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In the olfactory system, cholinergic modulation has been associated with contrast

modulation and changes in receptive fields in the olfactory bulb, as well the learning

of odor associations in olfactory cortex. Computational modeling and behavioral studies

suggest that cholinergic modulation could improve sensory processing and learning while

preventing pro-active interference when task demands are high. However, how sensory

inputs and/or learning regulate incoming modulation has not yet been elucidated. We

here use a computational model of the olfactory bulb, piriform cortex (PC) and horizontal

limb of the diagonal band of Broca (HDB) to explore how olfactory learning could regulate

cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an

odor is reflected in firing rates and sparseness of cortical neurons in response to that odor

and these firing rates can directly regulate learning in the system by modifying cholinergic

inputs to the system. In the model, cholinergic neurons reduce their firing in response to

familiar odors—reducing plasticity in the PC, but increase their firing in response to novel

odor—increasing PC plasticity. Recordings from HDB neurons in awake behaving rats

reflect predictions from the model by showing that a subset of neurons decrease their

firing as an odor becomes familiar.

Keywords: acetylcholine, olfactory bulb, olfactory cortex, regulation, learning and memory

INTRODUCTION

Cholinergic modulation has been associated with contrast modulation and changes in receptive
fields in a number of sensory processing areas including olfaction (Metherate and Weinberger,
1989; Linster and Cleland, 2002; Chaudhury et al., 2009; Alitto and Dan, 2012; Ma and Luo, 2012;
de Almeida et al., 2013; Pinto et al., 2013). Computational modeling and behavioral studies suggest
that cholinergic modulation could improve sensory processing and learning when task demands
are high, however, how sensory inputs and or learning regulate incoming modulation has not yet
been elucidated. Recent recordings of modulatory activity in the horizontal limb of the diagonal
band of Broca show that activity in this nucleus is strongly modulated during olfactory tasks and
can be related to task difficulty and degree of task acquisition of the task (Devore et al., 2016).

We here use a computational model of the olfactory bulb (OB), piriform cortex (PC) and
horizontal limb of the diagonal band of Broca (HDB) to explore how olfactory learning can regulate
cholinergic inputs to the system in a closed feedback loop. We and others have previously proposed
that in computational models, cholinergic modulation in the OB can regulate odor representations
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and neural synchrony, thus changing odor inputs to the
cortex (de Almeida et al., 2013; Li and Cleland, 2013; Devore
et al., 2014). In piriform cortex, cholinergic modulation is
thought to aid associative memory function by reducing
interference between learned information and by increasing
neural excitability and synaptic plasticity (Hasselmo et al., 1992;
Patil et al., 1998; De Rosa and Hasselmo, 2000; De Rosa et al.,
2001). We here show computationally that if the quality of
learning in the PC directly regulates levels of ACh in OB and
PC, the system can switch between encoding of new information
and recall of previously learned information in a continuous and
self-regulated manner.

In the olfactory system, AChmodulates neuronal groups from
both olfactory bulb (OB) and piriform cortex (PC). In the OB,
Ach has been shown to modulate principal cells and different
classes of interneurons via both nicotinic and muscarinic
receptors (Ravel et al., 1990; Castillo et al., 1999; Crespo et al.,
2000; Pressler et al., 2007; D’Souza and Vijayaraghavan, 2012; Ma
and Luo, 2012; D’Souza et al., 2013; Rothermel et al., 2014; Liu
et al., 2015; Smith et al., 2015; Bendahmane et al., 2016). From
these data, the net functional effect of ACh inputs to the OB can
be constructed as enhancing mitral cell selectivity to odorants
through increased inhibition and filtering of low amplitude
inputs in concert with increased excitability in response to
selective odorants; this idea is supported by behavioral and
electrophysiological data (Elaagouby et al., 1991; Linster et al.,
2001; Wilson et al., 2004; Mandairon et al., 2006; Devore et al.,
2014). In the PC, ACh has been shown to have effects on principal
cell and interneuron excitability and afterhyperpolarization,
excitatory and inhibitory synaptic transmission as well as
synaptic plasticity (Williams and Constanti, 1988; Tseng and
Haberly, 1989; Hasselmo et al., 1992; Barkai and Hasselmo,
1994; Barkai et al., 1994; Hasselmo and Barkai, 1995; Hasselmo
and Cekic, 1996; Patil et al., 1998; Patil and Hasselmo, 1999;
Haberly, 2001). Based on computational investigations (reviewed
in Hasselmo and Giocomo, 2006), cholinergic modulation in
PC improves associative memory function by globally increasing
excitability and plasticity and specifically suppressing previously
encoded information during learning (Linster et al., 2003).
Both OB and PC receive (presumably common) cholinergic
inputs from the medial pre-optic area and particularly from the
horizontal limb of the diagonal band of Broca (HDB) (Brashear
et al., 1986; Záborszky et al., 1986) and electrical stimulation
of axons coming out of the OB or principal cells in the PC
results in firing rate modulation of neurons in the HDB (Linster
and Hasselmo, 2000), suggesting the possible existence of a
feedback loop between the HDB and olfactory structures. Our
previous work has shown that concerted cholinergic modulation
in OB and PC improve cortical learning and associative
memory function (de Almeida et al., 2013; Devore et al., 2014),
due to improved signal-to-noise ratio and synchronization in
OB (which results in better cortical read-out) and increased
excitability and plasticity in PC. Pyramidal cell networks trained
using modulated inputs from the bulb exhibit more robust
learning, with stronger neuronal activation and sparser cortical
representations of odorants. These more robust memories are,
at the same time, more distinct from each other and more

resistant to noise than those trained with unmodulated bulbar
inputs.

In previous computational models of cholinergic modulation,
levels of ACh were regulated ad hoc (Barkai et al., 1994;
Hasselmo and Cekic, 1996; Linster and Gervais, 1996; Linster and
Hasselmo, 1997; Linster and Cleland, 2002; Linster et al., 2007;
de Almeida et al., 2013) and possible mechanisms regulating the
level of ACh were not explored. While these may be dependent
on extrinsic factors such as task demands and attentional state
for example, levels of ACH could also be regulated directly by
activity in the olfactory pathway. We here show that in our
existing a model of olfactory processing, cholinergic activity
can be regulated by inputs from the PC in such a manner as
to smoothly modulate odor responses in the OB and cortex.
The network transitions between learning and recall modes
automatically, based on the quality of associativememory formed
in the PC. Recordings in the horizontal limb of the HDB in
awake behaving rats in a simple odor familiarization task showed
that as rats become more familiar with an odor, baseline neural
activity in a small fraction of cells follows the predictions from
our computational model.

METHODS

Network Architecture
The model implemented here is an extension of our previous
work (de Almeida et al., 2013; Devore et al., 2014) in which we
explored the relative contributions of AChmodulation in OB and
PC. Here, in addition to OB and PC, we implemented a third
network representing the HDB (Figure 1A).

The OB network incorporates four neuronal groups: olfactory
sensory neurons (OSN), mitral cells (Mi), periglomerular cells
(PG) and granule cells (Gr), as described in detail in de Almeida
et al. (2013) and shown in Figure 1. Each group is composed of
100 neurons. The PC network is comprised of pyramidal cells
(Py), as well as feedforward (Ff) and feedback (Fb) interneurons
(Stokes and Isaacson, 2010), each group in this network also
consists of 100 neurons. Because the connectivity between OB
and PC is still poorly understood, we use random connections
between Mi and Pr cells, with probabilities adjusted to match
available experimental data (Haberly, 2001; Illig and Haberly,
2003; Davison and Ehlers, 2011; de Almeida et al., 2013; Devore
et al., 2014; Nagayama et al., 2014), as shown in Figure 1B. All
parameter choices have been explained in detail before and are
given in Table 1.

The HDB network model is composed of GABAergic (Gb)
and cholinergic (Ac) neurons (Brashear et al., 1986). Both types
of neurons are known to project to the OB and PC; however
the present simulations are only concerned with cholinergic
projections to the OB and PC. Cholinergic neurons from the
HDBproject their afferents toOB and PC and are themain source
of ACh in these structures (Záborszky et al., 1986); electrical
stimulation of the HDB causes modulation in the PC and OB
(Kunze et al., 1991, 1992a,b; Linster et al., 1999; Ma and Luo,
2012) while neural activity in the HDB can be modulated by
electrical stimulation in olfactory areas (Linster and Hasselmo,
2000), indicating the existence of a feedback loop between HDB
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FIGURE 1 | (A) Network architecture: Olfactory Bulb, Piriform Cortex, and HDB. Olfactory Sensory Neurons (OSN) connect to one specific glomerulus where they

connect with Mitral (Mi) and Periglomerular (PG) cells. Mitral cells are the principal cells within the OB and project their axons to the PC. These neurons are modulated

by PG and Granule (Gr) cells (see main text for details). In the piriform cortex, Mi cell axons connect to pyramidal (Pyr) cells and inhibitory interneurons called feed

forward (Ff) cells that project their axons to the apical dendrites of Pyr cells, modulating the excitatory input coming from the OB. Pyramidal cells implement an

autoassociative network, projecting their axons to other Pyr neurons and to a second group of inhibitory interneurons called Feedback (Fb) cells. In our model, Pyr

cells also connect to inhibitory interneurons in the HDB (Gb). These neurons inhibit cholinergic cells (Ac) that project their axons back to the PC and OB, modulating

the activity of PG, Mi, Gr, Pyr, and Fb cells. (B) Pyramidal cells are randomly connected to Mi cells. The graphs show Mi (Bi) and Pyr (Bii) activation over a 1 s

simulation for a single odorant. Each Pyr cells is connected to 20% of the Mi cells in the OB. Note that mitral cell activities are arranged in neighborhoods for the sake

of ease of presentation only. (C) Cholinergic modulation in the model depends on Ac cell activation. The graph shows the changes in ACh modulation (M) for different

levels of Ac cell activation (A). In our model, average Ac cell activation (A) varies between 0 and 0.6 and is described in Equation (2). This activation sets the level of

cholinergic modulation in the different neuronal groups and defines how cellular effects in these groups, such as firing threshold, spontaneous activity, suppression of

synaptic transmission, etc. are modulated. The relationship between Ac activation and ACh modulation in our model is described in Equation (9). (D) Normalized

synaptic weights in Pyr autoassociative connections before and after learning. The graphs show the normalized weight matrix W′
ij for the Pyr-Pyr connections before

(Di) and after (Dii) a set of 9 training sessions. In order to help visualization, only the active synapses are shown. The sum ofW′
ij in both (Di) and (Dii) is equal to 1, the

difference here is that in (Di) the weights are spread over most of the active synapses in the network. Over the course of 9 training session (Dii), these weights

gradually concentrate in the connections between neurons that are part of the learned odor pattern.

and olfactory areas. Here we assume the interplay between
olfactory system and HDB to be similar to the interaction of
hippocampus and medium septum proposed in (Hasselmo and
Wyble, 1997), where the activity of the medium septum defines
the level of ACh modulation in the hippocampus, and the output
level of principal cells in the CA1 determine the activation of the
medium septum. In our simulations, ACh neurons have strong
spontaneous activity, so that the basal levels of ACh in OB and
PC are high. The ACh neurons receive inhibitory inputs from
local gabaergic interneurons (Gb); these interneurons depend on

the activation of Pyr cells to fire and effectively inhibit ACh cells.
Therefore, ACh activity is strong if cortical activity is low and
gradually decreases as the PC output increases (see results for
details).

Implementation
Ourmodel is composed of single compartment integrate-and-fire
neurons, with the exception of Mi cells which are modeled as two
compartments. The equations defining these neurons are adapted
from previous models (Linster et al., 2007, 2009; de Almeida

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 November 2016 | Volume 10 | Article 256

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


de Almeida et al. Regulation of Learning and Recall in Olfaction

TABLE 1 | List of model parameters.

General parameters

(all neurons)

vhyper = −10 mV; trefrac = 2 ms*

Olfactory sensory

neuron (OSN)

τ = 5 ms; β = 1; θmin = 0 mV; θmax = 15mV

Mitral (Mi, apical

compartment)†
τ = 5 ms

Mitral (Mi, soma

compartment)†
τ = 5 ms; β = 2; θmin = −1 mV; θmax = 7 mV|3 mV†

Periglomerular (PG) τ = 2 ms; β = 1; θmin = 0 mV; θmax = 10 mV|5 mV†

Granule (Gr) τ = 5 ms; β = 2; θmin = −0.3 mV; θmax = 9.5 mV|7 mV†

Feedforward (Ff) τ = 5 ms; β = 1; θmin = −0.3 mV; θmax = 15 mV

Pyramidal (Pyr) τ = 10 ms; β = 2; θmin = 0 mV; θmax = 15 mV

Feedback (Fb) τ = 5 ms; β = 2; θmin = −0.03 mV|−0.13 mV†;

θmax = 15 mV

Gabaergic (Gb) τ = 5 ms; β = 3; θmin = 0 mV; θmax = 15 mV

Cholinergic (Ac) τ = 10 ms; β = 1; θmin = −0.5 mV; θmax = 15 mV

OSN to PG gmax = 0.166; EN = +70 mV; τ1 = 1 ms; τ2 = 2 ms

OSN to Mi (apical) gmax = 0.35; EN = +70 mV; τ1 = 1 ms; τ2 = 2 ms

PG to Mi (apical) gmax = 0.38; EN = −10 mV; τ1 = 4 ms; τ2 = 8 ms

Mi (soma) to Gr gmax = 0.09; EN = +70 mV; τ1 = 1 ms; τ2 = 2 ms

Gr to Mi (soma) gmax = 0.18; EN = −10 mV; τ1 = 4 ms; τ2 = 8 ms

Mi (soma) to Ff gmax = 0.2; EN = −10 mV; τ1 = 4 ms; τ2 = 8 ms

Mi (soma) to Pyr gmax = 0.76; EN = +70 mV; τ1 = 1 ms; τ2 = 2 ms

Ff to Pyr gmax = 0.055; EN = −10 mV; τ1 = 4 ms; τ2 = 8 ms

Pyr to Fb gmax = 0.25; EN = +70 mV; τ1 = 1 ms; τ2 = 2 ms

Fb to Pyr gmax = 0.55|0.28†; EN = −10 mV; τ1 = 4 ms; τ2 = 8 ms

Pyr to Pyr

(association fibers)

gmax = 650|300†; EN = +70 mV; τ1 = 1 ms; τ2 = 2 ms

Pyr to Gb gmax = 0.085; EN = +70 mV; τ1 = 1 ms; τ2 = 2 ms

Gb to Ac gmax = 0.12; EN = −10 mV; τ1 = 4 ms; τ2 = 8 ms

Pyr adaptation Aahc = 10|0*; EN = −15 mV; τahc = 100 ms

*Spiking neurons;
†
different values are without|with cholinergic modulation, respectively;

The two Mi compartments are electrically coupled and the output computed in the apical

compartment is directly applied to the soma compartment.

et al., 2013; Devore et al., 2014; Mandairon et al., 2014). Changes
in membrane voltage v(t) over time in each compartment are
described by Equation (1):

τ
dv(t)

dt
+ v(t) = Vext(t) (1)

where τ is the membrane time constant and Vext(t) is the voltage
change resulting from external input over time.

Each one of the voltage changes due to external inputs Vext is
a result of the synaptic strength of the connection from neuron
j to neuron i (wij) and the conductance in cell i at time t (gi(t)).
EN,ij is the Nernst potential of the synaptic current and vi(t) is the
membrane potential of the postsynaptic neuron i, as described in
Equation (2):

Vi
ext(t) = wijgi(t)[ENij − vi(t)] (2)

The communication between neurons can be either continuous
or discrete, depending on the type of presynaptic neuron. Our
network is composed of non-spiking (firing-rate) neurons (OSN

and PG cells) and discrete spiking neurons (all the others).
Non-spiking neurons represent large populations of neurons
assumed to have similar activity over time. The output F(v) of
a given neuron i is a function of its membrane potential v and
the minimal threshold and saturation threshold of the output
function, θmin and θmax.Where Fi(v)= 0 if v≤ θmin and Fi(v)= 1
if v ≥ θmax. For values between zero and 1 Fi(v) is given by
Equation (3):

Fi(v) =

(

v− θmin

θmax − θmin

)

β (3)

where β defines the non-linearity of Fi(v). For non-spiking
neurons, Fi(v) represents the continuous activation rate of the
cell, while in spiking-neurons, Fi(v) defines their instantaneous
firing probability. The time course of the conductance change is
calculated as:

gi(t) = gmax(e
− t

τ1 − e
− t

τ2 ) (4)

where gmax is a constant with no unit representing the maximum
conductance of a given channel, while τ1 and τ2 are the rising and
falling times of this conductance. After firing, the spike of each
spiking-neuron is reset to a hyperpolarization potential vhyper and
remains inactive for a refractory period trefrac.

Spike adaptation was implemented in Pyr cells as a change in
voltage vahci (t) due to a hyperpolarizing current that increases
the firing threshold for recently active neurons when cholinergic
modulation is low:

τ ahc
dvi

ahc

dt
+ vi

ahc = AahcXi (5)

where Xi is equal to 1 in the time-step after neuron i spikes and
0 otherwise. Therefore, vahci increases with the constant Aahc and

decays with the characteristic time τ ahc.
The weight changes in Pyr cell associative connection are

implemented in our network as a Hebbian learning rule, the
synaptic strength w will be enhanced if both pre and postsynaptic
neurons fire together, as shown in Equation (6):

dwij

dt
= M(1− wij)

ipost(t − t
fire
j )bglu(t − t

fire
j − tdelay)

τ pp
(6)

whereM is the level of ACh modulation, defined in Equation (8).
wij is the synaptic weight, t

delay is the time it takes for the action
potential to travel from the soma to the recurrent connections,
ipost is the postsynaptic depolarization as defined in (1) and bglu

is the time course of glutamate binding on NMDA receptors.
Changes in synaptic enforcement have been long attributed to the
co-activation of these mechanisms (Bliss and Collingridge, 1993)
and tpp is the time constant of synaptic change. bglu is defined by:

bglu(t) = exp

(

−
t

τNMDAf

)

exp

(

−
t

τNMDr

)

(7)

where τNMDAf and τNMDAr characterize the receptors’ kinetics.
The weights of associative synapses are initially set to a

random value between 0 and 0.04, which is ∼10% of the
maximum weight.
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Cholinergic Modulation
Cholinergic modulation impacts a wide range of cellular and
synaptic properties in cells of the OB and PC. Levels of ACh
concentration are assumed to be a function of the average Ac
activity in the HDB, as shown in Figure 1C, and uniformly
distributed across the whole olfactory system. Therefore, Ac
activity sets the level of ACh modulation M in the network, as
described by Equation (8):

M =
1

1+ (Y1/2
A(t) )

βACh
(8)

here, Y1/2 is the activation at which half-maximal modulation
would be achieved, A(t) is the average activation of Ac cells at
time t and βACh defines the non-linear effects of Ac activation
observed in dose-response curves (Liang et al., 2005). Cellular
cholinergic effects, such as changes of synaptic transmission,
spontaneous activity, cellular adaptation, etc. vary linearly with
M. These effects are implemented in the model through changes
in different neuron parameters. The complete list of parameters
used in is found in Table 1. Finally, the changes in the activation
A(t) are described in Equation (9):

τACh
dA(t)

dt
+ A(t) =

n
∑

i= 1

S
i
(t) (9)

where τACh is the time constant of cholingeric levels in the system
n is the number of Ac cells in the network and Si(t) is the state of
neuron i at time t, this state can be 1 (firing) or 0 (otherwise). As a
consequence. levels of ACh present in the OB and PC vary slowly
as a function of HDB cholinergic neural activity.

The effects of ACh on OB and PC cells can be found in more
detail in previous work (de Almeida et al., 2013), and see Table 1
for a complete list of parameters.

Analysis
Sparseness

The selectivity of odorant activation is measured using a measure
for sparseness in the neuronal response (Rolls and Tovee, 1995;
Poo and Isaacson, 2009), as defined by Equation (11):

S = 1−

1−

(

(

∑N
i= 1

Ri
N

)2
/
∑N

i= 1
R2i
N

)

1− 1/N
(10)

where Ri is the average firing rate of cell i when exposed to a
given odor pattern, andN is the total number of cells. A response
is highly sparse (S = 1) when a single cell is active, while it has
minimal sparseness (S= 0) when all cells have the same activity.

Coherence

Themeasure of synchronization adopted here was proposed in de
Almeida et al. (2013) and defines the level of coherence between
two neurons i and j as the cross-correlation between this pair of
neurons when compared to the cross-correlation that would be

observed in random spiking neurons i’ and j’, with the same firing
rates of neurons i and j, as described by Equation (11):

cij =

[

1−

∑K
l= 1 X

′

i(l)X
′

j(l)
∑K

l= 1 Xi(l)Xj(l)

]

+

(11)

where [x]+ = max(0,x) indicates linear rectification. Xi(l) =

0 or 1 indicates the event of a spike in neuron i in the time
bin [(l-1)t, lt] where l = 1, 2, 3, ..., K, t = T/K=2 ms and T
is a long time interval. For the entire neuron population, the
coherence c is defined by the average of cij over many pairs
of neurons in the network, so that c is 0 when the network
shows no synchronization and progressively higher as neurons
synchronize.

Distance

The similarity between two odor representations is measured
as the distance between the neuronal activities evoked by these
odorants. This distance DO1,O2 is calculated as one minus the
normalized dot product between activity vectors (O1 and O2)
with the average activity resulting from odor presentation for 1 s,
as shown in Equation (12):

DO1O2 = 1−

∑N
i= 1 O1iO2i

‖O1‖ ‖O2‖
(12)

where O1i,O2i are the elements of the activity vectors O1 and O2,
respectively, and ||O1||, ||O2|| are the norms of vectorsO1 andO2.
Thus, the value of D is close to zero when the activity vectors O1

and O2 are similar and increases as this similarity is reduced.

Odor Stimulation

Different odors can be defined by a distribution of affinities
across the OSNs. In our model, these affinities are represented
by the activation of OSNs elicited by a given odorant, so that, the
higher the activation, the higher the odor affinity, similar to de
Almeida et al. (2013). For the tests presented here, we generate
100 different affinity values that are randomly permutated to
represent each odorant. This method insures that all odors
impose the same average input to the OSN layer. The numerical
values of the affinities are calculated from the normal probability
density function N(x,µ,σ) for, x = 1, 2, ..., 100 (the total number
of OSNs in our network), with µ = 50 and σ = 10 and
directly define OSN outputs. As a result, an odor stimulation is
characterized by a distribution of OSN outputs ranging between 0
and 1. For the simulations reported in the results section, affinity
values for each odorant are randomly distributed across the OSN
population. In many of these results, the similarity (distance,
Equation 12) between two odorants is an important factor. In
order to better control the level of similarity between odor, we
initially created and stored a pool of 2000 randomly generated
odorants. Each one of these odors were then simulated and their
Pyr activation patterns were stored. We then perform pairwise
comparisons of these activation patterns using Equation (12).

Implementation
All simulations were implemented using the Matlab
programming language, with Euler integration method for the
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differential equations with a time step of 0.5 ms. The source code
of these models can be downloaded from the modelDB website
(Hines et al., 2004) at the link senselab.med.yale.edu/ModelDb.
The correlations were measured using Spearman’s rank
correlation and the p-values of these correlations were calculated
using large sample approximations.

Electrophysiology
Two adult male Long Evans rat (350 gm) were used in this
study. Rats were allowed unlimited access to water but were food
deprived to 85–90% of their ad libitum body weight. To test
how neural responses in the HDB change as an odor becomes
increasingly familiar, rats were trained to perform a simple nose
poke task in a Colburn operant conditioning box connected to
an olfactometer (Figure 2A; for details on olfactometer design
see Devore et al., 2014). Briefly, rats were trained to poke an
odor port and sample the odorant for a minimum of 700 ms
for a food reward (sugar pellet), and to respect a 3 s intertial
interval. If the rat failed to reach the minimum 700 ms nose-
poke duration, the lights in the chamber would turn off and the
ITI would increase to 7 s (Figure 2A). This trial was considered
a failure. The rat was considered sufficiently trained when it
achieved 90% correct trials. A correct trial simply meant that the
rat kept its nose in the port for the required time. Rats were not
trained to discriminate odors in this task, our goal was merely to
have rats become familiar with an odor and form an association
between the odor and reward. During behavioral testing, rats
first poked in response to a blank stimulus to gather baseline
data, followed by 50 trials with a first odor and 50 trials with a
second odor to measure how activity changed as an odor became
familiar. Using a blank followed by two novel odorants allowed us
to record baseline activity, to monitor how familiarity changed
neural activity and to test, using a second odor, if any observed
changes were just due to time or were indeed related to odor
familiarity.

After training, rats were implanted with one monopolar 50
um stainless steel electrode and two microdrives in the mitral
cell layer of the OB, anterior PC, and HDB, respectively under
isoflurane anesthesia. Each of the microdrives consisted of a
single 25 um stainless steel tetrode that could be raised and
lowered after surgery. Following a week of recovery, rats were
retrained on the behavioral paradigm back to pre-surgical levels.
Following retraining, on each recording day, rats were first
plugged into the recording rig and allowed to freely roam around
a 1× 1m open-field box for at least 10min. Rats were then placed
in the operant conditioning box and run on a novel odor set each
day. Each session consisted of 20 no-odor trials, 50 trials with
odor 1 and 50 trials with odor 2 (see Table 2 for odorsets).

Neural activity was recorded through an HS-27 head stage
connected to a Neuralynx ERP-27 Panel with a Lynx-8 Amplifier
(Neuralynx, Inc., Tucson, AZ, USA). The raw signals were
amplified and filtered to isolate spiking activity (5000 X, 600–
6000 Hz), digitized at a sampling rate of 20 kHz using a CED
Power1401 and Spike2 software (Cambridge Electronic Design,
Cambridge, United Kingdom) and stored onto a computer disk
for offline analysis (Figure 2B). At the end of each session,
electrodes were advanced by rotating the drive legs either 1/8 or

TABLE 2 | Odors used in electrophysiology experiments.

Recording day Odor block 1 Odor block 2

1 Limonene 1,8 cineole

2 2,2-pheyl alcohol (+) carvone

3 3 propanal ethyl propionate 4 tans-2-nonenol methyl valerate

4 Hexyl butyrate Methyl valerate

5 n-amyl acetate Methyl butyrate

1/4 turn; a complete revolution lowered the electrodes by 320
µm. Single units were extracted from raw waveforms using the
Spike2 spike-sorting package, which uses principal components
analysis as well as waveshape features. Electrode locations were
verified histologically at the end of the experiment. All animal
experiments were conducted under a protocol approved by the
Cornell Institutional Animal Care and Use Committee.

For the purposes of this report, neural activity recorded from
HDB electrodes during odor behavioral sessions was analyzed
(Devore et al., 2016). Only well isolated units for which the
amplitude individual action potentials were at least two standard
deviations above the average activity were included in the analysis
presented here. We first calculated the spontaneous activity of
each extracted neuron from the first 20 trials during which rats
were sampling the odorless port. For each neuron, we then
tested (1) wether activity was significantly modulated by odor
stimulation during the odor sampling periods and (2) how
overall activity changed as rats became more familiar with the
odors presented during a session. A neuron was considered
“responsive” to odor stimulation if activity during the 2000 ms
after the start of odor sampling was significantly lower or higher
than during the 2000 ms preceding the start of odor sampling
(t-test). For each odor in a session, we compared the activity of
each neuron during the first 50 s of odor sampling trials to that
during the last 50 s of odor sampling trials to test if the neuron’s
activities changed significantly over the course of the rat sampling
that odor. The relationship between spontaneous firing rate and
a significant decrease or increase between the first and last 50 s of
odor trials was tested using Pearson’s correlation.

RESULTS

Bi-Directional Regulation of Odor Learning,
Contrast Enhancement and Levels of ACh
Acetylcholine has been shown to improve LTP on recurrent
connections between Pyr cells, effectively promoting learning
(Williams and Constanti, 1988; Hasselmo and Barkai, 1995). In
our previous models, odor learning resulted in a gradual increase
in activity of odor responsive Pyr cells. We first test how the
learning process in our new model affects ACh modulation.
We then investigate how this modulation impacts different cell
groups and odor representations over a sequence of training
sessions.

Cortical learning dynamically changes cholinergicmodulation
levels in the network (Figure 3). The model is presented with
a previously unknown odor pattern (odor 1) for a sequence of
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FIGURE 2 | Electrophysiological experiments and example recordings. (A) All behavioral training and testing took place in an operant chamber (Coulbourn

Instruments, Whitehall, PA). Rats were trained to poke their nose into an odor port located centrally in the front wall of the chamber and hold for at least 700ms

(Figure 1A; inset). An infrared photobeam detected entry into the nose port and triggered delivery of odors (see details of odor delivery in Devore et al., 2014). If the

rat withdrew from the odor port after less than 700ms, no reward was given and the trial was counted as incorrect. If the rat withdrew his nose after more than

700ms, a sugar pellet reward was dropped into the glass dish and the 3000ms ITI started. All hardware events were controlled using custom-written Labview

(National Instruments, Austin, TX) routines. For each session, 20 blank trials were followed by 50 trials with a novel odor (#1) and 50 trials with a second novel odor

(#2) (Bi) Example recording trace from a single electrode in the HDB. (Bii) Examples of extracted spike shapes from a recording electrode.

nine 1 s training sessions, subsequently, we present either the
trained odor or a second, unknown odorant to the network (odor
2). In response to a novel odor input, the level of modulation
is initially high (1.0), since the Ac cells in our HDB exhibit
strong spontaneous activity (Figure 3Ai). After ∼80 ms, the
increased activation of Pyr cells (due to synaptic plasticity)
partially inhibits Ac cell firing and overall ACh modulation is
slightly reduced. At the same time, the high ACh modulation is
setting the Pyr network into “learning mode,” hence gradually
promoting LTP between Pyr autoassociative connections. The
graph in Aii shows the average activity of pyramidal (Pyr),
gabaergic (Gb) and cholinergic (Ac) cells during the first second
of the nine second training session. After an odor has been
learned, recurrent synapses between odor responsive Pyr cells
are strengthened and as a result the overall firing rate of odor
responsive Pyr cells is dramatically increased (Figures 3Bi,Bii),
indirectly inhibiting Ac neurons in the HDB and reducing
the overall ACh modulation in the system. The reduced ACh
modulation decreases synaptic plasticity and restores synaptic

transmission of the Pyr autoassociative connections to 100%,
effectively switching the Pyr network to a “recall” mode. When
a novel, untrained odor is presented (Figures 3Ci,Cii, Odor 2
after training of odor1), the previously learned pattern is not
reactivated, Pyr firing is low, ACh inputs are high, effectively
switching the cortical network to “learning” mode.

Graphs in Figure 4 show how neural activity in the network
changes as an odor is learned and the network gradually
moves from “learning” to “recall.” Each point represents the
average of 100 simulations with randomly chosen odors, while
the bars measure the standard error. As an odor is learned,
Pyr cells increase their firing in response to the odor because
association fibers are strengthened and Pyr cells receive increased
inputs from each other (compare Figures 4Ai,Aii and see also
Figure 3Bi). At the same time, the learning process leads to
sparser representations of odor 1 in cortical cells (Figure 4Bii)
as described previously (de Almeida et al., 2013). Overall, the
odor representation in the cortical network is stronger and
more specific as a result of synaptic plasticity. As the odor
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FIGURE 3 | Cortical learning dynamically changes the level of ACh modulation in the model. The graphs show the average level of ACh modulation in the

system over 100 different 1 s simulations. In all tests, the level of modulation M depends on Ac cell activation (see Figure 1) and is initially set to max (1). Ac cells are

indirectly inhibited by Pyr activation through Gb neurons in the HDB. Therefore, high Pyr activation leads to low Ac firing (see methods for details). (A) Cholinergic

modulation is kept high for unknown odor patterns. The graph shows that for unknown (not yet encoded) odors (odor 1), Pyr activation is low, since the

autoassociative connections between active neurons are not strong. Low Pyr firing results in low Gb cell firing (Aii) and high Ac activation and high levels of ACh

modulation (Ai). This high modulation, however, sets the system into “learning mode,” by gradually promoting LTP between Pyr autoassociative connections. (B)

Cholinergic modulation is drastically reduced for learned odor patterns. The graph shows the levels ACh modulation after nine training sessions using the same odor

pattern (Bi). The sequence of training sessions helps to increase the synaptic weights of associative connections between Pyr neurons recruited by the odor pattern

(odor 1). When odor 1 is presented, Pyr cells are activated, by both external inputs from OB and enforced recurrent connections with other Pyr cells (Bii). This

stronger firing rate indirectly inhibits Ac neurons through Gb cells and reduces the overall ACh modulation in the model, The lower ACh modulation increases the

efficiency of autoassociative connections and switches the system to a “recalling mode.” (C) Presenting a new unknown odor dynamically switches the system back

to “learning mode.” In (Ci) the graph shows the level of ACh when the network is stimulated with a novel odor (Odor 2) after learning Odor 1. In this example, Odors 1

and 2 are kept very different, so that their activity patterns don’t share Pyr cells (see examples in Figure 1B). The associative connections between the activated Pyr

cells for this new activity patterns are not strengthened, resulting in low overall Pyr and Gb firing, unable to inhibit Ac activation (Cii). This keeps ACh modulation high

and moves the system back to “learning mode.”

is learned, activity in cholinergic cells (Figure 4Ci) decreases,
and with it the amount of ACh modulation in the OB
and PC (Figure 4Cii). Odor responses of OB mitral cells are
affected by the decrease in cholinergic tone, as evidenced by
small changes in firing rates (Figure 4Di), and larger changes
in sparseness (Figure 4Dii) and synchrony (Figure 4Diii), as
described previously. Cortical learning strongly affects bulbar
odor representations via regulation of cholinergic inputs:
cholinergic input ensures sparse and synchronous bulbar inputs
to PC during learning but not recall.

Cortical Attractors Determine Switch
between Learning and Recall
Learning in associative networks creates representations in
cortical neurons that can be more or less specific to the learned

pattern, depending on learning parameters. In most cases, a
certain degree of variation from the original pattern will allow
for reconstruction, or completion of the original pattern, making
the memories robust to noisy or distorted inputs. The degree
of distortion enabling reconstruction depends on the size of
the basin of attraction that has been formed. We here test how
dissimilar a “novel” odor has to be as compared to a previously
learned odor to allow the cortical network to enter the “learning”
mode rather than staying in “recall” mode. We first train the
network with a novel, randomly chosen, odorant (odor 1) for
nine sessions, then we present a different, randomly chosen,
odorant (odor 2) in the 10th session. We measure whether the
network will be in recall or learning mode as a function of the
distance (Equation 12) between the learned and unlearned odors
at the input to the olfactory bulb.
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FIGURE 4 | Regulation of learning. (A) Pyr network activation before and after learning. The graphs show raster plots of the Pyr network before (Ai) and after (Aii)

learning one odor pattern. The differences in firing rate between (Ai) and (Aii) results from strengthening the synaptic weights between neurons responding to the

odor. (B,C) Effect of learning on PC and HDB neural activity. The graphs show how the average frequency of Pyr and Ac cells varies over a sequence of training

sessions. The last data point in each graph shows the average response to a novel, untrained odor. The overall firing rate of Pyr cells increases as the synaptic weights

between Pyr cells are incremented over the sequence of training sessions (Bi). At the same time, the indirect inhibition of Ac cells by Pyr activity is also increased,

reducing Ac activation and ACh levels (Ci,Cii). Activity levels return to baseline when a new odor pattern (odor 2) is presented. Learning improves Pyr sparseness (Bii)

by increasing the autoassociative connection weights of neurons that participate in the odor representationPyramidal coherence (Biii), on the other hand, slightly

decreases as a result of the decrease in Mi coherence when ACh modulation decreases (see Diii). (D) Effect of cortical learning on OB activity. The graphs show how

Mi frequency (Di) sparseness (Dii) and synchronization (Diii) are affected by the change in ACh levels resulting from learning. Mi cell firing rates are only weakly

affected by learning in our model; however, ACh modulation changes Mi sparseness and synchronization (Dii,Diii). Correlation values on each plot show the

correlation between each measure and the learning sessions (Pearson’s r).

The state of the network in response to presentation of a novel
odor AFTER learning of a different odor defines whether the
network is in learning or recall mode: if ACh modulation is high
and Pyr frequency is low, the system is in learning mode (the
novel odor will be learned), if ACh modulation is low and Pyr
frequency is high, the system is in recall mode (this means that
the novel odor is similar to the learned odor and falls into its
basin of attraction). The graphs in Figure 5 show the average
state of the network during the first presentation of a novel odor
after training as a function of the distance between trained and
novel odor. As described above, the state of Pyr response and
ACh modulation levels define if the network goes into learning
or recall mode. For small distances (i.e., similar training and
recalling odors) the average Pyr frequency in response to the
novel odor is high, since the overlap between the odorants is high

(Figure 5Ai). As a consequence, the system is in recall mode.
As distance increases, the network cannot rely on the learned
connections anymore, firing frequency is reduced, which leads
to a reduction on Gb cell activation in our HDB model and
an increase of ACh modulation. Similar effects are observed
for the level of sparseness. For small distances (high overlap),
the attractor created by the learned memory keeps the odor
representation sharp, by activating the cells that are part of the
trained odor pattern (Figure 5Aii). Cortical sparseness rapidly
decreases when the similarity between trained and novel odor
is reduced while the level of coherence is only slightly affected
(reduced) by the overlap between trained and evoked odors
(Figure 5Aiii). The level of ACh modulation varies ∼3× (from
∼0.27 to ∼0.85), while Pyr activity changes ∼2× (between
∼4.2 and ∼8.6Hz), suggesting that ACh modulation is more
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FIGURE 5 | Similarity between learned and recalled odor patterns impacts the regulation of encoding and recall. The graphs show how Pyr average

frequency, sparseness and coherence—as well as cholinergic modulation—are affected by the level of similarity between a previously trained odor and a novel odor.

The gray circles show individual data points, while the black filled circles show the average values. The correlation values indicate the correlation between the plotted

measure and the distance between the two odor representations (Pearson’s R). (Ai) Pyramidal cell firing rates in response to a novel odor decrease as the distance

between encoded and novel odor increases. Small distances indicate that the overlap between the two odors is high. As the distance increases and the overlap is

reduced, the network cannot rely on the learned connections to recall the learned odor and the PC responses to the novel odor decreases. A similar trend is observed

for the sparseness of Pyr firing, which also depends strongly on learned association fibers (Aii). Finally, coherence is only slightly reduced by the overlap between

trained and evoked odors (Aiii). Changes on Pyr coherence depend on Mi coherence, which are positively correlated with the levels of ACh (B).

affected by the overlap between odor representations then the
average frequency. This higher sensibility to overlap derives
from the non-linear relationship between Ac cell activation and
ACh modulation, described in Equation (1) (see Figure 1C) and
improves the dynamics of the system, allowing for relatively small
variations of Pyr frequencies to trigger large changes of ACh
modulation. In summary, given the parameters for learning used
here, the cortical network induced switch between recall and
learning occurs for odors that are more distant than 0.2 using our
distance measure.

Neural Activity in the HDB Changes as
Odors Become Familiar
Our simulations predict that as a novel odor becomes more
familiar to the animal, the activity of cholinergic neurons in the

HDB network would decrease from the level of spontaneous
activity whereas at the same time, the activity of GABAergic
neurons would increase. To test how neurons in the HDB
change their firing rates as a rat becomes familiar with an
odorant, we recorded from HDB neurons, putatively including
cholinergic and GABAergic neurons since cannot be identified in
extracellular recordings, during a simple odor-reward association
task (see Methods and Figure 2). We analyzed data from 17
neurons in two rats, each run in four sessions with two novel
odors. These neurons exhibited spontaneous activities ranging
between 0.2 and 42 Hz with an average rate of 14.122 ± 3.4
Hz. These data are in the range of those reported in a previous
report in urethane anesthetized (Linster and Hasselmo, 2000):
0.5–16 Hz with an average of 6.7± 1.19Hz) and awake behaving
rats (Devore et al., 2016; 11.05 ± 11.02 Hz). 70% of these

Frontiers in Cellular Neuroscience | www.frontiersin.org 10 November 2016 | Volume 10 | Article 256

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


de Almeida et al. Regulation of Learning and Recall in Olfaction

FIGURE 6 | Neural recordings in the HDB. (A) Average ratio of neural

activity during the first and last 50 s of an odor sampling period. The y-axis is

plotted on a log-scale for ease of visualization. Data shown are responses

during the 20 presentations of the blank for all neurons, and responses during

both odor sampling periods for neurons that showed no change, an increase

or decrease. (B) Time course of neural activity for neurons showing a

significant increase (n = 4) or decrease (n = 4) over the course of the sampling

of odor 1 and odor 2. Because animals we free to sample as they wished, the

time course of sampling was divided into 8 equal time intervals for each

animal. *indicate significant differences between time points. The y-axis is

plotted on a log-scale for ease of visualization. (C) Degree of

increase/decrease in each neuron as a function of spontaneous activity

measured during sampling of the blank odor. Decreases in activity are seen

throughout the range of spontaneous activity frequencies observed. The y-axis

is plotted in a log scale for ease of visualization. (D) Example activity of a

neuron during sampling of odors 1 and 2.

neurons (n = 12) fired significantly differently during odor
sampling than before odor sampling; in the majority of cases
(n = 9) neurons decreased their firing rates during sampling
suggesting the possibility of an anticipatory increase before odor
port sampling. We then tested if neural activity of HDB neurons
changed over the course of familiarization with the odorants
by comparing average activity during the first and last 50 s
of each odor sampling period. We found that neural activity
either significantly decreased (24%), increased (24%) or did not
change (53%) between the first and last 50 s of an odor sampling
period (Figure 6). Figure 6A summarizes the degree of change
in response to odorants over the course of familiarization in
response to blank and odors. In each case, the activity during
the first 50 s is compared to the activity during the last 50 s.
The data are separated into neurons decreasing their activity
(n = 4), increasing their activity (n = 4) or showing no change
(n = 9). Figure 6B shows the temporal evolution of average
firing rates of decreasing and increasing neurons during the 50
trials odor sampling period for each odor in 8 samples of equal
duration. All firing rates were first normalized with respect to the
first sample of odor A to allow comparisons between neurons.
Because rats are self-guided in this behavior, they run through
the 50 trials for each odor with unequal time, as a consequence
each odor period was divided into eight equal samples rather than
taking samples of equal time lengths. Note that on average, the
activity returns to the baseline firing rate when the novel odor
B is first presented, showing that familiarity with each odorant
modulates the neurons’ firing rates. A significant correlation
between spontaneous firing rates and degree of change was found
for the 8 neurons that changed their firing rate over the course of
familiarization with an odorant (r = −0.476; p < 0.05; Pearson
Correlation; Figure 6C). Figure 6D shows an example for a cell
responding with decreased firing over the course of sampling
odor 1, increased firing followed by a decrease when odor 2 is
presented.

DISCUSSION

Cholinergic modulation has long been suggested to provide
a switch between encoding and recall modes in cortical or
hippocampal associative memory (Hasselmo and Bower,
1993). The activation of cholinergic receptors increases
pyramidal cell excitability and enhances LTP, allowing cortical
networks to undergo a period of high plasticity necessary
for memory formation. Theoretical ideas suggesting a switch
from focusing on incoming information (encoding) or stored
information (recall) are supported by experimental data showing
a dependence of learning, but not recall of information on
functioning ACh receptors (Hasselmo et al., 1992; Hasselmo
and Bower, 1993; Yu and Dayan, 2005; Hasselmo and Sarter,
2011). The olfactory system is served by a separate, mostly
exclusive cholinergic nucleus, and hence lends itself well for
detailed investigations about the role of ACh in learning and
recall (Brashear et al., 1986; Záborszky et al., 1986). Behavioral
experiments by DeRosa and colleagues showed that encoding
(learning) of odor information, especially in ambiguous
situations, is highly dependent on activation of cholinergic
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receptors (De Rosa and Hasselmo, 2000; De Rosa et al., 2001,
2004). Similarly, Linster and colleagues showed that encoding
of olfactory information was impaired when cholinergic inputs
to the olfactory system were decreased (Devore et al., 2014).
These results are in agreement with data from other systems,
such as hippocampus and sensory cortex, where encoding
of overlapping or ambiguous information is enhanced by
cholinergic modulation (Baxter and Chiba, 1999; De Rosa et al.,
2001; Ljubojevic et al., 2014). Experiments from our and other
labs have shown that cholinergic modulation in the olfactory
bulb regulates the similarity between odor representations, and
that this regulation is specifically important during encoding
but not recall (Linster et al., 2001; Linster and Cleland, 2002;
Wilson et al., 2004, 2006; Mandairon et al., 2006; Chaudhury
et al., 2009; Devore et al., 2014). We here show computationally
that a feedback loop between olfactory cortex and the nucleus
providing cholinergic input to the olfactory bulb and cortex,
the HDB, allows the olfactory system to compare an odor
stimulation to previously encoded odors and dynamically
regulate if an odor will be encoded or not. The model presented
relies on a projection, direct or indirect, between olfactory
cortical pyramidal cells and HDB GABAergic interneurons.
While such a connection has not been demonstrated, it has
been shown that electrical stimulation of olfactory cortex can
modulate neural activity in the HDB at a precise and short
latency (Linster and Hasselmo, 2000), at least not excluding the
possibility of such a projection. As a consequence, the possibility
of feedback regulation exists in this system. Consequences of our
proposed feedback loop are: (1) a relatively high spontaneous
activity in cholinergic neurons in the HDB in the absence of
odor stimulation, (2) a decrease in cholinergic neuron activity
as an odor becomes increasingly familiar, accompanied by an
increase in GABAergic activity in the HDB and (3) an increase
in cortical pyramidal cell activity in response to increasingly
familiar odorants. Our accompanying recordings from a small
number of HDB neurons in a simple odor reward association
task show that a small percentage of neurons each decreased
or increased their firing rate significantly below or above their
spontaneous rate over the course of sampling a same odor
repeatedly. When presented with a second, novel odor, these
neurons first return to their initial firing rate and then either
decrease or increase their firing rates similarly as in response
to the first odor. The return to baseline response levels upon
initial presentation of the novel odor shows that the increase
of decrease of activity is not merely a temporal phenomenon
but depends on odor familiarity. Despite the small number of
neurons recorded, the data are consistent in that all neurons

clearly fell into three categories and hence we think can be
representative for the behavior of HDB neurons in general for
the particular behavioral task implemented here. While it is
not possible to categorize GABAergic and cholinergic neurons
from these recordings it cannot be excluded that populations of
HDB neurons (GABAergic, cholinergic or glutamatergic) could
correspond to the separate responses in this particular task.
Overall, these recordings are in agreement with the predictions
from our computational model as presented here; however the
data presented is not exclusively compatible with the theoretical

ideas presented here but could result from a number of different
scenarios. For example, internal synaptic connections between
HDB neurons, as evidence by Yang et al. (2014) could result in
differential activities of HDB neurons as observed here.

Our simulations show that cortical learning could modulate
olfactory bulb odor representations by modulating the degree
of cholinergic inputs. As a consequence, encoded OB odor
representations are sparse and synchronous, with high signal
to noise ratio. As we have shown before (de Almeida et al.,
2013; Devore et al., 2014), cholinergic modulation of OB
processing enhances cortical learning and stability and duration
of cortical representations. In the context presented here,
cholinergic input to the OB is not strictly necessary for the
regulation of learning to occur but enhances the specificity
of the learned odor representation. In our simulations, the
size of the cortical attractor decides if an odor is considered
familiar or novel. Together with previous experimental and
computational work from olfactory and other systems, our
results strongly suggest the existence of a feedback loop between
sensory representations and learning, mediated by cholinergic
projections.
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