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The identification and cloning of the two major cannabinoid (CB1 and CB2) receptors
together with the discovery of their endogenous ligands in the late 80s and early 90s,
resulted in a major effort aimed at understanding the mechanisms and physiological
roles of the endocannabinoid system (ECS). Due to its expression and localization in the
central nervous system (CNS), the CB1 receptor together with its endogenous ligands
(endocannabinoids (eCB)) and the enzymes involved in their synthesis and degradation,
has been implicated in multiple pathophysiological events ranging from memory deficits
to neurodegenerative disorders among others. In this review, we will provide a general
overview of the ECS with emphasis on the CB1 receptor in health and disease. We
will describe our current understanding of the complex aspects of receptor signaling
and trafficking, including the non-canonical signaling pathways such as those mediated
by β-arrestins within the context of functional selectivity and ligand bias. Finally, we will
highlight some of the disorders in which CB1 receptors have been implicated. Significant
knowledge has been achieved over the last 30 years. However, much more research is
still needed to fully understand the complex roles of the ECS, particularly in vivo and to
unlock its true potential as a source of therapeutic targets.
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INTRODUCTION

The endocannabinoid system (ECS) plays key modulatory roles during synaptic plasticity and
homeostatic processes in the brain. Based on anecdotal evidence obtained from cannabis use,
laboratory studies, and from emerging clinical work, modulation of the ECS has been proposed
as a promising therapeutic target to treat numerous central nervous system (CNS) disorders
including neurodegenerative diseases, epilepsy and cognitive deficits among others (Scotter et al.,
2010; Fernández-Ruiz et al., 2011; Bilkei-Gorzo, 2012). However, the widespread expression and
complex roles of several components of the ECS in excitatory and inhibitory transmission makes
the development of such therapy highly challenging (Di Marzo, 2008).

This review will explore some of the relationships between the cannabinoid (CB1 and CB2)
receptors and their ligands with the nervous system in health and disease. We will introduce the

Abbreviations: AD, Alzheimer’s Disease; AEA, arachidonylethanolamine; 2-AG, 2-arachidonoylglycerol;
CB1 receptors, cannabinoid 1 receptor; CB2 receptor, cannabinoid 2 receptor; CBD, cannabidiol; CBs, synthetic
ligands for CB1/2; CNS, central nervous system; eCBs, endocannabinoids; GPCR, G protein-coupled receptor;
HD, Huntington’s disease; MS, multiple sclerosis; TBI, traumatic brain injury.

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 January 2017 | Volume 10 | Article 294

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
https://doi.org/10.3389/fncel.2016.00294
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2016.00294&domain=pdf&date_stamp=2017-01-04
http://journal.frontiersin.org/article/10.3389/fncel.2016.00294/abstract
http://journal.frontiersin.org/article/10.3389/fncel.2016.00294/abstract
http://journal.frontiersin.org/article/10.3389/fncel.2016.00294/abstract
http://loop.frontiersin.org/people/380695/overview
http://loop.frontiersin.org/people/6853/overview
https://creativecommons.org/licenses/by/4.0/
mailto:guillermo.yudowski@upr.edu
https://doi.org/10.3389/fncel.2016.00294
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Kendall and Yudowski Endocannabinoid System in the CNS

two major receptors, focusing on the CB1 receptors due to their
high expression levels in the CNS; their endogenous ligands
or endocannabinoids (eCB) and some synthetic mimetics that
activate andmodulate their signaling; the signaling pathways that
connect this receptor to processes inside the cell; and the role of
the CB system in the normally functioning CNS and its alteration
or therapeutic modulation in a variety of disease states.

CB1 RECEPTORS

The CB1 receptor is one of the most abundant G protein-coupled
receptors (GPCRs) in the CNS and is found in particularly high
levels in the neocortex, hippocampus, basal ganglia, cerebellum
and brainstem (Herkenham et al., 1991; Marsicano and Kuner,
2008). CB1 receptors are also found on peripheral nerve terminals
and some extra-neural sites such as the testis, eye, vascular
endothelium and spleen. Interestingly, CB1 receptors are highly
enriched at presynaptic and axonal compartments, restricting
their function to sites of synaptic activity (Straiker and Mackie,
2005; Wu et al., 2008). In addition to its location on the
cell surface, intracellular localization of CB1 receptors has also
been reported in heterologous systems and primary cultures
(Leterrier et al., 2006; Rozenfeld, 2011). The CB1 receptor
binds the main active ingredient of Cannabis sativa (marijuana),
19-tetrahydrocannabinol (19-THC) and mediates most of the
CNS effects of 19-THC (Zimmer et al., 1999). In addition,
CB1 receptors bind synthetic cannabimimetic compounds such
as CP55940, JWH-015, WIN55212-2 and the endogenous
arachidonic acid derivatives arachidonylethanolamine (AEA)
and 2-arachidonylglycerol (2-AG; see below; Howlett et al.,
2002). Upon ligand binding and receptor activation, CB1
receptors are primarily coupled to pertussis toxin (PTX)-
sensitive Gi/o type G proteins which leads to a rapid decrease
in levels of cAMP by inhibiting adenylate cyclase activity
(Figure 1A; Howlett et al., 2004). Coupling to other G proteins
including Gs, albeit with low efficacy, can also stimulate
adenylate cyclase (Glass and Felder, 1997; Glass and Northup,
1999; Varga et al., 2008; Bosier et al., 2010) though the
extent of accumulation of cAMP is not necessarily a good
indicator of G protein coupling (Eldeeb et al., 2016). Evidence
of promiscuous coupling to different G proteins, signaling
roles mediated by β-arrestins and signaling from intracellular
compartments (Figure 1B) adds yet another level of complexity
making these receptors, like other GPCRs, pluridimentional
(Bosier et al., 2010). For our recent review on the multiple
waves of receptor signaling see Nogueras-Ortiz and Yudowski
(2016). CB1 receptors exhibit constitutive activity indicative
of G protein activation in the absence of agonists and this
could mediate their highly polarized localization to axonal and
presynaptic compartments (Bouaboula et al., 1997; Nie and
Lewis, 2001; Rozenfeld, 2011). The activity associated with this
state is reversed by treatment with inverse agonists such as
SR141716A (also called rimonabant). The model for GPCR
activation has been adapted to include these multiple states
(Perez and Karnik, 2005; Park et al., 2008) with distinguishing
biochemical characteristics, including extent and selectivity of G
protein coupling (Mukhopadhyay and Howlett, 2001; Kenakin,

FIGURE 1 | Differential cannabinoid (CB) receptor signaling modalities
can impact neuromodulation in health and disease in specific ways.
(A) Key enzymes such as diacylglycerol lipase (DGLα) and phospholipase D
(PLD) produce the endogenous ligands arachidonylethanolamine (AEA) and
2-arachidonylglycerol (2-AG). These activate the cannabinoid 1 receptor (CB1)
receptor in the central nervous system (CNS). The result can include
modulation of adenylate cyclase activity to inhibit cAMP accumulation,
voltage-gated calcium channels (VGCC), K+ channels and neurotransmitter
release in presynaptic excitatory and inhibitory synapses. (B) Following
activation of the CB1 receptor by ligand binding, signaling via G protein and/or
β-arrestin may occur at the plasma membrane, in endocytic pits or in
endosomes after internalization of the receptor. G proteins usually bind the
unphosphorylated receptor while β-arrestin binds the receptor phosphorylated
by G protein receptor kinases.

2004). The recent crystallization of the CB1 receptor bound
to the antagonist AM6538, should provide new opportunities
for understanding the structure-function relationship of this
receptor and help novel drug design (Hua et al., 2016).

CB2 RECEPTORS

The CB2 receptor exhibits a more defined pattern of expression
in the brain than CB1 receptors, and is found predominantly in
cells and tissues of the immune system (Klein, 2005; Mackie,
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2006). In the CNS, CB2 receptor expression is associated
with inflammation and it is primarily localized to microglia,
resident macrophages of the CNS (Mackie, 2008; Palazuelos
et al., 2009). This selective localization together with the
modulatory effect of the CB2 receptor on microglia function
is particularly relevant since microglial cells have a significant
role in Alzheimer’s disease (AD) and other diseases associated
with the basal ganglia (Ramírez et al., 2005; Sagredo et al.,
2007; Fernández-Ruiz et al., 2011; Yeh et al., 2016). Interestingly,
recent work also indicates that CB2 receptors expressed in
neurons can control synaptic function and are involved in
drug abuse and synaptic plasticity (Xi et al., 2011; Stempel
et al., 2016). For example, the selective CB2 receptor agonist
JWH133 inhibits dopaminergic firing from the ventral tegmental
area and reduced cocaine self-administration (Zhang et al.,
2016). Furthermore, neuronal CB2 receptors work independently
from CB1 receptors to modulate inhibitory plasticity in the
CA2/3 regions of the hippocampus and gamma oscillations
in vivo (Stempel et al., 2016). We predict more regulatory
roles will be identified for the CB2 receptors expressed in
neurons.

ENDOCANNABINOIDS

eCBs are produced on demand with their synthesis typically
triggered via increased intracellular Ca2+ at postsynaptic sites in
response to sustained synaptic activity (Figure 1A; Chevaleyre
et al., 2006; Mackie, 2006; Heifets and Castillo, 2009). Major
eCBs are rapidly deactivated by reuptake mechanisms and
degrading enzymes, including fatty acid amide hydrolase
(FAAH) and monoacylglycerol lipase (MAGL; Howlett et al.,
2004; Mechoulam and Parker, 2013). Among eCBs, the
derivatives of arachidonic acid such as AEA and 2-AG are
dominant and orthosteric (Pertwee, 2015). These ligands are
agonists for CB1 and CB2 receptors but bind CB1 receptors
with higher affinity (AEA Ki = 89 nM and 321 nM for CB1 and
CB2 receptors respectively; 2-AG Ki = 472 nM and 1400 nM
for CB1 and CB2 receptors respectively; Pertwee et al., 2010).
More recently, allosteric eCBs have been identified, including
pregnenolone and lipoxin A4 which can modulate CB1 receptor
signaling with possible therapeutic value (Pamplona et al., 2012;
Vallée et al., 2014; Pertwee, 2015). Further pharmacological
characterization is still needed of orthosteric and allosteric
modulators to clearly elucidate their physiological roles
and modes of action. Nevertheless, the pharmacological
manipulation of eCB levels or their actions by allosteric
modulators could provide alternative opportunities to regulate
the ECS. For a comprehensive review on eCBs see Fonseca et al.
(2013).

THE ENDOCANNABINOID SYSTEM IN
THE CNS

The ECS has emerged as one of the key regulatory mechanisms
in the brain controlling multiple events such as mood, pain
perception, learning and memory among others (Marsicano
and Lutz, 2006; Kano et al., 2009). It is also thought to

provide a neuroprotective role during traumatic brain injury
(TBI) and may be part of the brain’s natural compensatory
repair mechanism during neurodegeneration (Pryce et al.,
2003; Klein, 2005; Campbell and Gowran, 2007; Bilkei-Gorzo,
2012). New roles for the ECS in drug abuse and dependence
are identified almost continuously, further strengthening the
relevance of this system not only during cannabis abuse but
also other illicit drugs as well (Maldonado et al., 2006; Xi
et al., 2011; Parsons and Hurd, 2015). In the CNS, eCBs
act as retrograde messengers mediating feedback inhibition
modulating synaptic plasticity (Howlett, 2005; Chevaleyre et al.,
2006; Katona and Freund, 2012). Specifically, activation of
the CB1 receptor leads to activation of inwardly rectifying
K+ channel conductance, decreases in N-type and P/Q-type
voltage-operated Ca2+ channel conductance and eCB production
(Figure 1A; Mackie et al., 1995; Twitchell et al., 1997; Guo and
Ikeda, 2004; Demuth and Molleman, 2006). This results in a
decrease of neurotransmitter release at excitatory and inhibitory
synapses leading to transient effects, as in depolarization-
induced suppression of inhibition (DSI) and depolarization-
induced suppression of excitation (DSE) or persistent effects
as in long-term depression and potentiation (LTP/LTD) during
synaptic plasticity (Wilson and Nicoll, 2001; Chevaleyre et al.,
2006; Heifets and Castillo, 2009; Kano et al., 2009; Castillo
et al., 2012; Soltesz et al., 2015; Maroso et al., 2016).
These events make the ECS a key modulator of synaptic
plasticity.

Prolonged exposure to CB1 receptor agonists results in rapid
attenuation of behavioral responsiveness, termed tolerance, in
human and animal models that has been attributed to both a
decrease in the ability of the receptor to activate effector pathways
(i.e., desensitization) and in the reduction in the number of
cell surface-expressed receptors (i.e., internalization; Howlett
et al., 2004; Martini et al., 2007). At the molecular level, the
agonist-bound GPCR becomes a substrate for G protein coupled
receptor kinases (GRKs); these kinases phosphorylate serine
and/or threonine residues on GPCR cytoplasmic domains, which
then become a high affinity target for β-arrestins (Jin et al., 1999;
Delgado-Peraza et al., 2016). Binding of β-arrestins uncouples
G-proteins and stimulates receptor internalization and β-arrestin
mediated signaling (Jin et al., 1999; Roche et al., 1999).

Ligand induced receptor phosphorylation by GRKs can result
in very specific and distinct phosphorylation profiles or ‘‘bar-
codes’’ (Butcher et al., 2011; Liggett, 2011; Delgado-Peraza
et al., 2016). These bar-codes are finely tuned and define which
signaling cascades are activated, thus opening up a spectrum of
possibilities frequently defined as functional selectivity or ligand
bias (Liggett, 2011; Nobles et al., 2011; Prihandoko et al., 2016).
However, careful consideration must be taken when interpreting
results obtained from heterologous systems, particularly when
signaling can be significantly affected (biased) by the different
levels of protein expression across different cell types (Bosier
et al., 2010; Atwood et al., 2011; Straiker et al., 2012).

Supporting the bar-code hypothesis and identifying the
mechanisms and signaling cascades downstream from the CB1
receptor/β-arrestins, our recent data indicates that receptor and
β-arrestin interaction and signaling cascades are dependent
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on specific phosphorylation sites controlled by unique GRKs
(Delgado-Peraza et al., 2016). Mutation of the putative GRK sites
from S426/S430 to alanines (rat sequence conserved in human)
resulted in reduced β-arrestin 2 recruitment and receptor
internalization, but enhanced interaction with β-arrestin 1 and
increased β-arrestin 1 mediated signaling (Ahn et al., 2013;
Delgado-Peraza et al., 2016). Replacement of series 426/430 to
alanines renders the CB1 receptors biased towards β-arrestin
1 signaling and provides an ideal tool to probe the signaling
pathways, mechanisms and roles of these cascades. β-arrestin
mediated signaling from this biased receptor controls the
activation of several cascades including ERK1/2, JNK1/2/3,
CREB and P38α. It is important to note that these cascades have
been previously linked to the activation of CB1 receptors, but not
all to β-arrestins (Rueda et al., 2000; Derkinderen et al., 2001;
Hart et al., 2004). Activation of these cascades by CB1 receptors
and β-arrestins resulted in the regulation of gene expression and
protein synthesis (Delgado-Peraza et al., 2016).

Elucidating the physiological roles of β-arrestins may foster
the development of pathway-selective or ‘‘biased ligands’’ with
greater therapeutic benefit. Investigating signaling from biased
CB1 receptors such as S426A/S430A and the DRY mutant (Asp-
Arg-Tyr) together with the identification of biased ligands and
the crystal structure of CB1 receptors should provide important
tools to elucidate the mechanisms and roles of CB1 receptor
signaling (Gyombolai et al., 2015; Delgado-Peraza et al., 2016;
Hua et al., 2016).

The subcellular localization and trafficking of CB1 receptors
is highly dynamic, with significant effects on receptor signaling
(Leterrier et al., 2004; Brailoiu et al., 2011; Rozenfeld, 2011;
Dudok et al., 2015). CB1-G protein mediated signaling occurs
at the cell surface and at intracellular compartments (Rozenfeld
and Devi, 2008; Brailoiu et al., 2014). At the cell surface, CB1
receptor ligands modulate the interaction between receptors
and β-arrestin as a mechanism to influence β-arrestin mediated
signaling (Flores-Otero et al., 2014). This interaction is initiated
at the plasma membrane and can continue into intracellular
compartments (Delgado-Peraza et al., 2016). Interestingly, these
location-specific signaling events appear to be widespread among
several GPCRs. For example, the LH receptor, β2 adrenergic
receptor and the CB2 receptor can signal from intracellular
compartments either by β-arrestins or G proteins via a ‘‘super-
complex’’ ultimately resulting in three different spatio-temporal
signaling waves (Brailoiu et al., 2014; Irannejad and von Zastrow,
2014; Lyga et al., 2016; Nogueras-Ortiz and Yudowski, 2016;
Thomsen et al., 2016). Constitutive activation also plays a role
in their trafficking (Leterrier et al., 2006; McDonald et al., 2007).
CB1 receptor location and trafficking are highly dynamic events
that are intimately intertwined with their signaling (Dudok et al.,
2015). What is the role and relevance of this compartment
selective signaling event? Considering the restrictive location
of CB1 receptors to presynaptic sites, a possible role could
be the local modulation of gene and protein expression after
chronic receptor activation. Where do these intracellularly active
receptors go and when do they stop signaling are intriguing
questions that should provide clues to their physiological
roles.

∆9-THC

The cannabis plant contains more than 60 different active
synthetic ligands for CB1/2 (CBs) with ∆9-THC being the
major psychoactive molecule among them (Brenneisen, 2007).
Exposure to ∆9-THC leads to pleiotropic and sometimes
paradoxical effects in humans including analgesic responses,
relaxation, dysphoria, tolerance and dependence (Mechoulam
and Parker, 2013). Most of these effects are blocked with
SR141716, a selective blocker of CB1 receptors (Huestis et al.,
2001). In rodents, repetitive administration of ∆9-THC results
not only in tolerance but characteristically in a ‘‘tetrad’’ response
which includes antinociception, hypothermia, hypoactivity and
catalepsy (Little et al., 1988; Fride et al., 2006; Nguyen et al.,
2012). However, lack of behavioral sensitization has also been
described in mice chronically exposed to ∆9-THC (Varvel
et al., 2007). At the molecular level, ∆9-THC acts as a partial
agonist of the CB1 receptor, at the G protein level and as
a potent activator of β-arrestin 2 recruitment and signaling
in heterologous systems (Pertwee et al., 2010; Laprairie et al.,
2014, 2016). Perhaps the complex behavioral responses to
∆9-THC could be mediated by the selective activation of these
different signaling cascades. Interestingly, β-arrestins mediate
some of the behaviors associated with long-term exposure to
∆9-THC (Breivogel et al., 2008; Wu et al., 2008). β-arrestin
2 KO mice display enhanced antinociceptive response to acute
∆9-THC and a decrease in tolerance, indicating the relevance
of classical roles of β-arrestin (i.e., receptor desensitization)
during G protein signaling (Nguyen et al., 2012). However,
recent work on β-arrestin 1 KO mice indicates divergent roles
of β-arrestin 1/2 and proposed that β-arrestin 1 regulates
receptor sensitivity in an agonist dependent manner, with
no significant effects regulating CB tolerance (Breivogel and
Vaghela, 2015). Interestingly, our work and others also suggest
β-arrestin 1 as the ‘‘signaling’’ arrestin for CB1 receptor.
This divergence could be exploited to design compounds that
are biased towards G protein signaling with less receptor
desensitization and decreased tolerance as recently demonstrated
for pain modulation with the mu opioid receptor (Manglik et al.,
2016).

CB1 RECEPTORS IN DISEASE

CB1 receptors are indicated in many disorders that impact
the CNS including several neurodegenerative disorders such as
Huntington’s disease (HD), multiple sclerosis (MS) and AD
(Fernández-Ruiz et al., 2011; Di Marzo et al., 2014).

MULTIPLE SCLEROSIS

MS is a major immune-related neurodegenerative disease
characterized by demyelinization with axonal and neuronal loss.
Several clinical trials present positive effects of either cannabis,
∆9-THC or other CB agonist on spasticity, spasms and pain
among other signs of MS (Croxford, 2003; Pertwee, 2007;
Rog, 2010; Notcutt et al., 2012). Use of Sativexr (Nabiximol)
an oromucosal spray of cannabis extract containing fixed
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concentrations of ∆9-THC and cannabidiol (CBD), results
in symptomatic improvement in patients with MS. There
is a reduction in motor dysfunction and pain, observed in
meta-analysis of several clinical studies. However, an increased
incidence of non-serious side effects was also reported (Wade
et al., 2010; Otero-Romero et al., 2016). Importantly, a review
by the National Institute for Health and Care Excellence in the
United Kingdom, recommended against the use of Sativexr

to treat spasticity in people with MS because it is not a cost
effective treatment (Multiple sclerosis in adults: management |
1-recommendations | Guidance and guidelines | NICE, 2014).
For a recent and comprehensive analysis of clinical studies see
the work of Otero-Romero et al. (2016).

At the molecular level, these improvements are generally
linked to the activation of both CB1 receptors and CB2
receptors by agonist, resulting in their dual anti-inflammatory
and neuroprotective effects throughout the CNS (Baker et al.,
2000; Maresz et al., 2007). These effects include up-regulation
of prosurvival molecules such as interleukines in astroglia, and
the reduction of cytotoxic factors such as nitric oxide, reactive
oxygen species and proinflammatory cytokines in microglia
(Fernández-Ruiz et al., 2011). The precise mechanisms by which
receptors exert their neuroprotective activity might include
activation of phosphatidylinositol 3-kinase/mammalian target
of rapamycin complex 1 (mTOR1) pathway and brain-derived
neurotrophic factor (BDNF; Ozaita et al., 2007; Blázquez et al.,
2015).

Consistent with the clinical data, using synthetic CBs lead
to a reduction in inflammation and neuropathic pain in the
Experimental Autoimmune Encephalomyelitis (EAE) mouse
model (Pryce et al., 2003; Maresz et al., 2007; Fu and Taylor,
2015). Similar results were observed with systemic treatment with
the agonists, WIN55212-2, ACEA and JWH-015 of mice with
established Theiler’s Murine Encephalomyelitis Virus-induced
Demyelinating Disease, a mouse model of chronic progressive
MS. Mouse motor function was improved by modulating
microglia and lymphocyte infiltration into the spinal cord
(Arévalo-Martín et al., 2003). In contrast, when an inverse
agonist of the CB1 receptor (SR141716A) was applied, the EAE
was worsened likely by releasing pro-inflammatory cytokines
in the mouse brain and spinal cord (Saito et al., 2012).
Underlying the role of CB1 receptors during neuromodulation
and inflammation, work on CB1 receptor−/− mice suggest
that these animals are more susceptible to neurotoxicity and
damage when compared to wild-type mice (Jackson et al., 2005;
Pertwee, 2007). Taken together these results suggest that in MS,
the neuroprotective roles of CB1 and CB2 receptors might be
impaired and their enhancement could provide new therapeutic
approaches. For a comprehensive review of the literature of MS
from model systems to clinical studies see Pertwee (2007) and
Rog (2010).

HUNTINGTON’s DISEASE

Dysregulation of the ECS is also reported in experimental
models and patients with HD. The CB1 receptor expression
is reduced, at least somewhat (e.g., 27% decrease in the

striatum of the CB1 receptor mRNA), prior to symptoms of
neurodegenerative HD in mice (McCaw et al., 2004). Losing
the CB1 receptor expression decreases motor performance and
increases the amount of aggregates in the striatum of HD
mice (Mievis et al., 2011). Major loss of CB1 receptors is also
reported in patients with HD (Glass et al., 2000). Interestingly,
activation of the CB1 receptor may help reduce the progression
of HD. For example, preclinical evidence suggested the use
of CBs such as Sativexr for neuroprotection in patients with
progressive neurodegenerative conditions like HD (Valdeolivas
et al., 2012). Furthermore, selected receptor agonists have
neuroprotective potential in a cell culture model of HD (Scotter
et al., 2010; Laprairie et al., 2016). Interestingly, ligands biased
to β-arrestin mediated signaling such as ∆9-THC, reduced
cellular function and viability in these models, suggesting
a potential pharmacological profile for therapeutic agonists
(Laprairie et al., 2014, 2016). These events are mediated in
part by the activation of Gαi/o mediated pathways and might
limit glutamate release from cortical neurons and GABA from
striatal medium spiny neurons (Dowie et al., 2010; Laprairie
et al., 2016). Results obtained investigating the R6/2 mouse
model of HD, indicate that CB1 receptor activation parallels
BDNF expression leading to neuroprotection (Blázquez et al.,
2015). In general, the in vivo and in vitro data suggest that CB
agonist with specific pharmacological profiles (biased towards
BDNF upregulation and release) could be developed to treat or
ameliorate HD.

ALZHEIMER’s DISEASE

CB1 receptors have also been the focus of intense research
as a potential target in AD. This work has been performed
in vitro, animal models and post-mortem samples. Changes in
the expression levels of several components of the ECS in post-
mortem samples fromAD patients have been identified, although
their role in the pathophysiology of the disorder is still unknown.
For example, CB1 receptors in hippocampus from patients with
AD were not different from aged-matched controls. However,
the levels of MAGLs, the degradative enzyme of 2-AG, were
reduced at their site of action in these patients, suggesting an
altered eCB signaling and architecture (Mulder et al., 2011).
Limited positive behavioral results have been observed in small
clinical trials and pilot studies using analogs of 19-THC (Aso
and Ferrer, 2014). Analysis of the studies and trials available,
suggest significant benefits from synthetic CBs on some of
the behavioral and psychological symptoms of dementia (Liu
et al., 2015). However, these conclusions were based on short
and limited studies; further work will be needed to assess the
safety and efficacy of CBs in AD. In experimental models
of AD, several findings indicate that the activation of both
CB1 receptors and CB2 receptors might have beneficial effects
mainly through neuroprotection against Aβ toxicity as previously
noted for other neurodegenerative disorders. For example, by
crossbreeding the AD mouse model (APP23) with the CB1
receptor-deficient mouse, enhanced cognitive impairment was
observed while presenting a reduced amyloid deposition (Stumm
et al., 2013). Tau protein phosphorylation is also reduced by CBD
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in PC12 cells, providing a different neuroprotective mechanism
during AD (Esposito et al., 2006). Since CB1 receptors are
not likely directly activated by CBD, the impact on Tau
phosphorylation may be via the antioxidant effect of CBD
or perhaps as a CB receptor independent effect. A reduction
in harmful β-amyloid peptide and tau phosphorylation, while
promoting intrinsic CNS repair mechanisms may take place
consecutively due to activation of the immune and CNS CB
system in AD (Aso and Ferrer, 2014). For example, recent
work on the TREM2 receptor in microglia, where CB2 receptors
are expressed and control cellular responses, also provides
an immune related mechanism to control AD (Yeh et al.,
2016).

Aging is a major risk factor for neurodegenerative diseases
and neuronal progenitor cell proliferation is greatly reduced in
the process. Remarkably, CBs can stimulate embryonic and adult
neurogenesis (Jiang et al., 2005; Trazzi et al., 2010). Axonal
guidance, cell migration, synapse formation and cell survival
are also modulated during development. Dysregulation of these
processes during development and aging could significantly
contribute to multiple disorders of the CNS. For an extensive
and thorough review of this topic see the work of Di Marzo et al.
(2014) and Maccarrone et al. (2014).

TRAUMATIC BRAIN INJURY

There is good agreement that the CB1/2 receptors are involved
in TBI and that 2-AG increases after TBI in animal models
(Panikashvili et al., 2001; Mechoulam and Shohami, 2007).
There is an ‘‘on-demand’’ signal to generate eCB following
TBI that can decrease brain edema and inflammation
(Shohami et al., 2011; Gruenbaum et al., 2016). These
events may be neuroprotective and prevent excitotoxicity,
inhibit inflammatory cytokine production and augment
stem cell migration and differentiation. Furthermore, CB1
receptor and CB2 receptor antagonists prevent drug-induced
neuroprotection in a mouse mode of TBl (Lopez-Rodriguez
et al., 2015). However, as indicated previously for other

disorders, limited clinical data is available to support
efficacy and safety of CBs during TBI (Gruenbaum et al.,
2016).

FUTURE STUDIES

The modulation of the ECS has great therapeutic potential in
many neuropsychiatric and neurodegenerative disorders. Our
understanding of the in vivo and in vitro pharmacology of the
CB1 receptors and CB2 receptors has significantly increased over
the last decades, with new insights into the pathways controlled
and the roles of these receptors, enzymes and ligands emerging
regularly in the literature. However, this knowledge has not made
a complete transition into drug development yet. Complicating
this progression, is the mounting anecdotal evidence obtained
from cannabis use, which contains over 60 CBs plus other
relevant compounds at different concentrations. This variability,
together with limited information from clinical trials makes it
difficult to scientifically assess the multiple claims associated
with cannabis use. Careful investigation of defined molecular
entities, in randomized double blind, placebo controlled and
multicentric studies should be implemented to clearly move
the field forward. At the same time, further work should
be performed utilizing cellular and animal models to clearly
identify the desired mechanisms and signaling pathways to be
therapeutically targeted.
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