
ORIGINAL RESEARCH
published: 22 February 2017

doi: 10.3389/fncel.2017.00035

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 February 2017 | Volume 11 | Article 35

Edited by:

Alessandro Tozzi,

University of Perugia, Italy

Reviewed by:

Ledia F. Hernandez,

Hospital HM Puerta del Sur - CINAC,

Spain

Björn Spittau,

University of Freiburg, Germany

*Correspondence:

Bingyin Su

subingyinn@163.com

†
These authors have contributed

equally to this work as first authors.

Received: 07 November 2016

Accepted: 06 February 2017

Published: 22 February 2017

Citation:

Shan M, Lin S, Li S, Du Y, Zhao H,

Hong H, Yang M, Yang X, Wu Y,

Ren L, Peng J, Sun J, Zhou H and

Su B (2017) TIR-Domain-Containing

Adapter-Inducing Interferon-β (TRIF) Is

Essential for MPTP-Induced

Dopaminergic Neuroprotection via

Microglial Cell M1/M2 Modulation

Front. Cell. Neurosci. 11:35.

doi: 10.3389/fncel.2017.00035

TIR-Domain-Containing
Adapter-Inducing Interferon-β (TRIF)
Is Essential for MPTP-Induced
Dopaminergic Neuroprotection via
Microglial Cell M1/M2 Modulation

Minghui Shan 1, 2 †, Sen Lin 1†, Shurong Li 1, 3, Yuchen Du 1, Haixia Zhao 1, Huarong Hong 1,

Ming Yang 1, Xi Yang 1, Yongmei Wu 1, Liyi Ren 1, Jiali Peng 1, Jing Sun 1, Hongli Zhou 1 and

Bingyin Su 1, 3*

1Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and

Histology and Embryology, Chengdu Medical College, Chengdu, China, 2Department of Clinical Pathology, Nanyang Central

Hospital, Nangyang, China, 3 Research Center, Chengdu Medical College Infertility Hospital, Chengdu, China

Dynamic changes of two phenotypes of microglia, M1 and M2, are critically associated

with the neurodegeneration of Parkinson’s disease. However, the regulation of theM1/M2

paradigm is still unclear. In the MPTP induced neurodegeneration model, we examined

the concentration of dopamine (DA) related metabolites and the survival of tyrosine

hydroxylase (TH) positive cells in WT and Trif−/− mice. In in vitro experiments, MN9D

cells were co-cultured with BV2 cells to mimic the animal experiments. Inhibition of TRIF

aggravated TH+ cell loss, and DA-related metabolites decreased. TRIF inhibition was

able to interrupt the microglial M1/M2 dynamic transformation. More BV2 cells were

activated and migrated across the membrane of transwell plates by siTRIF treatment.

Also, TRIF interruption inhibits the transformation of BV2 cells from the M1 to M2

phenotype which played a beneficial role in neuronal degenerative processes, and

increased MN9D apoptosis. Moreover, MPP+ treatment decreases the (DAT) dopamine

transporter and TH synthesis by MN9D. Taken together, the current results suggest that

TRIF plays a key switch function in contributing to the microglial M1/M2 phenotype

dynamic transformation. The interruption of TRIF may decrease the survival of MN9D

cells as well as DAT and TH protein production. The current study sheds some light on

the PD mechanism research by innate inflammation regulation.
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder of the central nervous system that affects
some people above the age of 60 worldwide. The pathological changes of PD include the death of the
nigrostriatal dopaminergic midbrain neurons, a significant reduction of dopamine in the striatum
and the presence of eosinophilic inclusion bodies in the surviving neurons in the substantia nigra
(Dauer and Przedborski, 2003). Neuroinflammation is a prominent event that affects the clinical
course of Parkinson’s disease (Gao and Hong, 2008; Glass et al., 2010). During neurodegenerative
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processes, microglia plays a crucial role in regulating CNS
inflammation. Molecular and clinical evidence has shown
significant increase of microglial activation, accumulation,
and concentration of inflammatory factors in pathological
neurodegenerative diseases (LaVoie et al., 2004; Ouchi et al.,
2005; Gerhard et al., 2006; Glass et al., 2010). In PD patients
the presence of persistent microglia activated and accumulated
in the vicinity of the neurons in substantia nigra (Ferrari and
Tarelli, 2011; Barcia et al., 2013) has been shown. Although the
mechanism how microglia maintains the activation phenotype
is still unclear based on current evidence, it has been suggested
that microglia activation may contribute to the degeneration of
dopaminergic neurons (Barcia et al., 2013).

Neuroinflammation, which is a side effect of the persistent
activation of microglia, recently received attention as double-
edged sword that executes either prejudicial or beneficial effects
on the neurons (Doring and Yong, 2011; Cherry et al., 2014).
Its activation can be classified into two major phenotypes which
are known as the M1 phenotype (classical activation) and M2
phenotype (alternative activation; Hanisch and Kettenmann,
2007; Colton, 2009). In the M1 phenotype, the classical
reactivated phenotypes are associated with iNOS and NF-κB
signaling pathway activation, synthesis and release of pro-
inflammatory factors such as tumor necrosis factor (TNF)-α,
interleukin (IL)-1β, reactive oxygen species (ROS), and nitric
oxide (NO) (Le et al., 2001; Block et al., 2007). TheM2 phenotype
is defined by both alterative and acquired deactivations, which
promote phagocytosis of neuron debris and misfolded proteins,
tissue repair, extra cellular matrix (ECM) reconstruction,
anti-inflammatory antagonized immunosuppression and neural
protection associated with IL-10 and transforming growth factor
(TGF)-β insult (Colton, 2009; Colton and Wilcock, 2010).

According to our previous study of the activation phenotype
of microglia in optic nerve regeneration and intracerebral
hemorrhage induced neural inflammation, the Toll-like receptor
(TLR) signaling pathway plays a private role in regulating
microglial activation and neuroinflammation (Lin et al.,
2012a,b). TLR3 and TLR4 signaling pathways are all involved
in regulating microglial activation via the release of TRIF
and MyD88 adaptor mediated downstream pro-inflammatory
factors. TRIF-dependent inflammatory activation, including
IRF3 phosphorylation, pro-inflammatory cytokine synthesis
and release, the activation of apoptosis-associated mediator
Fas, and a decreased number of profitable M2-like CD11b+

microglia (Stridh et al., 2013) suggests that the TLR3/TRIF
signaling pathway may play a crucial role in regulating microglia
induced neuroinflammation and in the microglial M1/M2
paradigm. However, the TLR3-TRIF signaling pathway assumes
a protective role against West Nile virus in brain tissue (Daffis
et al., 2008) and a protective role in retinal pigmented epithelium
(RPE) against oxidative stress (Patel and Hackam, 2013). Thus,
TLR3-TRIF signaling in different tissues and conditions may
have a detrimental or a beneficial effect.

In addition, there is no such evidence that indicates the
microglial M1/M2 polarization regulation by TLR3/TRIF in PD.
In this study, we investigate the role of TRIF in regulating
the transformation of the microglial M1/M2 phenotype in

the mesencephalon-derived dopaminergic neuronal cell line
(MN9D) and demonstrate that microglial TRIF plays an
important role in regulating MN9D cell survival and microglial
M1/M2 modulation.

MATERIALS AND METHODS

Animals and 1-Methyl-4-Phenyl-1,2,3,6-
Tetrahydropyridine (MPTP) Induced Neural
Degeneration
Male C57BL/6 mice (8–12 week old, 20–24 g, from Scientific
Research Center, Chengdu Medical College, Chengdu, China),
and male adult Trif −/− mice (C57BL/6 J-AW046014 Lps2 /J;
from Jackson Laboratory, Bar Harbor, ME, USA, gifts from
Prof. Qingwu Yang, Xinqiao Hospital, Third Military Medical
University, Chongqing, China), age 8–12 weeks (20–24 g).
All animal-related procedures in this study were performed
according to the ChengduMedical College guidelines for the care
and use of experimental animals. The Animal Ethics Committee
of Chengdu Medical College approved all animal experimental
procedures used in the present study, which are in accordance
with the principles outlined in the National Institute of Health
(NIH) Guide for the Care and Use of Laboratory Animals. MPTP
(Sigma-Aldrich, Shanghai, China) was freshly dissolved in 0.9%
saline and administered to mice intraperitoneally (i.p. 20 mg/kg)
four times within a 2 h interval.

Chemicals and Biological Reagents
Methyl-4-phenyl tetrahydropteridine (MPP+ iodide), MPTP
and lipopolysaccharide (LPS) were purchased from Sigma
(Shanghai, China). Recombinant Mouse IL-4 was purchased
from R&D Systems (Shanghai, China). Poly(I:C) was purchased
from InvivoGen (CA, USA).

MN9D and BV2 Cell Culture
The MN9D dopaminergic cell line and the immortalized murine
BV2 microglial cell line were generous gifts by Prof. Qun-Yuan
Xu, Capital Medical University, Beijing, China. These cells were
cultured at 37◦C plus 5% CO2 in a high glucose (4500 mg/L)
Dulbecco’s Modified Eagle Medium (Gibco, Shanghai, China)
supplemented with 10% heat-inactivated fetal bovine serum
(Gibco, Shanghai, China) and 1% streptomycin and penicillin
(Life Technologies, Shanghai, China). For all experiments,
MN9D cells were differentiated for 4 days with 1.5 mM sodium
butyrate (Sigma, Shanghai, China). All methods were carried
out in line with relevant guidelines and regulations of Chengdu
Medical College.

BV2 Cell M1/M2 Paradigm
The BV2 cells were treated with LPS (100 ng/mL) or IL-4 (20
ng/mL) to induce polarity of BV2 cells followed by real-time RT
PCR identification. Then, the cells were collected from the culture
plates by using a rubber policeman and centrifuged at 300× g for
5 min, washed with ice-cold PBS twice followed by TRIzol R© (Life
Technologies, Shanghai, China) lysis. RNA was collected by the
TRIzol R© lysis protocol according to the manufacturer’s protocol.
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Quantitative Real-Time-PCR
After treatment total RNA was extracted from the BV2 cells
with TRIzol R© reagent (Life Technologies, Shanghai, China)
according to themanufacturer’s protocol. Total RNAwas used for
cDNA synthesis with the PrimeScriptTM RT reagent Kit (TaKaRa,
Dalian, China). SYBRTM Green quantitative PCR was performed
with validated primers such as IFN-β, TNF-α, IL-6, CD86,
inducible NO synthase (iNOS), IL-10, CD206, Arginase1, Ym1,
and β-actin (Life Technologies, Shanghai, China) with SYBRTM

premix Ex TaqTM II kit (Takara, Dalian, China) and monitored
by a IQ5 Real-time PCR machine (Bio-Rad, CA, USA). The
relative expression levels of each mRNA were calculated by using
the 2−11Ct algorithm normalizing to β-actin and relative to the
control samples.

High Performance Liquid Chromatography
with Electrochemical Detection (HPLC-EC)
Analysis of DA and Related Metabolites in
Striatum (Str) in WT and Trif−/− Mice
MPTP treated WT and Trif−/− mice were sacrificed by CO2

asphyxiation on the Day 7 after the last MPTP injection
according to the method described previously (Liang et al.,
2007). Briefly, the Str tissue of brains were dissected out on ice
immediately. Dissected Str tissues were homogenized in 50µl
of 0.1 M perchloric acid. After centrifugation (15,000 × g,
10 min, 4◦C) and filtration, 30µl supernatant was injected
onto a C18 reverse-phase HR-80 catecholamine column (ESA,
Bedford, MA, USA). The concentrations of dopamine (DA)
and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC),
norepinephrine (HE), 5-hydroxyindoleacetic acid (5-HIAA), 5-
hydroxytryptamine (5-HT), and homovanillic acid (HVA) were
quantified by HPLC-EC detection. The mobile phase (pH 2.9)
consisted of 275 mg/l octane sulfonic acid in 90% 75 mM sodium
phosphate and 10% methanol; the flow rate was 1 mL/min.
Peaks were detected by an ESA Coulochem II with a model
5010 detector (E1 = 50 mV, E2 = 400 mV). Data were collected
and processed by a ChromeleonTM computer system (Gynkotek,
Gemering, Germany).

Conditioned Medium Collection and MN9D
Cell Induction
Conditioned Medium (CM) was collected at desired time points
after cell treatment, filtered through 0.45µm filters (Millipore,
Shanghai, China) and quickly frozen at −80◦C for further
MN9D cell culture. MN9D cells grown on poly-D lysine (Sigma,
Shanghai, China)-coated slides were pretreated with MPP+
(300µM) for 12 h after which time the medium was removed,
and cells were exposed to conditioned medium from BV2 cells
for 24 h.

siRNA Transfection
BV2 cells were plated in 6-well-tissue culture plates at about 80%
confluence. The TRIF siRNA (5′-GGGUUACCACACGAAAU
UAtt-3′, 5′-GCCUCUCAUUAUUCACCAUtt-3′) and scrambled
negative control siRNA (Cat. 4390843, Life Technologies,
Shanghai, China) were obtained from Life Technologies.

Transfections were performed using LipofectamineTM 2000 (Life
Technologies, Shanghai, China) according to the manufacturer’s
instructions. Four to six hours after transfection, media were
removed and replaced with fresh media. Cells were treated with
poly(I:C) (25µg/mL) and vehicle for further experiments on the
following day.

Transwell Migration Assay
BV2 cells are placed on the upper layer of a cell permeable
membrane andMN9D cells were placed on the bottom of the cell
culture plate. Following a culture period of 24 h, the BV2 cells that
have migrated through the membrane are quantified and stained
by cresyl violet.

Immunoblotting
Total protein from each group was digested in
radioimmunoprecipitation (RIPA) assay buffer supplemented
with a protease inhibitor cocktail (Roche, Shanghai, China).
Supernatant was collected after homogenate centrifugation
at 12,000 g for 10 min at 4◦C. After protein denaturation,
the proteins were separated by 10% sodium dodecyl sulfate
polyacrylamide gel electrophoresis, and the resolved proteins
were transferred onto polyvinylidene difluoride membranes
(Bio-Rad, CA, USA). Each membrane was blocked and then
incubated with primary antibody at 4◦C overnight followed by
incubation with HRP-conjugated secondary antibodies for 1 h
at 25◦C. The intensity of the protein signal of three duplicates
from each sample was calculated using ImageJ software (NIH,
USA). The antibodies used were anti-TLR3 (1:1,000, ab62566,
Abcam, Cambridge, UK), anti-TRIF (1:1,000, ab13810, Abcam,
Cambridge, UK), anti-IRF3 (1:1,000, sc-9082, Santa Cruz
Biotechnology, CA, USA), anti-phospho-IRF3 (1:1,000, 4,947,
Cell Signaling Technology, MA, USA), anti-TH (1:2,000,
AB152, Millipore, MA, USA), and anti-DAT (1:1,000, ab111468,
Abcam, Cambridge, UK). Anti-mouse HRP (1:10,000, ZB2305,
Zhongshan Goldenbridge, Beijing, China) and anti-rabbit
HRP (1:10,000, ZB-2301, Zhongshan Goldenbridge, Beijing,
China) were used as secondary antibodies. Anti-glyceraldehyde-
3-phosphate dehydrogenase (GAPDH, 1:5,000, KC-5G4,
KANGCHEN) served as a loading control.

Immunocytochemistry and Tunel Staining
The CM-treated cells were washed with icecold PBS twice
followed by 4% paraformaldehyde fixation (PFA, Sigma,
Shanghai, China) for 20 min. TUNEL (Shanghai, China) staining
was performed according to manufacturer’s instructions. Briefly,
the cells were permeabilized with 0.1% TritonTM X-100 and
0.1% sodium citrate for 2 min on ice followed by a PBS
rinse. The TUNEL mixture was prepared freshly and added to
each sample for incubation at 37◦C for 1 h in the dark. The
samples were rinsed twice with PBS, then blocked with 5%
bovine serum albumin (0.05% Tween R© 20) in PBS for 45 min
at room temperature. Cells were then incubated with primary
antibody anti-βIII tubulin (1:400, ab78078, Abcam, Cambridge,
UK) at 4◦C overnight. Appropriate secondary antibodies (Alexa
Fluor R© 568, Life Technologies; A11031, 1:400) were used for
incubation at 25◦C for 1 h. After washing with PBS, nuclei

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 February 2017 | Volume 11 | Article 35

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Shan et al. Microglial M1/M2 Modulation via TRIF

were counterstained with 4′,6-diamidino-2-phenylindole (DAPI;
1µg/ml) for 5 min. Cells were mounted with an inverted
fluorescent mounting medium (DAKO, Glostrup, Denmark),
and images were captured with a digital camera (Sterling
Heights, MI).

TH Immunostaining
Naïve, MPTP, MPTP+poly(I:C) and poly(I:C) treated mice
were anesthetized by chloral hydrate (4%) and were fixed
by 2% PFA perfusion through the heart. After 10, 20, and
30% sucrose dehydration, the fixed brains were then sectioned
in a cryostat to get the SNc sections (30µm). After PBS
rinsing three times (5 min each), the sections were treated
with 0.3% H2O2 for 25 min at room temperature (r.t.). After
PBS rinsing, the sections were blocked in goat serum (5%)
for 1 h at r.t., and primary antibody (TH, 1:2,000; Millipore,
CA, USA) was added for incubation overnight at 4◦C. On
Day 2, following PBS rinsing, biotinylated goat anti-rabbit
secondary antibody was added onto the slides which were
incubated for 1 h, followed by incubation with Streptavidin-
HRP for 1 h at r.t. and visualization by reaction with nickel-
intensified, 3-diaminobenzidine tetrahydrochloride (DAB: 0.25%
nickel ammonium sulfate/0.05% DAB as a chromagen and
0.003% hydrogen peroxide) for 5 min. Sections were mounted
on gelatin-coated slides, dehydrated through graded ethanol, and
cleared in xylene and finally followed by coverslipping using
Permount. The images were taken by an Olympus microscope
(Japan).

Stereological Counting of
TH-Immunoreactive Neurons
Based on our previous quantification method and protocol
(Liang et al., 2006, 2007, 2008), density of TH-immunopositive
cells was counted on both hemispheres by serial section analysis
of the total number of neurons. Briefly, according to the atlas
of mouse brain (The Mouse Brain in Stereotaxic Coordinates,
Academic Press, New York, 2001), every sixth brain section
throughout the entire extent of the SNc was numbered from
the rostral to the caudal plane by blinded investigators (Crocker
et al., 2003). Adjacent SNpc tissue sections from each animal were
also stained with methylene blue (Nissl’s staining) to validate
immunohistochemical determination of nigral neuron survival.
TH positive cells were quantified in SNpc tissue sections from
B-2.8 to B-3.52 according to our previous method (Liang et al.,
2006). Estimate of total TH positive neuron populations was
calculated using Abercrombie’s correction (Abercrombie, 1946).
The images of the SNc region were taken by a BX63 microscope
(Olympus, Japan). The data output is shown as number of TH
positive cells.

Flow Cytometry Analysis
The occurrence of apoptosis was determined by the fluorescein
isothiocyanate (FITC) annexin V Apoptosis Detection Kit
(Keygen, Nanjing, China) after cell treatment with MPP+
(300µM) and BV2-conditioned medium for 24 h using a C6 flow
cytometer (BD Biosciences, NJ, USA).

Statistical Analysis
All data shown are mean ± S.E.M of triplicate values from
three separate experiments. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
were indicated as compared with the control group. Independent
Student t-test or one-way ANOVA was used to compare the
continuous variables between the two groups or more than two
groups. Statistical analysis was carried out with statistical analysis
software program SPSS13.0 software (IBM) and Prism R© 5.0
software (GraphPad).

RESULTS

High Performance Liquid Chromatography
with Electrochemical Detection (HPLC-EC)
Analysis of DA-Related Metabolites in Str
between WT And Trif−/− Mice
DA and its metabolites DOPAC, HE, 5-HIAA, 5-HT, and HVA
were detected at Day 1, 3, 7, and 14 after MPTP injection in
WT and Trif−/− mice (Figure 1). MPTP significantly reduced
DA levels, DOPAC levels and 5-HT levels in WT and Trif−/−

mice from Day D1 to D14 post-MPTP treatment, respectively.
Interestingly, the levels of DA (D1, D3, and D7), DOPAC (D3
and D7), 5-HIAA (D3 and D7), 5-HT (D1 and D3), and HVA
(D7) were dramatically decreased in Trif−/− mice compared
to respective levels in WT mice (Figure 1, p < 0.05, n = 6).
However, no effect on the genotype was found with respect to
the NE level.

TRIF Deficiency Deteriorates
MPTP-Induced DA Neuron Loss
To confirm the effect of an MPTP-induced decrease of DA and
related metabolites, we then observed dopamine neuron loss by
tyrosine hydroxylase (TH) staining in SNpc by quantification
in serial sections from level (from Bregma, −2.8 to 3.52 mm)
B2.8 to B3.52. A decreased number of these cells were clearly
observed in the MPTP treatment group in WT and Trif−/−

mice on D7 from B2.8 to B3.52 levels. However, less TH positive
cells were found in MPTP treated Trif−/− mice (Figures 2F,I)
vs. the WT group in B2.8, B2.92, B3.08, B3.16, and B3.28 levels
(Figures 2B,I, p < 0.05, n = 6), which suggests that TRIF may
play a protecting role in the neuronal MPTP-induced DA neuron
loss. To verify the function of the TRIF signaling pathway in
DA neuron loss, we used poly(I:C), an agonist of the TLR3-
TRIF signaling pathway, to rescue the neuronal loss phenotype
in MPTP-treated WT and Trif−/− mice at a concentration
of 1.25µg/g dose via i.p. injection. By poly(I:C) treatment,
more TH-positive cells survived in the WT group (Figure 2C)
compared with Trif−/− mice (Figure 2G) in B2.92, B3.08, and
B3.16 levels (Figure 2I, P < 0.05, n = 6), which suggests that
the TLR3-TRIF signaling pathway may contribute to DA neuron
protection fromMPTP-induced neuron loss. No difference in the
number of DA neurons was observed between WT and Trif−/−

mice in the poly(I:C) treatment group (Figures 2D,H, p > 0.05,
n = 6) as well as in the vehicle group (Figures 2A,E, p > 0.05,
n= 6).
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FIGURE 1 | Concentrations of dopamine-related products in Str of MPTP-treated WT and Trif −/− mice by HPLC detection. The concentrations of

dopamine, DOPAC, 5-HIAA, 5-HT, and HVA decreased dramatically in both the WT and Trif −/− groups from D1 to D14 post-MPTP treatment (P1–P14). Significant

differences of dopamine concentrations were found between WT and Trif −/− groups on P1 (135.1 ± 6.2 vs. 91.8 ± 4.1), P3 (112 ± 4.8 vs. 82.7 ± 2.9), and P7

(84.1 ± 3.5 vs. 16.8 ± 1.8), respectively. And the concentrations of DOPAC decreased significantly in the Trif −/− group compared with the WT group on P3

(67.4 ± 2.5 vs. 51 ± 1.7) and P7 (67.4 ± 2.5 vs. 21.3 ± 1.9) post-MPTP treatment. Moreover, the concentrations of 5-HT are significantly different between WT and

Trif −/− groups (*p < 0.05, n = 6).

TRIF-IRF3 Signaling Pathway Can Be
Inhibited by siTRIF in BV2 Cells
IRF-3 is one of the downstream molecules of TRIF (Liu
et al., 2015), which can be activated by phosphorylation by the
inhibitory kappa B kinase (IKK) and/or TANK-binding kinase
1 (TBK1) in response to stimulation (Bruni et al., 2013; Liu
et al., 2015). Poly(I:C) is the classic agonist of TLR3, which
stimulates TLR3 via a TRIF-dependent pathwaywhich is a unique
adaptor in TLR3 and TLR4 signaling pathways contributing to
interferon (IFN)-beta production (Yamamoto et al., 2003). To
investigate the role of the TLR3-TRIF-IRF3 signaling pathway
in BV2 cell stimulation, we treated BV2 cells with siTRIF
for 24 h at a concentration of 25µg/ml and found that the
expression of TRIF decreased about 60% compared with the siNC
group (Figure 3B, p < 0.01) as well as poly(I:C) stimulation
group decreased about 70% compared with the siNC group
(Figure 3A). Moreover, p-IRF3 which reflects the activation
status of the IRF3 signaling pathway also decreased about 50%
compared with siNC+poly(I:C) group (Figure 3B, p < 0.01)
which suggests that the TRIF-IRF3 signaling pathway can be
inhibited significantly by siTRIF. The results can be used to
set up an inhibition model that will be useful for subsequent
experiments.

TRIF, but neitherMyD88 nor TIR domain-containing adaptor
protein (TIRAP), is able to activate the IFN-β promoter
(Yamamoto et al., 2002). The outcome of activation is usually
followed by the activation of IFN-inducible genes, such
as interferon-inducible protein-10 (IP-10) and glucocorticoid
attenuated response gene 16 (GARG16), which were induced
in response to LPS in MyD88 knock out cells (Doyle et al.,
2002). IFN-β is the typical factor that can be released when the
TRIF-IRF3 axis is stimulated (Sharma et al., 2003). We used

Real-Time-PCR to identify the change of IFN-β mRNA after
siTRIF treatment in the BV2 cell line. The results showed that
the gradual upregulation of IFN-β mRNA depends on the time
course of the siTRIF treatment. There are significant differences
of IFN-β mRNA fold-change between the 12 and 24 h treatment
groups, in which the siNC group reached the highest level of
mRNA expression at 24 h (Figure 3C, p < 0.01). The present
results indicate the function of siTRIF on BV2 cells depends on
the time course of the siTRIF treatment.

BV2 Cell Migration Can Be Attenuated by
siTRIF Treatment When Co-cultured with
MPP+-Treated MN9D Cells
Continuous microglial cell activation and migration are
important for the pathogenic processes of Parkinson’s disease
(Kim et al., 2013; Wang et al., 2015). To investigate the role of
TRIF in the microglial migration in response to MPP+ (200µM)
treated MN9D cells, we co-cultured BV2 and MN9D cells in a
transwell co-culture system to mimic the pathological process
between dopamine neurons and resident microglia that exists in
Parkinson’s disease. By quantifying the number of BV2 cells that
located on the other side of the transwell membrane, we found
that the number of migrated BV2 cells decreased about 56.4%
when compared with the siNC group. There is no significant
difference between siTRIF+ (MPP+ treated MN9D cells) and
siTRIF+poly(I:C)+(MPP+ treated MN9D cells) groups, i.e.,
columns 3 and 4 (Figure 4, n= 6, p < 0.01).

Microglial M1/M2 Marker Paradigm in BV2
Cells Can Be Regulated by TRIF Inhibition
Lipopolysaccharide (LPS) is known as a classical M1
microglial cell polarization inducer. M1 microglia express
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FIGURE 2 | TH staining of SNpc in WT and Trif−/− mice at D7 with or without poly(I:C) treatment. (A–D) Representative microphotographs of TH-positive

cells in SNc of WT mice. (E–H) Representative microphotographs of TH-positive cells in SNc of Trif −/− mice on D7. (I) Quantification of TH-positive neurons in SNc in

WT and Trif −/− mice. More TH-positive neurons were found in MPTP-treated WT mice than that in Trif −/− mice in B2.8 (41 ± 3.0 vs. 31 ± 2.2), B2.92 (69.8 ± 5.2

vs. 48.8 ± 3.2), B3.08 (69.4 ± 4.1 vs. 42.4 ± 3.2), B3.16 (56.2 ± 3.6 vs. 36.8 ± 2.4), and B3.28 (30.4 ± 1.8 vs. 19 ± 2.0) groups. More TH-positive neurons were

found in the MPTP+poly(I:C) treated WT group than that in Trif −/− group in B2.92 (69.8 ± 5.2 vs. 48.8 ± 3.2), B3.08 (69.8 ± 5.2 vs. 48.8 ± 3.2), and B3.16

(69.8 ± 5.2 vs. 48.8 ± 3.2) levels. Number of TH positive neurons were significantly decreased in both WT and Trif −/− mice when MPTP and MPTP+poly(I:C)

treated, respectively (WT MPTP vs. WT Cont, **p < 0.01; WT MPTP+poly(I:C) vs. WT Cont, p < 0.01; Trif −/− MPTP vs. Trif −/− Cont, **p < 0.01; Trif −/−

MPTP+poly(I:C) vs. Trif −/− Cont, p < 0.01; n = 6).

pro-inflammatory molecules such as tumor necrosis factor-α
(TNF-α), interleukin-1β (IL-1β), interferon-γ (IFN-γ), and
nitric oxide (NO). The typical cell surface markers like CD86
and CD68 are also expressed by M1 microglial cells (Liao
et al., 2012). On the other hand, IL-4 is known to induce M2
microglial polarization. M2 microglial cells express different
molecules, such as IL-4, arignase1, Ym1, CD206, and IL-10,
which are beneficial to neuroprotection (Ponomarev et al.,
2007; David and Kroner, 2011; Liao et al., 2012). To explore
the role of TRIF in the M1/M2 regulation, we added LPS
(100 ng/ml) and IL-4 (20 ng/ml) to treat BV2 for 24 h. As
indicated by Real-Time PCR results, mRNA expressions of
TNF-α, IL-6, CD86, iNOS were upregulated after 24 h LPS
treatment, while IL-10, CD206, YM1, and Arg1 were upregulated
significantly different from control and LPS treated groups
(Figure 5A, n = 3, p < 0.01). The siTRIF treatment of the
different groups resulted in significantly different expressions of
TNF-α, IL-6, CD86, CD206, and Arg1 mRNA compared with
the control groups (Figures 5B–I, n = 3, p < 0.01). The results

indicated the essential role of TRIF in microglial M1/M2 marker
polarization.

To investigate the stimulating effect of MN9D (MPP+) cells
on BV2 cells, which were co-cultured in a transwell system,
Real-Time PCR was utilized to quantify the mRNAs of M1/M2
differentiation markers such as IL-1β, IFN-γ, NO, CD86, and
CD68. The expressions of M1 markers increased gradually as
the co-culture progressed. From 4 to 36 h of co-culture, mRNAs
of TNF-α, IL-6, CD86, iNOS, IL-10, CD206, and Arg1 were
upregulated gradually. TNF-α and IL-10 reached their highest
levels at 24 h, while IL-6, CD86, and CD206 reached their highest
levels at 2 h. iNOS and Arg1 reached their highest levels at 36 h.
(Figure 6, p < 0.01). The present results suggest that the typical
microglial M1/M2 markers can be changed by MPP+-treated
MN9D cells and the paradigm regulation depends on injured
MN9D cell stimulation. Moreover, the inhibition of TRIF had
a different effect on the inhibition of mRNA expression levels
of typical M1/M2 markers, such as the expression of TNF-α
upregulated in 24 and 36 h, IL-6 upregulated from 12 and 24 h,
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CD86 upregulated from 4 to 24 h, iNOS upregulated in 36 h, IL-
10 upregulated from 12 to 36 h, CD206 upregulted from 4 to 36 h
and Arg1 upregulted from 4 to 36 h, except for YM1which has no
difference of mRNA fold change from 4 to 36 h (Figures 6A–H).

FIGURE 3 | siTRIF inhibits the expression of TRIF, p-IRF3, IRF3 in BV2

cells. (A) Expression of TLR3, TRIF, p-IRF3, IRF3 in BV2 cells by Western blot

detection to verify poly(I:C) stimulation and siRNA inhibition. Reduced levels of

TRIF and p-IRF3 were demonstrated in the siTRIF group even with poly(I:C)

stimulation. (B) Relative expression levels of TLR3, TRIF, p-IRF3, and IRF3 vs.

GAPDH expression quantified by software. Reduced relative levels of TRIF and

p-IRF3 were quantified in the siTRIF group and poly(I:C) stimulation. n = 3,

mean ± SEM. *p < 0.05, **p < 0.01. (C) Expression of IFN-β mRNA at

different time points in BV2 cells stimulated by poly(I:C). n = 3, mean ± SEM.

*p < 0.05, **p < 0.01.

Inhibition of TRIF Aggravates
MPP+-Induced MN9D Cell Apoptosis
As we have found the M1/M2 paradigm of microglia was
triggered by MPP+-injured MN9D cells, the microglial cells
can be polarized by the release of different typical pro/anti-
inflammatory factors. However, we did not know how MN9D
cell apoptosis was affected by microglial polarization. In this
section, the co-cultured MN9D cells and BV2 cells were studied
especially when siTRIF was applied. As a result, by βIII-
tubulin and TUNEL dual labeling, the number of apoptotic
MN9D cells in the MPP+ group accounts for 24 ± 5%
of the total number of MN9D cells, however, the number
increased drastically to 35 ± 3% when co-cultured with BV2
cells. And the number of apoptotic MN9D cells reached
over 48 ± 4% with siTRIF treatment (Figures 7A–D, n = 3,
p < 0.05). The exact number of apoptotic cells was quantified
and analyzed by flow cytometry with Annexin-V-FITC /PI
double staining (Figure 8, n = 3, p < 0.05). The siTRIF/MPP+
group showed the highest number of apoptotic MN9D cells.
Pro-inflammatory stimuli and stress conditions increase the
DA neuron apoptosis in vivo (Glass et al., 2010). In this
section, we have found that the siTRIF treatment of BV2
cells may aggravate the apoptosis of MPP+-treated MN9D
cells. Here, TRIF may play a protective role in MN9D cell
apoptosis.

MPP+ is the conversion product of the neurotoxin MPTP in
the brain, which is a high-affinity substrate for DAT as well as for
norepinephrine and serotonin transporters (Javitch et al., 1985).
DAT is the required step for MPTP neurotoxicity as evidenced
by the fact that antagonist inhibition or genetic ablation of
DAT prevents MPTP-induced dopaminergic neurodegeneration
(Uhl et al., 1985). As TH functioned as a rate-limiting step in
catalyzing the formation of L-DOPA, PD can be also considered
as a TH-deficiency syndrome (Haavik and Toska, 1998). In

FIGURE 4 | Migration of activated BV2 cells (top layer of the transwell) in a transwell culture system in co-culture with MN9D cells (bottom layer of the

transwell). (A) Above the transwell membrane: BV2 (siNC); at the bottom of the plate: MN9D (control). (B) Above the transwell membrane: BV2 (siNC); at the bottom

of plate: MN9D (200µM MPP+). (C) Above the membrane: BV2(siTRIF); at the bottom of the plate: MN9D (200µM MPP+). (D) Above the membrane: BV2

[siTRIF+25µg/ml poly(I:C)]; at the bottom of the plate: MN9D (200µM MPP+). (E) Quantification of the number of BV2 cells that migrated across the transwell

membrane. n = 5, mean ± SEM, **p < 0.01.
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FIGURE 5 | Inhibition of TRIF contributes to the change of BV2 cell M1/M2 markers stimulated by LPS/IL-4. (A) mRNAs of TNF-α, IL-6, CD86, and iNOs

were upregulated significantly by LPS stimulation. mRNAs of IL-10, CD206, Arg1, and YM1 were upregulated significantly by IL-4 stimulation. (B–D,G,H) Significant

differences of mRNA expression of TNF-α, IL-6, CD86, CD206, and Arg1. (E,F,I) No difference of mRNA expression between iNOS, IL-10 and YM1. n = 3,

mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001.

this study, DAT and TH were detected by Western blot to
verify the TRIF function in regulating MN9D cell dopaminergic
function. As a result, it was indicated that the siTRIF treated
BV2 cells affect the DAT and TH expression by MPP+-treated
MN9D cells (Figure 9, n = 3, p < 0.05). There is a significant
difference between the siNC-CM group and the siTRIF-CM
group, which suggests TRIF suppression may aggravate MN9D
cell dopaminergic functions.

DISCUSSION

In this study, we present evidence that TRIF is crucial for the
microglial M1/M2 paradigm. Suppression of TRIF may switch
microglia from the beneficial M2 phenotype to the harmful M1

phenotype and finally aggravates MPP+-induced MN9D cells
apoptosis.

In a MPTP-induced neurodegenerative model, we firstly
showed dramatically decreased concentrations of DA-related
metabolites in Trif−/− mice which suggests that TRIF may play
a protective role in MPTP-induced DA neuron degeneration.
To confirm the phenotype, we labeled DA neurons with TH
antibody in the SNpc region. Consistant with the HPLC-EC
results, less TH-positive cells resided in the SNpc in Trif−/−

mice (Figure 2F). Even with poly(I:C) stimulation and in rescue
experiments, the number of DA neurons was still less compared
with the WT group (Figures 2C,G).

Poly(I:C) is the agonist of TLR3, and TRIF is the sole adaptor
or TLR3, which suggests that poly(I:C) also can be considered
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FIGURE 6 | The effect of MPP+-treated MN9D cells on the M1/M2 marker paradigm of BV2 cells. (A) Inhibition of the TNF-α mRNA expression in BV2 cells

at 24 and 36 h of co-culture with MPP+-treated MN9D cells. (B) Inhibition of the IL-6 mRNA expression in BV2 cells at 12 and 24 h of co-culture with MPP+-treated

MN9D cells. (C) Inhibition of CD86 mRNA expression in BV2 cells at 4, 12, and 36 h of co-culture with MPP+-treated MN9D cells. (D) Inhibition of the iNOS mRNA

expression in BV2 cells at 36 h of co-culture with MPP+-treated MN9D cells. (E) Inhibition of the IL-10 mRNA expression in BV2 cells at 12, 24, and 36 h of co-culture

with MPP+-treated MN9D cells. (F) Inhibition of the CD206 mRNA expression in BV2 cells at 4, 12, 24, and 36 h of co-culture with MPP+-treated MN9D cells. (G)

Inhibition of the Arg1 mRNA expression in BV2 cells at 4, 12, 24, and 36 h of co-culture with MPP+-treated MN9D cells. (H) No difference of the YM1 mRNA

expression in BV2 cells in co-culture with MPP+-treated MN9D cells. n = 3, mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001.

as an indirect agonist of TRIF (Doyle et al., 2002) which may
selectively activate the IRF-3 signaling pathway. Our results
indicate that the TRIF-IRF3 signaling pathway can be inhibited
by siTRIF in the BV2 cell line. BV2, an immortalized murine
microglial cell line, has been used commonly as a substitute for
primary cultured microglial cells (Bocchini et al., 1992; Henn
et al., 2009). The BV2 cell line has similarity with primary
microglial cells with respect to the transcriptome (480 genes) and
proteome analyses when stimulated by LPS (Henn et al., 2009).
Although some other studies described the TLR-MyD88-NFκB
reactions in BV2 cells in different immunological mechanisms
and behaviors, and BV2 could be activated by poly(I:C) (Nguyen
et al., 2013; Guo et al., 2015), we found for the first time
that the suppression of TRIF results in inhibition of IRF-3
phosphorylation and downstream IFN-β release in BV2 cells,
which suggests that BV2 is an ideal cell model for the TRIF study
in this project. In our previous study, the deletion of the TRIF
gene inhibited the microglial migration in vitrowhen co-cultured
with retinal ganglion cells (RGCs; Lin et al., 2012a). Interestingly,
the present results revealed that inhibition of TRIF by siRNA
increases the migration ability of BV2 cells even with MPP+ and
poly(I:C) stimulation, which supported the putative role of TRIF
in microglial migration.

Increasingly, it has been demonstrated that microglial
activation can be classified into two major phenotypes, the M1
detrimental phenotype and theM2 anti-inflammatory phenotype
which promotes tissue and cell repair (Hanisch and Kettenmann,
2007; Kim et al., 2013). The M1/M2 paradigm markers of
microglia and microglial polarity may change through the
pathologic process. Here, we present evidence that the classical

microglial M1/M2 markers changed depending on LPS and
IL-4 stimulation (Figure 5A). However, in TRIF knock down
experiments the polarities of microglia changed when different
typical markers decreased, i.e., TNF-α, IL-6, CD86, CD206, and
Arg1 (Figures 5B–D,G). Interestingly, the changed markers are
indicators of both M1 and M2 microglial polarization, which
suggests the knockdown of TRIF may regulate BV2 into either
detrimental or beneficial roles. However, M1 andM2 phenotypes
of microglial cells may simultaneously coexist (Fenn et al.,
2014) as the mRNAs of inflammatory factors do not often
change sharply along the spectrum of the M1/M2 paradigm.
Furthermore, the dynamic function of the microglial M1/M2
paradigm is more complicated than the change of a limited
number of polarity-related genes.

The mechanism of microglial dynamic polarization is still
unclear, in whichM1 andM2microglia are derived from different
phenotype shifting states, or subpopulations may have different
functions, although the heterogeneous mixed glial cells can be
separated (Hu et al., 2007; Shimizu et al., 2008; Chhor et al.,
2013). M1 and M2 microglia can be induced phenotypically
and functionally in response to external factors in vitro (Tanaka
et al., 2015), whereas the similar microglial polarization was
observed in vivo, in which M2 microglia were transient (Kigerl
et al., 2009). Furthermore, M2 cell polarization is essential for
efficient remyelination of CNS regeneration in vivo (Miron et al.,
2013), which suggests thatM2microglia exist andmay contribute
to the CNS protection and improved neuronal function (Liu
et al., 2012). Recently, Ransohoff summarized the significance
of the microglial M1 and M2 phenotype. It was indicated that
based on the RNA-seq analysis and unbiased approaches such
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FIGURE 7 | Apoptosis of MN9D cells treated with BV2 cell-conditioned medium by TUNEL detectioin. (A) Control group, MN9D cells treated with BV2 cell

medium for 24 h. (B) MPP+ group (200µM), MPP+-treated MN9D cells cultured with naive BV2 cell medium. (C) MPP+/siNC-CM group. MPP+ (200µM) treated

MN9D cells cultured with conditioned medium containing negative control siRNA (siNC-CM) in BV2 cells. (D) MPP+/siTRIF-CM group. MPP+ (200µM) treated MN9D

cells cultured with BV2 cell conditioned medium containing siTRIF (siTRIF-CM).

as genome-wide transcriptomics and epigenomics, researchers
found microglia will beyond either M1 or M2 transcriptomes
under specific physiological or stress conditions (Ransohoff,
2016). Therefore, the microglial paradigm is more complicated
and depends on specific microglial conditions used in external
and internal strategies and more research work in the field is
needed in the future.

In an MPP+-induced in vitro neurodegenerative model,
the migration assay showed that the conditioned medium
(CM) from MPP+-treated mesencephalic cultures was enough
to attract microglia at early and late phase of neuronal
damage (Kim et al., 2012). In the present study, the BV2
and MN9D cells were co-cultured to explore the influence
of TRIF knockdown on the regulation of M1/M2 microglial
polarization in an in vitro model. The MN9D cells were
firstly treated with MPP+ and the medium was replaced
when co-cultured with BV2 cells. Therefore, the BV2 cell
activation and the markers’ spectrum variation depended on
the injured MN9D cells. The downstream targets of TRIF
are IRF3, IRF7, and NF-κB (Hiscott et al., 2006), which
activate the pro- and anti-inflammatory genes. To the best of
our knowledge, the current divergent results showed for the

first time the complexity of the M1/M2 microglial paradigm
in an in vitro PD model. It may be partly due to the
limited microglial M1/M2 marker spectrum we have screened.
Downstream molecules need to be investigated in more detail.
Furthermore, the effect of BV2 cells on MN9D cells was
investigated by means of apoptosis detection. The largest number
of apoptotic MN9D cells was found in the TRIF knockdown
group (Figure 7D) and the results were also verified by flow
cytometry (Figures 8A,B) which interestingly suggested that
the suppression of TRIF aggravates MPP+-treated MN9D cell
apoptosis.

Our results demonstrate an impaired M1/M2 polarization
in BV2 cells by TRIF suppression, and as a result the co-
cultured MN9D cells exhibit more apoptosis. Upon persistent
and overabundant inflammation triggered by M1 microglial
cells, additional inflammatory cytokines are produced and a
loop is generated that in turn induces further inflammation
and maintains the microglial M1 phenotype. As a result, the
loop-skewed M1 microglia impaired phagocytic function
and is neurotoxic in Alzheimer’s disease and multiple
sclerosis (Cherry et al., 2014). In addition, under certain
pathological conditions the M2 microglia may unusually
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FIGURE 8 | Apoptosis of MN9D cells treated with BV2 cell conditioned medium by PI/Annexin V detection. (A) Apoptosis of control, MPP+,

MPP+/siNC-CM, and MPP+/siTRIF-CM groups of MN9D cells by flow cytometry detection with PI/Annexin V staining. 8.9% PI/Annexin V staining of cells in the

control group; 25.3% PI/Annexin V staining of cells in the MPP+ group; 19.3% PI/Annexin V staining of cells in the MPP+/siNC-CM group; 30.5% PI/Annexin V

staining of cells in the MPP+/siTRIF-CM group. (B) Quantification of PI/Annexin V double staining of cells in the control, MPP+, MPP+/siNC-CM, and

MPP+/siTRIF-CM groups. Similar number of apoptotic cells in MPP+ and MPP+/siTRIF-CM groups. But significant differences between MPP+/siNC-CM and

MPP+/siTRIF-CM groups of MN9D cells. NC, negative control. CM, conditioned medium. n = 3, mean ± SEM, **p < 0.01.

FIGURE 9 | Effect of TRIF deficiency in BV2 cells on the expression of DAT/TH protein in MN9D cells in a co-culture system. (A) The expression levels of

DAT and TH protein in MN9D cells in co-culture with siTRIF-treated BV2 cells. The expressions of DAT and TH decreased in MPP+, MPP+/siNC-CM, and

MPP+/siTRIF-CM groups compared with control groups. (B) Quantification of the expression of DAT and TH in different groups. Significant differences were found

between MPP+/siNC-CM, and MPP+/siTRIF-CM groups, respectively. n = 3, mean ± SEM, *p < 0.05.

enhance disease development (Vaknin et al., 2011; Cherry
et al., 2014). However, this is the first study that discovered
the relationship between the microglial M1/M2 phenotype

and TRIF regulation. As TRIF is a downstream adaptor
of TLR3 and TLR4, a number of well-studied antagonists
and agonists can be used to directly regulate the level of
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TRIF expression in CNS. Thus, this study provides some
helpful hints for further research in neuropharmacological
methods and molecules that may regulate the PD process.
The detailed mechanism needs to be elucidated by further
experiments and screening the spectrum of inflammatory
factors.
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