have intensively been
studied, have been related to axonal and dendritic sprouting
in response to growth factor and neurotransmitter exposure.
RhoA has an inhibitory effect on neuronal growth, whereas
Rac-1 and Cdc42 have growth-promoting activity (Tashiro
and Yuste, 2004; Ponimaskin et al., 2007; Leemhuis et al.,
2010; Sun et al., 2012). Notably, both erythropoietin and
statins, which promote contralesional pyramidal tract plasticity
post-stroke and enhance functional neurological recovery in
rodents (Reitmeir et al., 2011; Kilic et al., 2014), modulate
Rho-GTPase activity. Erythropoietin inhibits Rho-A, ROCK-1
and ROCK-2 after optical nerve crush, promoting axonal
growth (Tan et al., 2012), while it promoted axonal and
dendritic growth on hippocampal cells through activation

of the phosphatidyl-inositol-3-kinase/Akt pathway (Ransome
and Turnley, 2008) that promotes microtubule polymerization
(Yoshimura et al., 2006). Pravastatin inhibited the activity
of RhoA in hippocampal neurons, thus stimulating dendritic
and axonal branching. Deactivation of Nogo-66 receptor
inhibited Rho-A, thus promoting neuronal growth (McGee
and Strittmatter, 2003), while NogoA neutralization inhibited
Rho-A and activated Rac1 and Rho-B (Kilic et al., 2010), thus
enhancing post-stroke corticospinal tract plasticity (Lindau et al.,
2014).

The timing of molecular pathway modulation is essential
for stroke recovery. Following neutralizing NogoA antibody
delivery, massive overactivation of the small Rho GTPases Rac1
and RhoB was noticed when the antibody was administered
prior to stroke, the former of which overactivated the stress
kinases p38 and Jun kinase-1/2 (JNK-1/2) thus activating cell
death pathways (Kilic et al., 2010). The finding of exacerbated
brain injury may not be an exception of the antagonization
of a single molecule, i.e., NogoA, which is suggested by the
observation that the deletion of the axonal guidance molecule
ephrin-B3 enhanced post-ischemic neurogenesis, but at the
same time increased infarct size resulting in poor neurological
recovery (Doeppner et al., 2011). Accordingly forced paretic
limb training caused secondary excitotoxicity that was reduced
after administration of the NMDA receptor inhibitor MK801
(Humm et al., 1999). Since glutamate can modulate Rho-GTPase
activity (Ponimaskin et al., 2007), uncontrolled glutamatergic
transmission mediated by enhanced expression of VGLUT1
and NMDA receptor overactivation could lead to improper
sprouting and delayed excitotoxicity (Sánchez-Mendoza et al.,
2010). Importantly post-acute delivery of the uncompetitive
NMDA receptor inhibitor memantine promoted neurological
recovery and contralesional pyramidal tract sprouting (Wang
et al., 2016), indicating that rebalancing of the excessive NMDA
receptor stimulation at the right time-point indeed enhances
post-stroke brain plasticity.

TRANSLATION OF TREATMENTS TO
HUMAN STROKE PATIENTS

Some biologicals and pharmacological drugs have already passed
preclinical proof-of-concept studies in animals and are presently
undergoing first clinical studies in human stroke patients.

The neuropeptide cocktail cerebrolysin, which was shown to
reduce apoptotic neuronal death in vitro (Gutmann et al., 2002)
and to have a number of recovery-promoting, neuroprotective
and restorative effects after focal cerebral ischemia in rodents,
that included the promotion of axonal and dendritic remodeling
(Hartbauer et al., 2001; Alcántara-González et al., 2012; Zhang
et al., 2013), was recently reported to show beneficial effect on
motor recovery when administered together with rehabilitation
therapy in a small explorative randomized placebo-controlled
study in human stroke patients (Muresanu et al., 2016). The
Action Research Arm Test, not a global disability or dependence
score, was the primary endpoint of this study. A larger
multicenter trial needs to be performed to more definitely
evaluate the efficacy of cerebrolysin.
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The antidepressant fluoxetine, which is frequently used for
treating post-stroke depressive syndromes, has been found to
promote neurogenesis in vitro (Borkowska et al., 2015) and to
extend the therapeutic window for brain rewiring after focal
cerebral ischemia in mice (Ng et al., 2015). In a small randomized
placebo-controlled study in human stroke patients, fluoxetine
(20 mg per day) promoted motor recovery evaluated by the
Fugl-Meyer motor scale over up to 3 months (Chollet et al.,
2011). Global disability or dependence, was again not the primary
endpoint of this study. A larger sufficiently powered efficacy
study is urgently needed. In mice, fluoxetine was efficient in mice
only when initiated 24 h, but not 7 days post-stroke, highlighting
the relevance of therapeutic windows (Ng et al., 2015).

GSK249320 is an antibody that interferes the interaction
of myelin-associated glycoprotein (MAG) and NogoA receptor.
GSK249320 has been found to enhance neurite formation in
vitro and reduce ischemic infarct size in mice, resulting in
enhanced neurological recovery (Irving et al., 2005). Importantly,
GSK249320 improved motor function after focal cerebral
ischemia in squirrel monkeys (Barbay et al., 2015) and did
not reveal any unfavorable effects in a safety study in healthy
volunteers (Abila et al., 2013). Larger efficacy studies should be
carried out in the future.

The phosphodiesterase inhibitor sildenafil, which increases
intracellular concentrations of cGMP, a cyclic nucleotide
involved in neuronal plasticity (Averaimo and Nicol, 2014),
was shown to enhance the neurological recovery and neuronal
plasticity in rat and mouse models of focal cerebral ischemia,
stimulating axonal sprouting, neurogenesis, angiogenesis and
oligodendrogenesis (Ding et al., 2008). Sildenafil was safe, when
administered at a dose of 25 mg per day over 14 days in human
subjects (Silver et al., 2009; Chen et al., 2011). A randomized
multicenter study is warranted.

The delivery of the inverse agonist for the GABAA α5 receptor
L655708 was found to enhance neurological recovery after focal
cerebral ischemia in mice via mechanisms including the reversal
of excessive tonic inhibition of peri-infarct cortex (Clarkson
et al., 2010). Following efficacy studies after proximal transient

focal cerebral ischemia in mice and peripheral permanent focal
cerebral ischemia in rats confirming enhanced neurological
recovery using another GABAA α5 receptor antagonist, S44819,
proof-of-concept studies have been done in healthy humans,
which confirmed the safety of S44819 over a wide dose range.
A randomized multicenter study will be initiated in autumn
2016.

SUMMARY AND FUTURE CHALLENGES

In view of the robust evidence that neurological recovery may be
stimulated by therapeutic interventions that enhance neuronal
plasticity, there is considerable hope that we may soon become
able to use those therapies for enhancing neurological recovery
in stroke patients. Stringent proof-of-concept studies are needed
that comprise clear-defined ‘‘Go’’ and ‘‘No Go’’ decisions. For
a proper idea of drug actions, morphological and molecular
insights are required in the preparation of clinical trials that
identify substrates of neuronal plasticity, which are subsequently
targeted in stroke patients. In case of plasticity-promoting
therapies, only well-defined proof-of-concept studies that define:
(1) which type of tissue shall be targeted (previously ischemic,
peri-lesional or lesion-remote tissue?), and (2) which structural
features of neurons are influenced (neuronal survival, axon/axon
collateral growth, dendrite/synapse formation?; see also Figure 1)
and which is the most appropriate therapeutic window, will allow
us to bring plasticity-promoting therapies into clinics.
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