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Exposure to stress during critical periods in development can have severe

long-term consequences, increasing overall risk on psychopathology. One of the

key stress response systems mediating these long-term effects of stress is the

hypothalamic-pituitary-adrenal (HPA) axis; a cascade of central and peripheral events

resulting in the release of corticosteroids from the adrenal glands. Activation of the

HPA-axis affects brain functioning to ensure a proper behavioral response to the stressor,

but stress-induced (mal)adaptation of the HPA-axis’ functional maturation may provide

a mechanistic basis for the altered stress susceptibility later in life. Development of

the HPA-axis and the brain regions involved in its regulation starts prenatally and

continues after birth, and is protected by several mechanisms preventing corticosteroid

over-exposure to the maturing brain. Nevertheless, early life stress (ELS) exposure has

been reported to have numerous consequences on HPA-axis function in adulthood,

affecting both its basal and stress-induced activity. According to the match/mismatch

theory, encountering ELS prepares an organism for similar (“matching”) adversities during

adulthood, while a mismatching environment results in an increased susceptibility to

psychopathology, indicating that ELS can exert either beneficial or disadvantageous

effects depending on the environmental context. Here, we review studies investigating the

mechanistic underpinnings of the ELS-induced alterations in the structural and functional

development of the HPA-axis and its key external regulators (amygdala, hippocampus,

and prefrontal cortex). The effects of ELS appear highly dependent on the developmental

time window affected, the sex of the offspring, and the developmental stage at which

effects are assessed. Albeit by distinct mechanisms, ELS induced by prenatal stressors,

maternal separation, or the limited nesting model inducing fragmented maternal care,

typically results in HPA-axis hyper-reactivity in adulthood, as also found in major

depression. This hyper-activity is related to increased corticotrophin-releasing hormone

signaling and impaired glucocorticoid receptor-mediated negative feedback. In contrast,

initial evidence for HPA-axis hypo-reactivity is observed for early social deprivation,

potentially reflecting the abnormal HPA-axis function as observed in post-traumatic stress

disorder, and future studies should investigate its neural/neuroendocrine foundation in

further detail. Interestingly, experiencing additional (chronic) stress in adulthood seems to

normalize these alterations in HPA-axis function, supporting the match/mismatch theory.

Keywords: HPA-axis, corticosteroids, prenatal stress, maternal separation, early social deprivation, limited
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INTRODUCTION

The neuroendocrine stress response is essential for adequate
responding to, coping with, and subsequent recovery from
environmental threats that disrupt homeostasis (McEwen, 2007;
Joëls and Baram, 2009; Sandi and Haller, 2015). Activation
of the hypothalamic-pituitary-adrenal (HPA) axis provides the
metabolic support for the stress response by mobilizing stored
energy, suppressing the immune response, and potentiating
numerous sympathetically mediated effects (de Kloet et al.,
2005; Ulrich-Lai and Herman, 2009). Moreover, corticosteroids
(i.e., cortisol in humans, corticosterone in rodents), the end
product of the HPA-axis, easily cross the blood-brain barrier
to affect brain function and thereby behavior. Although this is
a highly adaptive response, aberrant corticosteroid release, e.g.,
as a consequence of extreme or chronic stress exposure, can be
damaging to the organism and contribute to psychopathology
(McKay and Cidlowski, 2003). A wealth of evidence implicates
deviant HPA-axis function in stress-related mental disorders
(Varghese and Brown, 2001; Faravelli et al., 2012), suggesting
that proper basal and stress-induced function of the HPA-axis is
of critical importance to an organism’s health. Evidence for the
clinical relevance of aberrant HPA-axis function has accumulated
over years. Elevated basal cortisol has for example been shown
predictive of the risk for depressive episodes (Goodyer et al.,
2001), whereas successful antidepressant treatment is associated
with the resolution of the impaired HPA-axis negative feedback
(Pariante, 2006) by restoring corticosteroid receptor expression
in the brain (Pariante and Lightman, 2008) that also predicts the
patient’s long-term clinical outcome (Pariante, 2006).

The perinatal period, characterized by elevated synaptic
plasticity, reflects a critical window of brain development,
during which the brain is particularly sensitive to modulating
external factors such as stress (Andersen, 2003; Lupien et al.,
2009). Abundant evidence suggests that stress experienced
during this sensitive period can have lasting effects on an
individual’s ability to cope with stressful situations throughout
life. Childhood adversities such as emotional, physical or sexual
abuse, and neglect have been reported to result in increased
arousal (Jovanovic et al., 2009), enhanced processing of negative
emotional information (Pollak and Sinha, 2002; Pollak and
Tolley-Schell, 2003; Pollak et al., 2009), and cognitive deficits
(including impaired working memory, long-term memory, and
attention; Masson et al., 2015; Geoffroy et al., 2016); all
contributing to a heightened sensitivity to stress and increased
risk to develop e.g., major depressive disorder (MDD), substance
abuse disorders, or post-traumatic stress disorder (PTSD)
(Fergusson et al., 1996; Felitti et al., 1998; Chapman et al.,
2004; Faravelli et al., 2012). These observations suggest that
individuals are more likely to suffer from disease as life adversity
accumulates; a theory known as the cumulative stress hypothesis
(McEwen, 2003). However, another prominent theory, i.e., the
match/mismatch hypothesis, suggests that early life adversity
may prepare an organism for exposure to similar (“matching”)
adversity later in life and produce a predictive adaptive response
(Gluckman et al., 2007) to optimize responses to future stressors.
In line with this theory, adverse childhood events have been

associated with blunted HPA-axis reactivity to acute stress
experienced in adulthood (Elzinga et al., 2008). However, a
mismatch between early- and later-life environments could
render an organismmore vulnerable to develop psychopathology
(Bravo et al., 2011; Nederhof and Schmidt, 2012; Daskalakis
et al., 2013; Fine et al., 2014). To understand the underlying
mechanisms of vulnerability to stress-related disease and its
interaction with the adult environment, it is essential to study the
development of the central components of the stress system, and
how this is modulated by ELS.

Here, we review existing literature describing the effects of ELS
on adult HPA-axis function. As one relies on animal models to
study the effects of ELS exposure prospectively, mechanistically,
and in a controlled manner, this review mainly covers data from
rodent studies. Like in humans, ELS in rodents has generally been
shown to increase anxiety (Wigger and Neumann, 1999) and
depressive symptoms (Weinstock, 2008), alter social behavior
(Veenema et al., 2006; Lukas et al., 2011), impair learning
and memory processes (Liu et al., 1997, 2000b), and attenuate
sensorimotor gating (Ellenbroek et al., 1998; Zhang et al., 2005),
seemingly in interaction with concurrent adult life stress levels
(Oomen et al., 2010).

The HPA-Axis
Upon exposure to a stressor, corticotrophin-releasing hormone
(CRH) and arginine vasopressin (AVP) are secreted by the
paraventricular nucleus (PVN) of the hypothalamus (Stratakis
and Chrousos, 1995). CRH and AVP activate the anterior
pituitary to secrete adrenocorticotropic hormone (ACTH), which
in turn stimulates the adrenal cortex to produce corticosteroids,
the end product of the HPA-axis (Figure 1). CRH acts primarily
through CRH receptor 1 (CRHR1; Refojo and Holsboer,
2009), which is not only abundantly expressed in the anterior
pituitary, but also in the prefrontal cortex, hippocampus,
PVN, and basolateral amygdala (BLA); all regions involved in
mediating and regulating behavioral and neuroendocrine stress
responsivity. CRH also binds to a lesser extent to CRHR2,
expressed predominantly in the ventromedial hypothalamus,
dorsal raphe nucleus, and medial amygdala (MeA) (Steckler and
Holsboer, 1999), further endorsing CRH’s potency in modulating
brain function. CRHR1 activation by CRH, which is not only
released by the PVN, but also e.g., by CRH-expressing cells
in the hippocampus and central amygdala (CeA), is generally
thought mediate stress-initiation, whereas CRHR2 activation
would moderate its termination, although recent work has
emphasized that this dual, opposing role of CRHRs is overly
simplified and highly brain-region specific (Henckens et al.,
2016).

Corticosteroids easily cross the blood-brain barrier to
influence brain function through the binding to two receptors:
the glucocorticoid receptors (GRs) and mineralocorticoid
receptors (MRs), differing both in distribution and in affinity for
their ligand (Reul and de Kloet, 1985). GRs are widely expressed
throughout the brain, but most abundant in the hypothalamic
CRH neurons and pituitary corticotropes. MR expression is
mainly restricted to the limbic areas, with highest expression
levels found in the hippocampus (Sapolsky et al., 1983; Reul and
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FIGURE 1 | Comparison of basal (Top) and stress-induced (Bottom) HPA-axis function as a consequence of stress experienced prenatally (PS) or neonatally by

maternal separation (MS; the most frequently used model for neonatal stress*) compared to controls without any background of early life stress. If no differences

between the basal and stressed state per early life condition have been reported in literature, the absence of any difference is assumed. While the effects of MS and

PS share many similarities (e.g., increased stress-induced corticosterone), there are several differences between their effects as well. Hypothalamic GR mRNA

expression in the hypothalamus is unaltered in PS animals, but decreased by MS (Sutanto et al., 1996), whereas local CRHR2 mRNA expression is decreased by PS,

but unaffected by MS. Amygdala GR mRNA on the other hand is increased in PS adults, and decreased in those exposed to MS. Unfortunately, because of the limited

data available on the ESD model, no full picture of HPA-axis function as a consequence of this early life stressor can be constituted yet. However, initial evidence

indicates ESD results in a hypo-activation of the HPA-axis, implicating a fundamentally different modulation than observed in MS and PS animals, which should be

investigated in more detail in future studies. ACTH, adrenocorticotropic hormone; CORT, corticosterone; CRH, corticotrophin-releasing hormone; CRHR1, CRH

receptor 1; CRHR2, CRH receptor 2; GR, glucocorticoid receptor; MR, mineralocorticoid receptor. *Stress model-dependent (in LN and MS, not in ESD);
#subregion-specific effects; $timing and stressor-dependent. For an extensive overview of findings, see Supplementary Table 1.

de Kloet, 1985; de Kloet, 1991). The most well-known route of
action of corticosteroids involves their binding to intracellularly
located receptors, which upon ligand-binding translocate to the
nucleus to influence gene transcription both directly through the
binding of their homo/heterodimers to glucocorticoid response
elements in the DNA and the recruitment of co-repressors or co-
activators, or indirectly by interacting with other stress-induced
transcription factors to dampen their activity (De Bosscher et al.,
2003). Thereby, corticosteroid receptor binding can lead to the
induction or repression of the transcription of over 200 genes that
are involved in a multitude of cellular processes (Datson et al.,
2001). This provides a mechanism through which corticosteroids
can modulate brain maturation; initiating terminal maturation,
remodeling axons and dendrites, and affecting cell survival
(Meyer, 1983).

As intracellularly located MRs have a 10-fold higher affinity
for corticosteroids compared to the GRs residing in the
cytoplasm (Reul and de Kloet, 1985; de Kloet, 1995), they have
been hypothesized to be primarily involved in the ongoing

transfer of information and stability of circuits, controlling
the sensitivity and the threshold of the system’s response to
stress. For long, the intracellular GRs were assumed to be the
main players in the stress response; mediating the negative
feedback control on the HPA-axis (de Kloet et al., 1993; Herman
and Cullinan, 1997), normalizing neuronal activity following
stress exposure, and helping the organism cope with, adapt
to, and recover from stress. However, the recent discovery of
MRs and GRs residing on the cell membrane, both displaying
comparable affinity to the intracellular GRs (Joëls, 2008) has
forced researchers to amend this rather simplistic dualistic view.
Corticosteroid-binding to these membrane receptors was shown
to induce rapid changes in neuronal excitability and activity
through non-genomic mechanisms (Groeneweg et al., 2011)
and thereby seems to contribute to an acute state of arousal
and hypervigilance (de Kloet et al., 2005). This multitude of
functions affected by corticosteroids suggests that alterations in
corticosteroid signaling, resulting for example from early life
stress (ELS), can have enormous consequences.
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HPA-AXIS PROGRAMMING BY EARLY LIFE
STRESS (ELS)

Because of its potent programming effects (e.g., lastingly
influencing GR and MR expression levels, programming
hypertension, and influencing hormone levels), excessive
corticosteroid exposure to the developing brain is minimized
by several mechanisms. Prenatally, fetal exposure to maternal
corticosteroids is minimized by placental 11β-hydroxysteroid
dehydrogenase type 2 (11β-HSD2), which throughout the entire
pregnancy rapidly inactivates corticosteroids (Shams et al.,
1998; Maccari et al., 2014). During late-pregnancy, the mother’s
HPA-axis stress response is reduced (Maccari et al., 2014), and
postnatally, corticosteroid exposure to the developing brain is
minimized by the stress hyporesponsive period (SHRP) (Gos
et al., 2008); a period [postnatal day (PND) 1–12 in mice and
PND3/4-14 in rats] characterized by both low basal ACTH
and corticosteroids levels and a relative unresponsiveness to
external stressors (Schmidt et al., 2003; Box 1). While not
entirely identical to rodents, humans also appear to experience
a period of dampened HPA-axis responses. In humans the exact
duration of the SHRP is not clearly specified, but seems to occur
between 6 and 12 months of age, while the human HPA-axis
is still quite responsive to stressful situations up to roughly
3 months after birth (Gunnar and Donzella, 2002; Gunnar,
2003). The exact duration of this period seems to be associated
with the quality of care the infant receives, with a lower quality
of care resulting in premature development of corticosterone
responsivity even until 15 months (Gunnar and Cheatham,
2003).

However, these mechanisms cannot prevent corticosteroid
exposure entirely, allowing ELS to affect brain and HPA-axis
development. While 11β-HSD2 buffers corticosterone exposure
to the fetus, a portion of it does pass the placenta, where it
not only increases fetal exposure directly but also indirectly
by inducing fetal HPA-axis activation (provided the fetal HPA-
axis is functional yet; Ohkawa et al., 1991; Fujioka et al., 1999;
Seckl, 2008). Moreover, repeated exposure of the mother to
stress reduces 11β-HSD2 activity (Mairesse et al., 2007), further
contributing to increased fetal corticosteroid exposure, reaching
levels high enough to cause alterations in fetal programming
(e.g., by influencing GR and MR expression levels and inducing
increased HPA-axis activity; Levitt et al., 1996). Increased
corticosteroid exposure seems to critically mediate these ELS
effects, as they are prevented by adrenalectomy and hormone
replacement in the dams (Barbazanges et al., 1996). Shortly
after birth, prolonged stress exposure, e.g., by long separation
periods (3 h or more each day) from the mother, can cause the
neonate to emerge from the SHRP; increasing activity of the
PVN (Smith et al., 1997) and elevating levels of basal and stress-
induced corticosterone (Stanton et al., 1988). Short separation
periods (3 min–3 h) seem to be insufficient to do so, but
when repeated daily, also induce sensitization of the neonate’s
corticosterone stress response and adrenal growth (Levine et al.,
1991; D’Amato et al., 1992;McCormick et al., 1998; Schmidt et al.,
2004).

Thereby, ELS is able to “imprint” or “program” an organism’s
neuroendocrine, neural and behavioral responses to stress.
Although the exact underlying mechanisms by which ELS
establishes these life-long effects still need to be resolved,
research focuses along two complementary lines. Firstly, ELS
during critical stages in brain maturation may disrupt specific
developmental processes (by altered neurotransmitter exposure,
gene transcription, or neuronal differentiation), leading to
aberrant neural circuit function throughout life (Chen and
Baram, 2016). Evidence for these mechanisms is derived from
observations that corticosteroids in vitro decrease the rate of
cell proliferation by preventing progression through the cell
cycle (Fanger et al., 1987; Vintermyr et al., 1989; Hatakeyama
et al., 1991; Sánchez et al., 1993), suggesting that endogenous
corticosteroids play a role in differentiation and maturational
events during late fetal brain development, promoting the
transition between a proliferative and a differentiating stage by
directly inhibiting cell division as well as activating the expression
of specific genes characteristic of the differentiated mature
phenotype. Secondly, ELS may induce modifications of the
epigenome which lastingly affect brain function (Babenko et al.,
2015). Briefly, epigenetics refers to mechanisms by which the
environment interacts with the genome by the modification of
chromatin structure or control of mRNA translation (Silberman
et al., 2016). DNA methylation, post-translational histone
modifications (methylation, phosphorylation, acetylation)
and noncoding RNA activity are among the most studied
epigenetic mechanisms that regulate gene expression. These
epigenetic modifications are inducible, stable, and yet reversible,
constituting an important emerging mechanism by which
transient environmental stimuli can induce persistent changes
in gene expression and ultimately behavior (Zovkic et al., 2013).
Prenatal stress was for example shown to alter characteristic
brain miRNA profiles and affect transcriptomic brain profiles
in the offspring, including genes related to development, axonal
guidance and neuropathology (Zucchi et al., 2013). Furthermore,
increased DNA methylation of the Hsd11b2 gene promoter
in the placenta was found (together with an increase in DNA
methyltransferase DNMT3a mRNA levels) as a consequence of
repeated stress exposure of the mother, which is held responsible
for the reduction of Hsd11b2 mRNA expression and activity
observed following repeated stress (Jensen Peña et al., 2012).
Moreover, in the fetal hypothalamus, prenatal stress was found
to decrease methylation within the Hsd11b2 promoter and
increase methylation at sites within exon 1 of the gene, but these
differences did not translate into differential mRNA expression
levels of the gene.

To improve understanding of the life-time consequences of
these ELS-induced mechanisms and their potential contribution
to psychopathology, we here review the effects of ELS
on the functional and structural integrity of the HPA-axis’
endocrine glands, expression levels of neuroendocrine and
growth hormones and neurotransmitters, as well as their
receptors in several of the key brain regions regulating HPA-axis
activity (i.e., the amygdala, hippocampus, and prefrontal cortex),
and interpret their (mal)adaptive nature under either matching
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BOX 1 | The developing HPA-axis.

During pregnancy, the fetus is exposed to maternal corticosteroids which are to

a great extend inactivated by placental 11β-hydroxysteroid dehydrogenase type

2 (11β-HSD2). In the third trimester (in humans, this is slightly earlier in gestation;

Murphy, 1973), the fetus becomes capable of secreting corticotrophin-releasing

hormone (CRH) (Fujioka et al., 1999) and adrenocorticotropic hormone (ACTH)

in response to stress experienced by the mother, leading to the production of

fetal corticosterone (Gunn et al., 2013). Basal corticosterone levels of the fetal

rat at the final week of gestation closely resemble the basal levels found in adults

(Meaney et al., 1985b; Sapolsky and Meaney, 1986; Levine, 1994). However,

around birth, corticosteroid levels start to drop, resulting in low basal levels of

corticosteroids and a relative unresponsiveness to external stressors early in life;

the stress hyporesponsive period (SHRP) (Gos et al., 2008). During this period,

pups display low basal ACTH and corticosterone concentrations and an inability

to induce a ACTH/corticosterone response to stress (Schmidt et al., 2003). The

pattern of CRH expression differs slightly in that the robust CRH expression

decreases perinatally to∼20% of the levels observed in adulthood (Walker et al.,

1986a), but increases to reach adult levels at the end of the first postnatal

week (Grino et al., 1989; Baram and Lerner, 1991) and do respond to stressors

during the SHRP (Dent et al., 2000a,b). The expression of arginine vasopressin

(AVP) is just detectable during the third trimester, but rises in the first 4 weeks

of life, reaching 70% of adult levels by postnatal day (PND) (Almazan et al.,

1989). During the SHRP, glucocorticoid (GR) and mineralocorticoid receptors

(MR) mRNA expression levels are slightly higher than in the prenatal brain (Yi

et al., 1994), but low corticosterone levels prevent the feedback loops from

functioning.

Concerning receptor expression, first CRH receptors (CRHRs) are observed

in the brain from mid-gestation [∼gestational day (GD)17] onwards, and reach

particularly high levels early in development (stretching to >300% of adult

expression levels during the first post-natal week; Insel et al., 1988; Avishai-

Eliner et al., 1996). Moreover, during this stage CRHR2 is also temporarily

expressed in the medial prefrontal cortex (mPFC), but has disappeared at the

end of the SHRP (Eghbal-Ahmadi et al., 1998). Although, expression levels of

CRHR1 in the fully developed mPFC are only moderate, and CRHR2 seems

absent (Van Pett et al., 2000), initial expression levels during early development

are thus much higher (Avishai-Eliner et al., 1996; Eghbal-Ahmadi et al., 1998).

CRHR2 expression levels in the developing amygdala (Amy) are very subregion-

dependent, as the medial and basal nuclei express this receptor by GD17, and

do so fairly stable until adulthood, whereas in the cortical amygdala this receptor

will not be expressed until after birth. Expression has been observed on PND3,

and will increase with age (Eghbal-Ahmadi et al., 1998). In the hippocampus,

CRHR1 mRNA levels increase to maximal (300–600% of adult levels) at PND6,

after which levels slowly decrease (Avishai-Eliner et al., 1996). Hippocampal

CRHR2 expression is observed as of PND1, and its expression remains fairly

constant throughout development (Eghbal-Ahmadi et al., 1998). Prenatally, GR

mRNA levels in the hippocampus, mPFC, amygdala, paraventricular nucleus

(PVN), and anterior pituitary (APit) are relatively low compared to the adult

situation (Bohn et al., 1994; Yi et al., 1994; Pryce, 2008) and thus, the HPA-

axis has a relatively low sensitivity to negative feedback (Sapolsky et al., 1985).

First GRs arise around mid-pregnancy (first in the PVN and pituitary, followed

by the hippocampus) and levels rise toward the end of gestation (Matthews,

2002). Full development of GR expression only occurs after birth (when 20–

50% of adult levels are observed; Sapolsky and Meaney, 1986; Levine, 1994)

and continues into adulthood (Bohn et al., 1994; Pryce, 2008)&. MR mRNA

expression also arises around mid-pregnancy (first in the pituitary, followed by

the hippocampus and hypothalamus), but levels remain rather low until the

last few days of gestation (Diaz et al., 1998). The concentration of MR in the

hippocampus is however largely indistinguishable from adult levels by the end

of the first week of life, whereas local GR levels at that time are present at

only ∼30% of adult levels (Meaney et al., 1985b; Sapolsky and Meaney, 1986;

Sarrieau et al., 1988; Levine, 1994), making that the local ratio of MR/GR is much

higher during the first weeks of life in the rodent. In the amygdala, GR and MR

expression increases gradually over development in a region-specific manner (Yi

et al., 1994; Diaz et al., 1998).

Upon adulthood, corticosteroid levels have increased significantly, as have

GR and MR mRNA expression in the hippocampus, mPFC, amygdala, and

PVN (Bohn et al., 1994; Yi et al., 1994; Pryce, 2008). CRH secreted by

the pituitary stimulates the secretion of ACTH, which in turn stimulates the

production and secretion of corticosterone by the adrenal glands, which is

now capable of taking part in the fully functional feedback loops of the HPA-

axis. A critical period in HPA-axis development not covered by this review is

adolescence (extensively reviewed elsewhere e.g., McCormick et al., 2010;

Eiland and Romeo, 2013). Interestingly, recent investigations have indicated that

(pharmacological) interventions targeting the GR during this period are able to

revert the effects of ELS on the brain (Arp et al., 2016; Loi et al., 2017), making

that this period—and its exact HPA-axis characteristics—deserves further study.
&Development in the mouse brain differs slightly from that in the rat,

with e.g., GR expression in the hippocampus not being observable until after

birth (Noorlander et al., 2006), suggesting species-specific maturation of the

HPA-axis.
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or non-matching adult life circumstances. Unless specified
otherwise, the discussed data apply to animals in adulthood.

ELS Induction
To study the effects of prenatal stress (PS) exposure on the

offspring, dams are most frequently stressed by physical restraint

(Lemaire et al., 2000; Mandyam et al., 2008; Belnoue et al.,
2013; de Souza et al., 2013; Madhyastha et al., 2013; Xu et al.,
2014) or immobilization of the limbs (Liaudat et al., 2015),

often for multiple times a day. Alternatively, exposure to foot
shocks (Estanislau and Morato, 2005, 2006), hypoxia (Fan et al.,
2009; Wang X. et al., 2013), or multiple variable stressors over
the course of multiple days (Lee et al., 2007; Fan et al., 2009;
Zohar andWeinstock, 2011) are applied. These stressors are most
commonly applied during the second half of pregnancy, a critical
moment in fetal brain development when the differentiation
of several key regions in the regulation of the stress response
initiates (i.e., hypothalamus, amygdala, and hippocampus; see
Bayer et al., 1993 for a review concerning the human compared to
the rat brain development), and ranges between a single stressor
to repeated stress exposure until birth (Welberg et al., 2001; Fan
et al., 2009).

To induce neonatal stress, maternal separation (MS) is often
used, i.e., the temporary separation of the dam from her pups,
which models maternal neglect. In the variant of early social
deprivation (ESD), the pups are isolated from both their mother
and littermates and temporarily housed in a novel environment

(Sandi and Haller, 2015). The separation duration, frequency and
its timing, vary amongst studies, influencing their ultimate effect
on HPA-axis function and brain development in the neonate. A
third, relatively recent, neonatal stress model is the limited nesting
model (LN; Rice et al., 2008), in which dams are housed in a
cage with only limited nesting (or bedding) material available.
The absence of sufficient material to build a proper nest induces
chronic stress in the dam (Ivy et al., 2008), disrupts maternal
behavior and fragments the dam’s care for her pups (Rice et al.,
2008), as opposed to the separation models, which typically
cause a temporary increase in the dam’s care upon their reunion
(e.g., Pryce et al., 2001, see Box 2). As maternal care (mostly
through feeding and tactile stimulation) suppresses pups’ HPA-
axis activity (e.g., Macrì et al., 2008), the LN model raises
neonatal corticosteroid levels as well (Gilles et al., 1996; Avishai-
Eliner et al., 2001) by being a chronic stressor [whereas MS and
ESD are more acute (recurrent) neonatal stressors]. Due to its
resemblance of impoverished maternal care in human situations,
the LN paradigm is a valuable addition to the earlier models of
neonatal stress.

Effects on the Endocrine Glands and Their
Output
Hypothalamus
The hypothalamic PVN develops to a great extent prenatally,
and seems to be part of a functioning HPA-axis from the
third trimester onwards [gestational day (GD) 17 in rats], when

BOX 2 | Stress-induced variations in maternal care and their impact.

Maternal care has been shown to be a critical modulator in the effects of early life stress (ELS) on the developing offspring. Being either essential to the manipulation

[e.g., in limited nesting (LN)] or an “unwanted side effect” [e.g., in the case of prenatal stress (PS)], the effect of the stressor on maternal behavior is a crucial

denominator of its eventual effects on the offspring. Enhanced maternal care (arch back nursing and licking and grooming behavior) induced by neonatal handling

of pups induces physiological responses related to reduced fearfulness, and improved emotional, behavioral, and neuroendocrine stress responses (see Francis

et al., 1999 for a review of this work). Handled animals show reduced basal corticotrophin-releasing hormone (CRH) expression (Plotsky and Meaney, 1993; Plotsky

et al., 2005), and reduced CRH receptor 1 expression in the paraventricular nucleus and locus coeruleus (contributing to the noradrenergic drive induced by stress;

Plotsky et al., 2005), which is joined by increased negative feedback sensitivity to corticosteroids, related to increased hippocampal and frontal cortex glucocorticoid

receptor (GR) expression (Meaney et al., 1985a; Sarrieau et al., 1988). Studies investigating the natural variation in nursing behavior observed similar changes in

the offspring of high licking and grooming mothers (Liu et al., 1997), and showed that corticosterone responses to acute stress as well as hippocampal GR mRNA

and hypothalamic CRH mRNA expression correlated with the nursing behavior of the dam. Moreover, maternal care was recently shown to exert major influence

on the DNA methylation, histon acetylation and gene expression across large genomic regions (covering the NR3C1) in the hippocampi of adult animals (McGowan

et al., 2011). Differences in transcription occurred in the context of hyperacetylation and hypomethylation of promoters and hypermethylation of exons. These studies

suggest that the behavior of the mother toward her pups can program neuroendocrine responses to stress in adulthood. In the ELS paradigms altered care is crucial

for many of the observed stress effects, as demonstrated by the use of foster-studies (Maccari et al., 1995; Huot et al., 2004; de Souza et al., 2013). As PS can

also induce alterations in maternal behavior (de Souza et al., 2012; St-Cyr and McGowan, 2015), these paradigms may in fact model the effects of a both prenatal

and neonatal stressful environment instead of looking at PS in isolation. Although, altered maternal care as a consequence of stress during pregnancy is not always

observed (e.g., in Lee et al., 2007), cross-fostering studies emphasize the impact on the postnatal environment (i.e., maternal care). The effects of PS in terms of

the stress-induced corticosterone response, anxiety, aggression, and social memory differed significantly in pups raised by either control foster mother, non-related

stressed mothers, or their biological stressed mother (Maccari et al., 1995; de Souza et al., 2013).

In case of the LN model alterations in maternal behavior (Gilles et al., 1996; in terms of erratic and fragmented nurturing behavior) are in fact sufficient for long-

term stress effects in the offspring (Brunson et al., 2005; Rice et al., 2008; Dalle Molle et al., 2012; Gunn et al., 2013). Similarly, maternal care seems to critically

mediate the effects of maternal separation (MS) and early social deprivation (ESD), as in these paradigms not only the pups are stressed by the absence of their

mother, but the mothers as well. The amount of stress experienced by the dam (and the compensatory care she can perform) however, greatly varies amongst

the separation procedures implemented, influencing her behavior toward the litter. Besides the obvious differences in separation frequency and duration, some MS

studies leave the litter in the home cage (Sutanto et al., 1996; Vázquez et al., 2003), removing the mum, whilst others place the litter in a new, clean cage (Aisa et al.,

2008). Understandably, the exposure to a novel environment might cause additional stress in either the dam or pups, causing variable stress levels between studies.

Amongst ESD studies similar variations arise, as they either allow the mother to keep part of her litter by her side (Barna et al., 2003) or separate her from all her pups

(Irles et al., 2014), which is evidently more stressful. Potentially depending on the amount of stress experienced by the dam, temporary compensatory increases in

nurturing behavior following the reunion with her pups are also observed (Macrì et al., 2008), which might modulate the impact of the stressful separation on the

offspring.
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regional CRH mRNA responses are observed to maternal stress
(Fujioka et al., 1999). The observation that CRH synthesis and
mRNA expression in the fetal hypothalamus are not yet regulated
by corticosteroids until the end of the first postnatal week (Grino
et al., 1989; Baram and Schultz, 1992; Yi and Baram, 1993),
and local CRHR expression levels are particularly high early in
development (Insel et al., 1988), implicates an important role
for the stress-induced elevations in CRH signaling mediating the
effects of ELS on PVN function.

On the structural level, previous work has indicated that PS
increases apoptosis in the fetal hypothalamus (Fujioka et al.,
1999; Tobe et al., 2005), but decreases apoptosis in adulthood
(Baquedano et al., 2011). Although MS was not found to
affect local neuronal density during the SHRP, it increased
neuronal density afterwards, which was joined by decreased
levels of apoptosis-stimulating proteins and enzymes, whilst cell
survival-stimulating protein levels were increased (Irles et al.,
2014). These data indicate that ELS influences the structural
reorganization of the PVN throughout development, and thereby
likely alters its role in HPA-axis regulation.

On the functional level, the effects of ELS on both basal
and stress-induced CRH release by the PVN seem to heavily
depend on the precise developmental period affected by ELS, the
stressor applied, and the age at which the effects are assessed
(see Table 1 for an overview of findings). Moreover, the effect
of ELS on local CRH signaling might be sex-specific, as PVN

CRHR1 mRNA and protein levels were reported to be increased
as a consequence of PS in males, but decreased in females (Fan
et al., 2009; Wang X. et al., 2013; see Box 3 for an overview of
sex-specific modulatory effects of ELS). However, these findings
are in contrast with another study reporting no ELS-effects on
PVN CRHR1 expression in either sex (Zohar and Weinstock,
2011). As CRHR1-activation in the PVN has been associated with
anxiogenic effects (Fan et al., 2013), elevated CRHR1 levels in
PS males could underlie the anxious behavioral profile resulting
from ELS (Huot et al., 2002; Kalinichev et al., 2002; Daniels et al.,
2004; Rees et al., 2006; Aisa et al., 2007; Trujillo et al., 2016).
In contrast to potentially increased PVN CRHR1 levels, local
CRHR2 expression is unchanged or reduced in both sexes as a
consequence of PS (Fan et al., 2009; Zohar and Weinstock, 2011;
Wang X. et al., 2013) or MS (Bravo et al., 2011; O’Malley et al.,
2011).

In addition to CRH, hypothalamic AVP has subtle stimulating
effects on ACTH secretion as well (Gillies et al., 1982) and
potentiates the effects of CRH (Giguere and Labrie, 1982; Gillies
et al., 1982; Lolait et al., 2007). MS has been found to increase
local basal AVP mRNA expression at PND14 (Vázquez et al.,
2003), PND21 (Zhang et al., 2012), and PND35 (Veenema and
Neumann, 2009), and to elevate local stress-induced AVPmRNA
levels at PND6 and PND12 in rats (Dent et al., 2000a), whereas it
increases stress-induced fos expression in AVP-positive PVN cells
(Zhang et al., 2012). In adults, local stress-induced AVP mRNA

BOX 3 | Sex-differences in ELS effects.

There is a considerable sex-bias in the prevalence of stress-relatedmental disorders linked to early life adversity (Tolin and Foa, 2006; American Psychiatric Association,

2013). The increased susceptibility of women to stress-related psychopathology may be may be (partially) mediated by sex-specific (vulnerable) responses to early

life stress (ELS). Females experiencing trauma, physical abuse, or maternal distress during infancy show higher rates of depression, anxiety, and post-traumatic

stress disorder than males (Baker and Shalhoub-Kevorkian, 1999; MacMillan et al., 2001; Pitzer et al., 2011). Sex also seems to be a significant modulator of the

relationship between childhood adversity and HPA-axis activity later in life. Exposure to early trauma is associated with higher basal corticotrophin-releasing hormone

(CRH) levels in women, but lower levels in men, whereas severe trauma is linked to an increased response to a CRH challenge in men only (DeSantis et al., 2011).

There is also evidence from rodent studies indicating sex-specific effects of ELS on neuroendocrine function. Prenatally stressed (PS) females were shown to display a

higher peak corticosterone plasma levels to stress in adulthood compared to males (Brunton and Russell, 2010). They display increased fetal paraventricular nucleus

(PVN) apoptosis in response to acute immobilization (Tobe et al., 2005), as well as higher basal PVN CRH (though inconsistently) and arginine vasopressin mRNA

expression levels (Brunton and Russell, 2010; Zohar and Weinstock, 2011), and higher basal adrenocorticotropic hormone plasma levels as a result of PS compared

to males. However, females do not display a significantly higher acute stress-induced increase in POMC mRNA expression in the anterior pituitary compared to

non-stressed controls, while males do (Brunton and Russell, 2010). CRH receptor 2 mRNA expression in the basomedial amygdala is increased in PS females,

whereas it is decreased in PS males. Meanwhile, effects of PS on CRH receptor 1 mRNA expression in the amygdala appear to be both sex- and subregion-specific;

mRNA expression was found to be significantly elevated in the central amygdala and basolateral amygdala of males as a consequence of PS, but in the medial

amygdala of females (Brunton et al., 2011). PS induces reductions in adult neurogenesis in males (Lemaire et al., 2000; Mandyam et al., 2008; Morley-Fletcher et al.,

2011; Belnoue et al., 2013; Madhyastha et al., 2013), but does not seem to affect neurogenesis in females (Mandyam et al., 2008; Zuena et al., 2008), which might

be related to overall lower basal levels of neurogenesis in adult females (Mandyam et al., 2008; Oomen et al., 2009). Some of these effects might be related to

sex-specific epigenetic regulation of gene expression during development. PS was shown to cause significant elevations in DNA methyltransferase 1 expression in

the placenta of females, but not in males, but only male brains displayed reduced hippocampal glucocorticoid receptor and increased amygdalar CRH expression,

which was related to changes in Crh and NR3C1 methylation (Mueller and Bale, 2008).

Neonatal stress studies have indicated similar sex-differences. Female rats were found to overall display higher basal plasma corticosterone levels than males,

but these were reduced by maternal separation (MS) (Slotten et al., 2006). Similarly, basal corticosterone levels of female mice have been found to be reduced as a

consequence of limited nesting (LN), in contrast to increased basal level in males (Arp et al., 2016). However, such sex differences are not consistently found (Table 3).

MS also affects adult neurogenesis differently in males and females, depending on the age of assessment. At the age of weaning, male rats were found to display

increased neurogenesis, whereas MS female rats displayed decreased levels (Oomen et al., 2009), but these effects changed at adulthood, when neurogenesis was

found to be reduced in MS and LN males (Oomen et al., 2010; Lajud et al., 2012; Naninck et al., 2015), but unaffected in females (Oomen et al., 2011; Naninck et al.,

2015).

Unfortunately, most of what is known about the effects of ELS on brain maturation is derived from studies using male individuals, particularly in rodent research,

illustrating the necessity of the more thorough investigation of sex differences in neuroscience research (Beery and Zucker, 2011). Moreover, one should take the

oestrous cycle phase at the moment of testing of females into account, as it seems to be an important modulating factor when assessing the effects of ELS (Romeo

et al., 2003), but is often ignored.
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TABLE 1 | CRH mRNA expression in the PVN both under basal conditions and in response to stress in ELS animals compared to non-stressed controls.

Period Stress paradigm Duration Age at testing Basal CRH Stress-induced

CRH

Species (strain) References

GD1–21 CBX daily Adult ↑♂ Rats (Wistar) Welberg et al., 2000

GD1–21 Hypoxia and/or restraint 4 h Adult ↑ ♂* Rats (SD) Fan et al., 2009

GD1–21 Hypoxia 4 h Adult ↑♂/–♀ Rats (SD) Wang X. et al., 2013

GD4–10 Defeat or restraint# 45 or 60 min Adult ↑♀ Rats (Wistar) Bosch et al., 2007

GD11–18 Defeat 1 h

GD9–20 Restraint 6 h Adult –♂* Mice (ICR) Chung et al., 2005

GD13–21 Variable daily Adult –♂/↑♀ –♂/↑♀ Rats (Wistar) Zohar and Weinstock,

2011

GD16–20 Defeat 10 min Adult – ↑ Rats (SD) Brunton and Russell, 2010

PND2–9 LN PND9 ↓ Rats (SD) Avishai-Eliner et al., 2001

PND2–9 LN PND9 ↓ Mice (C57BL/6J) Rice et al., 2008

PND3 MS 24 h PND20 – Rats (SD-LE hybrids) van Oers et al., 1997

PND3 MS 24 h PND20 – ↑ Rats (SD-LE hybrids) van Oers et al., 1998b

PND5 MS 24 h PND 6 ↓ ↓ Rats (SD-LE hybrids) Dent et al., 2000a

PND7 MS 24 h PND20 – Rats (SD-LE hybrids) van Oers et al., 1997

PND8 MS 24 h PND9 – – Rats (SD) Avishai-Eliner et al., 1995

PND8 ESD 24 h PND9 – – Rats (SD) Avishai-Eliner et al., 1995

PND11 MS 24 h PND12 ↓ ↓ Rats (SD-LE hybrids) Smith et al., 1997; van

Oers et al., 1998a

PND11 MS 24 h PND12 – ↓$ Rats (SD-LE hybrids) Dent et al., 2000a

PND11 MS 24 h PND20 – Rats (SD-LE hybrids) van Oers et al., 1997

PND11 MS 24 h PND20 – ↓ Rats (SD-LE hybrids) van Oers et al., 1998b

PND17 MS 24 h PND18 – ↑ Rats (SD-LE hybrids) Dent et al., 2000a

PND19 MS 24 h PND20 ↓ ↓ Rats (SD-LE hybrids) Smith et al., 1997

PND1–14 ESD 4 h Adult – Rats (Ficher) Rüedi-Bettschen et al.,

2006

PND2–8 MS 15 min Adult ↓ Rats (SD) Korosi et al., 2010

PND2–9 LN Adult ↓♂ Mice (C57BL/6J Rice et al., 2008

PND2–9 LN Adult –♂ Mice (129S2/Sv × C57BL/6J) Wang et al., 2012

PND2–13 MS 4 h Adult – – Rats (SD) Chen et al., 2012

PND2–14 MS 3 h Adult ↑♂ ↑♂ Rats (LE) Plotsky and Meaney, 1993

PND2–14 MS 3 h Adult ↑♂ Rats (LE) Plotsky et al., 2005

PND2–21 MS 3 h Adult ↑♀ Rats (Wistar) Aisa et al., 2008

PND3 MS 24 h Adult ↓♂ Rats (Brown Norway) Workel et al., 2001

PND3–15 MS 3 h Adult –♂ Rats (LE) Slotten et al., 2006

PND9 ESD 24 h Adult – Rats (n.s.) Barna et al., 2003

If no sex is specified, results apply to both males and females. ↓ Indicates a significant decrease, ↑ a significant increase, and – no significant difference in corticotrophin-releasing

hormone mRNA expression. Stressors are applied daily for the indicated period. ♂ Results apply to males; ♀ results apply to females; #applied on alternating days; *CRH protein

expression; $response levels are unaffected but the stress response is shorter-lasting; CRH, corticotrophin-releasing hormone; ESD, early social deprivation; GD, gestational day; LE,

Long Evans rats; LN, limited nesting; MS, maternal separation; n.s., not specified; PND, postnatal day; SD, Sprague Dawley rats.

and protein levels are higher in both PS (Brunton and Russell,
2010) and MS (Veenema et al., 2006, 2007) offspring compared
to controls, although effects might be sex- and stressor-specific
(Desbonnet et al., 2008; Brunton and Russell, 2010). Like for
CRH, effects of ELS on basal PVN AVP expression are rather
heterogeneous. While PS exposure does not affect basal AVP
mRNA expression in the male PVN (Lee et al., 2007; Brunton
and Russell, 2010), it increases local levels in the females (Bosch
et al., 2007; Brunton and Russell, 2010). The number of local
AVP-expressing cells has however been found to be decreased
due to PS (de Souza et al., 2013) in both sexes. Moreover,
effects of PS on AVP expression might be depending on genetic
background. Basal PVN AVP mRNA expression in rats bred for

low levels of anxiety-related behavior (LAB) were found to be
lower compared to rats bred for high levels of anxiety-related
behavior (HAB), but PS increased AVP mRNA expression in the
LAB rats to levels observed in HAB rats, the latter being not
affected by PS (Bosch et al., 2006). Neonatal stress was found
to either not affect (Veenema et al., 2006), increase (Veenema
et al., 2007; Desbonnet et al., 2008; Murgatroyd et al., 2009;
Zhang et al., 2012), or decrease (in females) (Desbonnet et al.,
2008) basal expression levels compared to unstressed controls.
In one of the studies, increased AVP signaling induced by
neonatal stress exposure was associated with a sustained DNA
hypomethylation of the Avp gene in the PVN, and turned out to
critically mediate the observed hypersecretion of corticosterone
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TABLE 2 | ACTH plasma levels in ELS animals as compared to non-stressed controls.

Period Stress paradigm Duration Age at testing Basal ACTH Stress-induced

ACTH

Species (strain) References

GD1–21 Hypoxia and/or restraint 4 h Adult ↑♂ Rats (SD) Fan et al., 2009

GD4–10 Defeat or restraint# 45 or 60 min Adult –♀ –/↑♀@ Rats (Wistar) Bosch et al., 2007

GD11–18 Defeat 1 h

GD9–20 Restraint 6 h Adult –♂ –♂ Mice (ICR) Chung et al., 2005

GD15–19 Restraint 3 × 45 min Adult –♂/↑♀ ↓♂$/↑♀ Rats (LE) McCormick et al., 1995

GD15–21 Restraint 20 min Adult ↑♀ Rats (Wistar) Pérez-Laso et al., 2008

GD16–20 Defeat 10 min Adult –♂/ –/↑♀∧ ↑ Rats (SD) Brunton and Russell, 2010

PND1–10 MS 3 h PND42 ↑♂ Mice (C57Bl/6N) Wu et al., 2014

PND2–9 LN PND10 – ↓ Rats (SD) McLaughlin et al., 2016

PND2–14 MS 5 h PND30 –♀ –♀ Rats (SD) Rees et al., 2006

PND2–14 ESD 5 h PND30 –♀ –♀ Rats (SD) Rees et al., 2006

PND3 MS 24 h PND4 – ↑ Rats (SD-LE hybrids) van Oers et al., 1998b

PND3 MS 24 h PND20 – ↑ Rats (SD-LE hybrids) van Oers et al., 1997,

1998b

PND4 MS 24 h PND5 ↑ ↑/–& Mice (CD1 + C57Bl/6J) Daskalakis et al., 2014

PND5 MS 24 h PND6 – ↑ Rats (SD-LE hybrids) Dent et al., 2000a

PND6 MS 24 h PND7 – ↑ Rats (Wistar) Vázquez et al., 1996

PND7 MS 24 h PND20 – ↓ Rats (SD-LE hybrids) van Oers et al., 1997

PND9 MS 24 h PND10 – ↑ Rats (Wistar) Vázquez et al., 1996

PND11 MS 24 h PND12 – ↑ Rats (SD-LE hybrids) Smith et al., 1997;

van Oers et al., 1998a,b;

Dent et al., 2000a

PND11 MS 24 h PND16 – ↓ Rats (SD-LE hybrids) van Oers et al., 1997

PND11 MS 24 h PND20 – ↓ Rats (SD-LE hybrids) van Oers et al., 1997,

1998b

PND12 MS 24 h PND13 – ↑ Rats (Wistar) Vázquez et al., 1996

PND17 MS 24 h PND18 – ↑ Rats (SD-LE hybrids) Dent et al., 2000a

PND19 MS 24 h PND20 – ↓ Rats (SD-LE hybrids) Smith et al., 1997

PND1–14 MS 3 h Adult –♂ ↑♂ Rats (LE) Liu et al., 2000a

PND1–14 MS 3 h Adult –♂ ↑♂ Rats (Wistar) Veenema et al., 2006

PND1–14 ESD 4 h Adult – – Rats (Fisher) Rüedi-Bettschen et al.,

2006

PND1–14 ESD 4 h Adult –♂ –♂ Rats (Wistar) Rüedi-Bettschen et al.,

2005

PND1–21 ESD 4 h Adult –♂ –♂ Rats (Wistar) Pryce et al., 2003

PND2–10 MS 6 h Adult –♂ –♂* Rats (SD) Rhees et al., 2001

PND2-13 MS 4 h Adult – –♂/↓♀$ Rats (SD) Chen et al., 2012

PND2–14 MS 3 h Adult – ♂ ↑♂ Rats (LE) Huot et al., 2004; Ladd

et al., 2004; Plotsky et al.,

2005; Lippmann et al.,

2007

PND2–14 MS 3 h Adult –♂ ↑♂ Rats (LE) Ladd et al., 2005

PND2–14 MS 5 h Adult –♀ –♀ Rats (SD) Rees et al., 2006

PND2–14 ESD 5 h Adult –♀ –♀ Rats (SD) Rees et al., 2006

PND3 MS 24 h Adult –♂ –♂ Rats (Brown Norway) Workel et al., 2001

PND3–15 MS 3 h Adult – – Rats (LE) Slotten et al., 2006

PND5 MS 24 h Adult –♂ ↑♂ Rats (LE) Penke et al., 2001

PND14 MS 24 h Adult –♂ ↑♂ Rats (LE) Penke et al., 2001

PND3 MS 24 h Elderly –♂ –/↓♂% Rats (Brown Norway) Workel et al., 2001

If no sex is specified, results apply to both males and females. ↓ Indicates a significant decrease, ↑ a significant increase, and – no significant difference in ACTH plasma levels. Stressors

are applied daily for the indicated period. ♂ Results apply to males; ♀ results apply to females; @ increase only seen in lactating, not virgin females; # applied on alternating days;

* peak response levels are unaffected but stress lasts significantly longer; $ peak response levels are unaffected but the stress response is shorter-lasting; & results differ between

mouse strains tested; % results are stressor-dependent; ∧ cohort-differences; ESD, early social deprivation; GD, gestational day; LE, Long Evans rats; LN, limited nesting; MS, maternal

separation; PND, postnatal day; SD, Sprague Dawley rats.
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and alterations in passive stress coping and memory observed in
the offspring (Murgatroyd et al., 2009). However, further research
seems necessary to elucidate the exact effects of ELS on AVP
signaling.

In the adult PVN, GR mRNA has been localized to cells
expressing CRH (Swanson and Simmons, 1989), where GR
moderates the glucocorticoid-mediated negative feedback on the
HPA-axis by regulating CRH gene expression (Majzoub et al.,
1993). Both prenatal exposure to exogenous corticosterone and
PS have been shown to decrease local GR expression (Bingham
et al., 2013). Inhibition of 11β-HSD2 during pregnancy, raising
prenatal corticosterone exposure, also induced reduced GR
mRNA expression in the PVN (while it locally increased CRH
mRNA levels; Welberg et al., 2000), whereas MS attenuated GR-
binding in young rats and decreased GR mRNA levels in adult
(Arnett et al., 2015) and senescent animals (Workel et al., 2001).
These findings suggest that ELS attenuates HPA-axis regulation at
the level of the PVN by reducing GR-mediated negative feedback.

Anterior Pituitary
Both corticosteroid and CRH receptors are present in the
pituitary from the third trimester onwards (Insel et al., 1988).
In contrast to the PVN, pro-opiomelanocortin (POMC; the
precursor for ACTH) transcription is already stimulated by
CRH and inhibited by corticosteroid administration at this age,
implicating functional receptors and local negative feedback
regulation well before birth (Scott and Pintar, 1993). However,
soon after birth, the pituitary shows a time-limited, reduced
response to CRH, which could either be the result of a
reduced sensitivity to CRH (Dent et al., 2000b) (although CRHR
expression is high at that time) or a reduction in the size
and number of ACTH-secreting cells in the pituitary (Sapolsky
and Meaney, 1986). Exaggerated negative feedback-sensitivity to
corticosteroids (Walker et al., 1986b) might further contribute
to this non-responsiveness, but this cannot be readily explained
by altered corticosteroid receptor expression levels (which are
relatively stable prenatally, and only slowly increase after birth
to reach adult levels; Keller-Wood et al., 2006).

Similar to the PVN, the pituitary of PS animals is characterized
by decreased cell proliferation and cell death in adulthood
(Baquedano et al., 2011). Basal ACTH and POMC expression
levels seem to be rather unaffected by ELS in the adult
offspring (see Table 2 for an overview of findings). While
increased basal ACTH levels have been reported for PS females,
ACTH plasma levels seem to be unaffected by neonatal
stress. Interestingly, though basal POMC mRNA levels are
not influenced by PS (Brunton and Russell, 2010), they are
elevated by MS (Murgatroyd et al., 2009), associated with an
enduring hypomethylation of the POMC gene (Wu et al., 2014),
indicating alterations in ACTH turnover. Concerning stress-
induced responses, PS seems to increase the POMC mRNA
(in males) and ACTH response to stress (Fan et al., 2009;
Brunton and Russell, 2010), at least partially by increasing CRHR
expression in the anterior pituitary (Fan et al., 2009). The effects
of neonatal stressors on stress-induced ACTH release however
seem to again greatly depend on the type of stressor, its timing
and duration, and the age of the animal at which the effects are

assessed (Table 2). Generally, MS for 24 h both before the onset
of and early with in the SHRP is found to increase offspring’s
ACTH plasma levels in response to stress. However, MS during
the second half of the SHRP increases ACTH response to stress
only if tested during the SHRP (Smith et al., 1997; van Oers et al.,
1998b), whereas it reduces ACTH stress responses measured at
an older age (Smith et al., 1997; van Oers et al., 1997, 1998b).
AVP seems to play an important role in mediating these effects,
as the increase in ACTH levels as a consequence of 24 h MS on
PND9 was not observed in AVP deficient animals (Zelena et al.,
2015). Since AVP deficiency or AVPR1b antagonist pretreatment
diminished ACTH responses to stress only in pups but no longer
in adults (Zelena et al., 2011), AVP seems to be particularly
important in regulating ACTH-secretion in the neonate. LN
seems to reduce ACTH stress-induced responses during the
SHRP, though data is limited. Both multiple-day MS and 24 h
MS during the SHRP seem to increase ACTH stress responses in
adulthood, but not consistently. ESD does not exert any obvious
effect (Table 2). Stressor- and age-dependent alterations in local
CRHR binding capacity may contribute to the diversity of these
effects. ESD and LN are for example found to reduce CRHR
binding capacity (Ladd et al., 1996; Avishai-Eliner et al., 2001),
and thereby limit the ACTH-releasing potential of CRH.

Adrenals
PS (or prenatal corticosterone) generally increases corticosterone
stress responses by elevating peak levels or increasing the total
duration of the response (see Table 3), which both appear
indicative of impaired negative feedback. Overall, these effects
appear slightly stronger in PS females than males (Brunton and
Russell, 2010; Table 3, Box 3). Basal corticosterone levels seem to
be either increased or unaffected by PS (Table 3).

Effects of neonatal stress on adrenal function are again
stressor-specific, and depending on the developmental period
affected and the age at which they are assessed (Table 3). The
LN model generally induces elevated basal corticosterone levels
during the SHRP, which can be prevented by either GR- (in
females) or CRHR1- blockage (in both sexes; Liao et al., 2014).
However, these levels (as well as adrenal weight) seem to
have normalized in adulthood (Naninck et al., 2015), although
sex-specific effects might exist; whereas some studies observed
increased corticosterone levels and adrenal weight in LN males
(Rice et al., 2008; Arp et al., 2016), decreased levels were observed
in females (Arp et al., 2016). Corticosterone stress responses
have been shown to be either prolonged (Gilles et al., 1996),
unaffected (Wang et al., 2012), or reduced (McLaughlin et al.,
2016) as a consequence of LN. The effects of 24 h MS seem
to be strongly age-dependent as well. MS applied during the
SHRP increases both basal and stress-induced corticosterone
levels observed during the SHRP (Table 3), without affecting
basal corticosterone levels and exerting only minimal effect on
stress-induced corticosterone levels when assessed later during
infancy. Increased basal levels, but reduced stress-response levels
are observed in 3 month-old rats (Workel et al., 2001), whereas
in 5 and 12 month-olds basal levels are unaltered, but stress-
response levels increased as a consequence of MS (Workel et al.,
2001; Lehmann et al., 2002). In elderly rats (20 months), basal
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TABLE 3 | Overview of corticosterone plasma levels in prenatally and neonatally stressed animals as compared to non-stressed controls.

Period Stress paradigm Duration Age at

testing

Basal

CORT

Stress-induced

CORT

Species (strain) References

GD14–21 Restraint 3 × 45 min PND3 –♂ ↑♂ Rats (Wistar) Henry et al., 1994

GD14–21 Restraint 3 × 45 min PND21 –♂ ↑♂ Rats (Wistar) Henry et al., 1994

GD1/5***-21 Injection daily PND23 – ↑ Rats (SD) Peters, 1982

GD1–7 Variable Adult –♂ ↑♂ Mice (C57Bl/6:129) Mueller and Bale, 2008

GD1–21 CBX daily Adult ↑♂ –♂ Wistar rats Welberg et al., 2000

GD1–21 Hypoxia and/or

restraint

4 h Adult ↑♂ SD rats Fan et al., 2009

GD1–21 Noise-light 3 × 4 h/week Adult –♂/↑♀ –♂/↑♀* Rats (Sabra) Weinstock et al., 1992

GD1–21 Noise-light 3 × 4 h/week Adult ↑♂ ↑♂ Rats (SD) Weinstock et al., 1998

GD2–20 Foot shocks Daily Adult –♂ ↑♂ Rats (Wistar) Sadler et al., 2011

GD4–10 Defeat or restraint# 45 or 60 min Adult –♀ ↑♀** Rats (Wistar) Bosch et al., 2007

GD7–13 Variable Adult –♂ –♂ Rats (SD) Koenig et al., 2005

GD9–20 Restraint 6 h Adult –♂ ↑♂* Mice (ICR) Chung et al., 2005

GD11–18 Defeat 1 h Adult –♀ ↑♀** Rats (Wistar) Bosch et al., 2007

GD11–18 Predator odor

exposure

1 h Adult – –♂/↑♀ Mice (C57BL/6) St-Cyr and McGowan, 2015

GD14–21 Restraint 2 × 45 min Adult –♂ ↑♂* Rats (SD) Vallée et al., 1996

GD14–21 Restraint 3 × 45 min Adult –♂ ↑♂ Rats (Wistar) Barbazanges et al., 1996

GD14–21 Restraint 3 × 45 min Adult –♂ ↑♂* Rats (Wistar) Maccari et al., 1995

GD14–21 Restraint 3 × 45 min Adult –♂ ↑♂* Rats (Wistar) Henry et al., 1994

GD14–21 Handling, novelty,

injection

Daily Adult ↑♂ Rats (SD) Ward et al., 2000

GD14–22 Variable Daily Adult –♂ ↑♂* Rats (SD) Koenig et al., 2005

GD15–19 Restraint 20 min Adult – –♂/↑♀ Rats (LE) McCormick et al., 1995

GD15–19 Restraint 3 × 30 min Adult –♂/↑♀ –♂/↑♀* Rats (Wistar-HAN) Szuran et al., 2000

GD15–20 DEX Daily Adult ↑♂ –♂ Rats (Wistar) Levitt et al., 1996

GD15–21 Restraint 60 min –♂ ↑♂ Rats (Wistar) Hosseini-sharifabad and

Hadinedoushan, 2007

GD15–21 Restraint 3 × 45 min Adult ↑♀ Rats (Wistar) Pérez-Laso et al., 2008

GD15–21 Restraint 3 × 45 min Adult –♂ ↑♂* Rats (SD) Vallée et al., 1997

GD16–20 Defeat 10 min Adult –♂/ –/↑♀∧ ↑ Rats (SD) Brunton and Russell, 2010

PND1–14 MS 3 h PND3 –♂ ↑♂ Rats (SD) Lajud et al., 2012

PND1–14 MS 3 h PND6 –♂ Rats (SD) Lajud et al., 2012

PND1–14 MS 3 h PND9 –♂ Rats (SD) Lajud et al., 2012

PND1–14 MS 3 h PND12 –♂ ↓♂ Rats (SD) Lajud et al., 2012

PND2–9 LN PND9 ↑ Mice (C57BL/6) Liao et al., 2014

PND2–9 LN PND9 ↑♂ Mice (C57Bl/6J) Naninck et al., 2015

PND2–9 LN PND9 ↑ Mice (C57BL/6J) Rice et al., 2008

PND2–9 LN PND9 ↑♂ Rats (SD) Brunson et al., 2005

PND2–9 LN PND9 ↑ Rats (SD) Avishai-Eliner et al., 2001

PND2–9 LN PND9 – ↑* Rats (SD-derived) Gilles et al., 1996

PND2-9 LN PND10 ↓ Rats (Wistar) Moussaoui et al., 2016

PND2–9 LN PND10 – ↓ Rats (SD) McLaughlin et al., 2016

PND2–9 LN PND28 –♂ ↓♂ Mice (C57Bl/6J) Arp et al., 2016

PND2–9 MS 15 min PND21 – Rats (Wistar) Moussaoui et al., 2017

PND2–10 LN PND21 –♂/↑♀ Rats (Wistar) Moussaoui et al., 2017

PND2–14 MS 5 h PND30 –♀ –♀ Rats (SD) Rees et al., 2006

PND2–14 ESD 5 h PND30 –♀ ↓♀# Rats (SD) Rees et al., 2006

PND3 MS 24 h PND4 ↑ Rats (Wistar) Oomen et al., 2009

PND3 MS 24 h PND4 – ↑ Rats (SD-LE hybrids) van Oers et al., 1998b

(Continued)
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TABLE 3 | Continued

Period Stress paradigm Duration Age at

testing

Basal

CORT

Stress-induced

CORT

Species (strain) References

PND3 MS 24 h PND20 – – Rats (SD-LE hybrids) van Oers et al., 1997, 1998b

PND4 MS 24 h PND5 ↑ ↑ Mice (CD1 + C57BL/6J) Daskalakis et al., 2014

PND5 MS 24 h PND6 ↑ ↑ Rats (SD) Avishai-Eliner et al., 1995

PND5 MS 24 h PND6 – ↑& Rats (SD-LE hybrids) Dent et al., 2000a

PND5 ESD 24 h PND6 ↑ ↑ Rats (SD) Avishai-Eliner et al., 1995

PND6 MS 24 h PND7 – ↑ Rats (Wistar) Vázquez et al., 1996

PND7 MS 24 h PND20 – – Rats (SD-LE hybrids) van Oers et al., 1997

PND8 MS 24 h PND9 ↑ Rats (SD) Eghbal-Ahmadi et al., 1997

PND8 MS 24 h PND9 ↑ ↑ Rats (SD) Avishai-Eliner et al., 1995

PND8 ESD 24 h PND9 ↑ ↑ Rats (SD) Avishai-Eliner et al., 1995

PND9 MS 24 h PND10 – ↑ Rats (Wistar) Vázquez et al., 1996

PND11 MS 24 h PND12 ↑ ↑ Rats (SD-LE hybrids) Smith et al., 1997; van Oers

et al., 1998a,b

PND11 MS 24 h PND12 ↑ ↑ Rats (SD-LE hybrids) Dent et al., 2000a

PND11 MS 24 h PND16 – ↓$ Rats (SD-LE hybrids) van Oers et al., 1997

PND11 MS 24 h PND20 – ↓$ Rats (SD-LE hybrids) van Oers et al., 1997

PND11 MS 24 h PND20 – – Rats (SD-LE hybrids) van Oers et al., 1998b

PND12 MS 24 h PND13 – ↑ Rats (Wistar) Vázquez et al., 1996

PND17 MS 24 h PND18 – ↑ Rats (SD-LE hybrids) Dent et al., 2000a

PND19 MS 24 h PND20 – – Rats (SD-LE hybrids) Smith et al., 1997

PND2–6 ESD 5 h Adolescent ↑♂ ↑♂ Rats (SD) Biagini et al., 1998

PND1–10 MS 3 h Adult ↑♂ ↑♂ Mice (C57Bl/6N) Murgatroyd et al., 2009

PND1–10 MS 3 h Adult ↑♂ Mice (C57Bl/6N) Wu et al., 2014

PND1–14 MS 3 h Adult –♂ Rats (SD) Mirescu et al., 2004

PND1–14 MS 3 h Adult –♂ –♂ Rats (Wistar) Veenema et al., 2006

PND1–14 MS 3 h Adult ↑♂ ↑♂ Rats (SD) Lajud et al., 2012

PND1–14 ESD 4 h Adult – ↓♂/–♀ Rats (Fisher) Rüedi-Bettschen et al., 2006

PND1–14 ESD 4 h Adult –♂ –♂ Rats (Wistar) Rüedi-Bettschen et al., 2005

PND1–15 ESD 4 h Adult –♂ Rats (Wistar) Marmendal et al., 2006

PND1–21 ESD 3 h Adult –♂ ↓♂ Rats (SD) Zhang et al., 2014

PND1–21 ESD 4 h Adult – –♂/↓♀ Rats (Wistar) Pryce et al., 2003

PND2–9 LN Adult –♂ Rats (SD) Brunson et al., 2005

PND2–9 LN Adult – Mice (C57Bl/6J) Naninck et al., 2015

PND2–9 LN Adult ↑♂ Mice (C57Bl/6J) Rice et al., 2008

PND2–9 LN Adult –♂ –♂ 129S2/Sv × C57Bl/6J

mice

Wang et al., 2012

PND2–9 LN Adult ↑♂/↓♀ Mice (C57Bl/6J) Arp et al., 2016

PND2–10 MS 6 h Adult – –♂/↑♀* Rats (SD) Rhees et al., 2001

PND2–13 MS 4 h Adult –♂/↑♀ ↑& Rats (SD) Chen et al., 2012

PND2–14 MS 3 h Adult –♂ –♂ Rats (LE) Huot et al., 2004; Ladd et al.,

2004

PND2–14 MS 3 h Adult –♂ ↑♂ Rats (LE) Plotsky and Meaney, 1993; Ladd

et al., 2005; Plotsky et al., 2005;

Lippmann et al., 2007

PND2–14 MS 5 h Adult –♀ –♀ Rats (SD) Rees et al., 2006

PND2–14 ESD 5 h Adult ↑♀ ↓♀ Rats (SD) Rees et al., 2006

PND2–21 MS 3 h Adult ↑♀ Rats (Wistar) Aisa et al., 2008

PND3 MS 24 h Adult –/↑♂U –/↑/↓♂U Rats (Brown Norway) Workel et al., 2001

PND3–15 MS 3 h Adult ↓ – Rats (LE) Slotten et al., 2006

(Continued)
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TABLE 3 | Continued

Period Stress paradigm Duration Age at

testing

Basal

CORT

Stress-induced

CORT

Species (strain) References

PND4 MS 24 h Adult –♂ ↑/–♂U Rats (Wistar) Lehmann et al., 2002

PND5 MS 24 h Adult –♂ ↑♂ Rats (LE) Penke et al., 2001

PND9 MS 24 h Adult –♂ ↑/–♂U Rats (Wistar) Lehmann et al., 2002

PND14 MS 24 h Adult ↓♂ ↑♂* Rats (LE) Penke et al., 2001

PND18 MS 24 h Adult –♂ ↑/–♂U Rats (Wistar) Lehmann et al., 2002

If no sex is specified, results apply to both males and females. ↓ Indicates a significant decrease, ↑ a significant increase, and – no significant difference in corticosterone plasma levels.

Stressors are applied daily for the indicated period unless specified otherwise. ♂ Results apply to males; ♀ results apply to females; * peak response levels are unaffected but the

stress response lasted significantly longer; ** increased levels only observed in lactating rats, not in virgins; *** exact start of PS not stated; # peak response levels are unaffected but

corticosterone levels rise significantly slower; $ peak response levels are unaffected but the stress response is shorter-lasting; & peak response levels are unaffected but are reached

sooner; U age-dependent effects; ∧ cohort-differences; CORT, corticosterone; DEX, dexamethasone, ESD, early social deprivation; GD, gestational day; LE, Long Evans rats; LN,

limited nesting; MS, maternal separation; PND, postnatal day; SD, Sprague Dawley rats.

and stress-induced levels are again unaffected (Lehmann et al.,
2002), whereas stress-induced levels are reduced at senescent age
(Workel et al., 2001). Similarly, multiple-day MS does not seem
to induce any consistent alterations in basal corticosterone levels
either during the SHRP or adulthood (Table 3). Corticosterone
stress responses are however typically increased as a consequence
of this repeated stressor. Lastly, ESD has been shown to
increase basal and stress-induced corticosterone levels during
the SHRP (24 h ESD) and in adolescence (PND45) (multiple-
day ESD), though in juveniles (PND30) multiple-day ESD was
not found to affect basal corticosterone levels, and slowed
down stress-induced release. In adulthood, basal corticosterone
levels generally are similar to levels observed in non-stressed
controls. Interestingly and in contrast to MS, ESD seems to
induce reduced stress-response corticosterone levels in adulthood
(Table 3).

These ELS-induced alterations in corticosterone plasma levels
could obviously be caused by the earlier mentioned alterations
in CRH and ACTH release, but could also be attributed to
abnormal function of the adrenal gland itself, as increases in
adrenal weight and cortex-to-medulla ratio have been reported as
a consequence of PS (Ward et al., 2000; Fan et al., 2009; Liaudat
et al., 2015). However, the frequent inconsistencies in findings
emphasize the extremely complex modulatory effects ELS exerts
on the HPA-axis, depending on the precise developmental
stage affected, the exact stressor used (its frequency, duration,
etc.), age of testing, sex of the offspring, and also the genetic
background of the animals. Structured assessment of these
effects is absolutely necessary to increase understanding of the
underlying mechanisms of aberrant corticosteroid signaling later
in life.

Developmental Effects of ELS on HPA-Axis
Modulators
Amygdala
The amygdala plays a prominent role in the behavioral fear
response and the regulation of emotional processing (Akirav and
Maroun, 2007). CRH-expressing cells (first detected at PND6,
after which they gradually increase with age; Vazquez et al., 2006)

are quite abundant, particularly in the CeA, a major output site
which projects to the hypothalamus (LeDoux et al., 1988; Gray
et al., 1989). Activation of GRs expressed on CeA CRH-neurons
increases local CRH mRNA expression (Makino et al., 1994),
which directly contributes to a state of fear (Kolber et al., 2008).
These CRH-containing neurons project through the bed nucleus
in the stria terminalis to the PVN, and are believed to stimulate
the HPA-axis and induce anxiety-like behavior (Feldman et al.,
1994; Brunson et al., 2001a). Simultaneously, CRH released by the
PVN activates the amygdala to increase anxiety (Schulkin, 2006),
forming a potent feed-forward loop in stress signaling.

The amygdala develops both pre- and postnatally. It emerges
during the third week of gestation, but matures prominently
throughout infancy and adolescence (Berdel et al., 1997),
changing neuronal morphology (Ryan et al., 2016), intrinsic
membrane properties, action potential kinetics, and the synaptic
and voltage-gated currents (Ehrlich et al., 2012, 2013). From
PND7–21 in rats, regional soma volume doubles, spine density
increases nearly five-fold, whereas dendritic arbors expand
throughout the first postnatal month (Ryan et al., 2016).
Neuronal density however reduces postnatally (Berdel et al.,
1997).

PS influences the developmental trajectories of the rats’
amygdalar subnuclei; the BLA, CeA, and lateral (LA) amygdala.
Development of these regions was shown to be temporarily
impeded by PS, with at offspring displaying significant reductions
in regional volume and neuronal and glial number at PND25,
which normalized at PND60 (Kraszpulski et al., 2006). In line
with this, increased apoptosis was observed in the amygdala
of pups (at PND7) as a consequence of prenatal corticosteroid
treatment (Zuloaga et al., 2011), and an altered balance in
subunit expression of glutamatergic and GABAergic receptors
was observed at PND14–22 following prenatal restraint (Laloux
et al., 2012). However, in another study the same stressor
increased the volume and neuronal and glial number of the
LA—the subregion serving as the site of signal-input from
the sensory processing systems (LeDoux, 1994)—at PND80–
120, without affecting the other subregions (Salm et al., 2004),
suggesting age-dependent effects. Cell proliferation in the infant
amygdala showed a non-significant reduction as a consequence
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of PS (Kawamura et al., 2006), whereas electrophysiological
recordings from BLA excitatory principal neurons revealed
a hyperpolarized resting membrane potential, larger action
potential after-hyperpolarizations and H–currents in PS rat
offspring compared to controls, reducing neuronal excitability
throughout development from infancy into young adulthood
(PND60; Ehrlich and Rainnie, 2015).

Whereas PS thus appears to transiently impede amygdala
development, stress applied to the neonate seems to hasten
amygdala maturation. Typically, the amygdala is not activated by
aversive experiences shortly after birth (until PND8) and pups
show attenuated learning of fear (and an approach response
to aversively conditioned stimuli; Sullivan et al., 2000), which
seems to be crucial for forming dam-pup attachment (Sullivan
and Holman, 2010). Neonatal stress however accelerates the
development of an aversive response and precocious activation
of the amygdala, with pups expressing aversive learning and
significant corticosterone stress responses at PND8 when reared
in the LN model (Moriceau et al., 2006, 2009). This acceleration
seems to be mediated by increased corticosteroid exposure,
as corticosteroid infusion in the amygdala mimics the effects
(Moriceau et al., 2006) and the administration of a corticosteroid
receptor antagonist prevents them (Moriceau et al., 2009). In
fact, suppressed aversion learning may be another reason for
the SHRP, reducing corticosterone exposure to allow proper
dam-pup attachment to occur. Neonatal stress also leads to
longer fear retention (Callaghan and Richardson, 2012) and
precocious expression of the mature form of extinction learning
(Callaghan and Richardson, 2011; Cowan et al., 2013); all
suggesting a (premature) acceleration in amygdala development
of the stressed neonate. Amygdalar connectivity is affected
by this early “maturation,” as myelination is expedited due
to ELS (Ono et al., 2008). Potentially, this strengthening of
early connections (e.g., those to the thalamus and nucleus
accumbens) comes at the expense of the connections that form
later in development, including those to the frontal cortex
(Bouwmeester et al., 2002). Support for this idea comes from the
preclinical observation of aberrant functional amygdala-frontal
cortex connectivity in adolescents and adults that experienced
childhood adversity (Birn et al., 2014; Fan et al., 2014; Lee et al.,
2015). Alternatively, these changes in connectivity could derive
from the precocious closing of a critical period of plasticity
through neonatal stress. Closure of such critical periods has been
shown to coincide with the emergence of perineuronal nets on
parvalbumin interneurons (Pizzorusso et al., 2002; Hensch, 2005;
Dityatev et al., 2007; Nowicka et al., 2009), stabilizing synapses.
MS was shown to increase the number of parvalbumin neurons
in the periadolescent LA (Giachino et al., 2007; Seidel et al., 2008),
but the effects of stress on the perineuronal nets still have to
be characterized. Gross amygdala morphology however does not
seem to be affected by MS (Krugers et al., 2012).

Functionally, the adult amygdala seems to be come
“overactive” as a consequence of ELS. Assessment of regional
cerebral blood flow (CBF) by autoradiography revealed
an increased cerebral activation of the amygdala in adult
(∼PND100) PS offspring to a fear-conditioned stimulus (Laviola
et al., 2004), which was accompanied by heightened fear

responsivity (i.e., freezing behavior; Sadler et al., 2011). However,
also increased amygdala and fear responsivity to the tone was
observed without any prior conditioning, suggesting general
amygdala hyperactivity and increased anxiety in the PS animals
(Sadler et al., 2011). In line with elevated amygdala activity, PS
or exposure to elevated corticosteroid levels during gestation
was shown to increase amygdala’s basal CRH mRNA levels
(Welberg et al., 2001; Brunton and Russell, 2010), as well as
local CRH release in adult animals (Cratty et al., 1995). MS was
found to leave local basal CRH mRNA expression unaffected
(Bravo et al., 2011), but ESD, a more severe stressor, was shown
to increase stress-induced levels (Barna et al., 2003). These
findings may be related to local changes in the inhibition
of CRH-induced activation as regulated by local GABAergic
signaling. GABAa receptor binding was found to be reduced
in the CeA and BLA as a consequence of MS (Caldji et al.,
2000), joined by an increase in α2/α3 and decrease in α1 subunit
mRNA expression; a profile associated with decreased GABA
binding (Wilson, 1996). Moreover, these findings might relate
to the altered methylation patterns of the Crh promoter as a
consequence of ELS, which correlated with CRH mRNA levels
in the central amygdala in a learned helplessness paradigm,
but their direction depends on the genetic background of the
animal (van der Doelen et al., 2015). The influence of ELS on
local CRHR expression seems to be age-, sex-, and subregion-
specific. PS was found to elevate CRHR1 mRNA expression
in the CeA and BLA of males, and in the MeA of females
(Brunton et al., 2011), whereas CRHR2 mRNA expression was
not affected in the BLA and MeA, but reduced in the basomedial
amygdala of males and increased in females (Brunton et al.,
2011). MS was found to increase CRHR1 mRNA expression
in the MeA during infancy, and decrease CRHR1 and CRHR2
mRNA levels in the CeA (Vázquez et al., 2003). However, in
adulthood CeA and BLA CRHR1 mRNA expression levels are
actually elevated in MS offspring, and BLA CRHR2 mRNA
expression is reduced (Bravo et al., 2011). Importantly, no effects
of neonatal stress on CRHR1/2 mRNA expression levels in
adulthood are observed when the amygdala is considered as
a whole (O’Malley et al., 2011), emphasizing the relevance of
studying subregion-specific expression profiles. MS also affects
the rather immediate alterations in receptor expression typically
observed following acute stress. It attenuates the typical decrease
in CRHR1 mRNA expression and raises CRHR2 mRNA levels
in response to an acute psychological stressor (O’Malley et al.,
2011). As CRHR1 activation by CRH in the amygdala typically
serves an activating, anxiogenic role (Dunn and Berridge, 1990;
Henckens et al., 2016), elevated expression levels match the
overall increase in anxiety-like behavior of ELS animals. In line
with this, injection of a CRHR antagonist abolished the increased
fear and sensitivity to the environment of the PS offspring (Ward
et al., 2000).

ELS also affects corticosteroid signaling in the amygdala.
PS was found to increase CeA GR mRNA levels (Brunton
and Russell, 2010) and overall GR-binding (McCormick et al.,
1995). These effects might be mediated by elevated corticosteroid
exposure of the fetus, as GR (but not MR) mRNA levels in
the BLA, CeA, and MeA were found to be increased by the
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inhibition of 11β-HSD2 (Welberg et al., 2000), and BLA MR
and GR mRNA expression were increased as a consequence
of dexamethasone administration during pregnancy (Welberg
et al., 2001). Remarkably, GR expression in the amygdala was
found to be reduced in MS offspring, although this effect
might be strain-specific. MS reduced amygdala basal GR mRNA
expression during the SHRP in C57Bl/6J mice, but not in CD1s
(Daskalakis et al., 2014), and this decrease remained present until
adulthood (Arnett et al., 2015). Despite the fact that neonatal
stress typically induces an anxiogenic phenotype (Huot et al.,
2002; Kalinichev et al., 2002; Daniels et al., 2004; Rees et al., 2006;
Aisa et al., 2007; Trujillo et al., 2016), this apparent decrease
in GR expression was associated with reduced anxiety of the
ELS animals compared to controls, which was normalized by
lentiviral-mediated restoration of GR levels (Arnett et al., 2015).

Hippocampus
The hippocampus, best-known for its role in spatial learning
and memory (Block and Schwarz, 1997), plays an important
inhibitory role in the regulation of the HPA-axis by its direct
and indirect polysynaptic connections to the PVN. Electric
stimulation of hippocampal subfields [CA3, dentate gyrus (DG),
and subiculum] reduces corticosteroid release (Dunn and Orr,
1984), whereas hippocampal lesions and those of the ventral
subiculum increase CRH mRNA levels in the PVN (Herman
et al., 1989), and prolong the corticosterone stress response
(Herman et al., 1995), respectively. This feedback seems to be
relayed to the hypothalamus by indirect projections through the
bed nucleus stria terminalis (Herman et al., 2003). Because of its
high local GR/MR expression levels, moderate CRHR1/2 levels,
and local CRH-expression, the hippocampus is however highly
sensitive to the influences of stress (de Kloet et al., 1990; Maras
and Baram, 2012). The first 2 postnatal weeks comprise a crucial
period in hippocampal maturation (Frotscher and Seress, 2007),
as this is when the hippocampal commissural/associational (C/A)
pathways establish their synaptic connections on CA3 pyramidal
cell dendrites (Bayer, 1980). Disruption of this process can only
be partially restored beyond the third postnatal week (Gall and
Lynch, 1978), making that stress experienced during this period
can profoundly affect hippocampal structure and function.

ELS has been shown to slow the acquisition of spatial learning
and/or impair memory under both moderately stressful and
relatively stress-free conditions (Lemaire et al., 2000; Huot et al.,
2002; Brunson et al., 2005; Ishiwata et al., 2005; Yang et al.,
2006b; Aisa et al., 2007; Kosten et al., 2007; Rice et al., 2008;
Ivy et al., 2010; Hulshof et al., 2011). In one of these studies,
PS-induced learning deficits were associated with a reduction in
spine density of pyramidal neuron dendrites in the hippocampal
CA3 region (Ishiwata et al., 2005). Other studies confirmed this
PS-reduced spine density not only in the CA3, but also the CA1
subregion of the hippocampus (Martínez-Téllez et al., 2009).
Besides, PS reduced dendritic length and branching of CA3,
but not CA1, neurons (Hosseini-sharifabad and Hadinedoushan,
2007). Similar reductions in spine density of CA1 neurons were
observed as a consequence of ESD and LN, which was, in contrast
to the case of PS, joined by CA1 dendritic atrophy (Ivy et al.,
2010; Monroy et al., 2010). Moreover, LN was found to reduce

apical dendritic length and neuronal complexity in CA3 neurons
in infants (Liao et al., 2014).WhereasMS decreased the density of
mossy fibers in the stratum oriens (Huot et al., 2002), no changes
in apical dendritic length and neuronal complexity have been
found in the DG (Oomen et al., 2011).

These structural alterations affect local synaptic plasticity;
PS impairs long-term potentiation (LTP) in the CA1 (which is
associated with a decreased expression and impaired interaction
of the NR1 and NR2B subunits of the NMDA receptor in
hippocampal synapses; Son et al., 2006), whereas long-term
depression (LTD) is facilitated. Furthermore, PS was shown to
enhance the effects of acute stress on impairing hippocampal
LTP and facilitating LTD (Yang et al., 2006a). Cross-fostering
the neonate offspring with control mothers did not change these
effects on hippocampal LTP and LTD, implicating they resulted
directly from the prenatal manipulation and not altered maternal
care (see Box 2; Yang et al., 2006a). However, environmental
enrichment after weaning restored plasticity in PS animals, as
well as the associated impairments in spatial memory (Yang et al.,
2007), emphasizing the impact of the neonate’s environment on
PS effects. Not surprisingly, disturbed LTP in the CA1, CA3, and
DG is also observed as a consequence of stress in the neonate
(by both LN and MS; Brunson et al., 2005; Cui et al., 2006; Ivy
et al., 2010; Batalha et al., 2013; Cao et al., 2014; Xiong et al.,
2014). However, these perturbations are not always found and
may depend on the developmental stage affected by stress (Gruss
et al., 2008), the sex of the animal (Oomen et al., 2011), and
the age of testing (Brunson et al., 2005). Moreover, they might
depend on the exact ELSmodel implemented, since ESD has been
found to enhance DG LTP induction and duration in juvenile
(Kehoe et al., 1995; Bronzino et al., 1996) and adult (Kehoe
and Bronzino, 1999) offspring. Potentially in line with this
ESD-boosted hippocampal LTP is the observation that neonatal
isolation accelerates the developmental switch in the signaling
cascades for local LTP induction (Huang et al., 2005). However,
ESD was also shown to prevent acute stress-induced potentiation
of LTP in the DG (Wang H. et al., 2013). Future studies should
further elucidate the critical dependables in themodulation of the
effects of ELS on hippocampal plasticity.

Although several studies have attributed these effects to
elevated corticosteroid exposure of the hippocampus (Brunson
et al., 2005), suppressing dendritic growth and branching (Alfarez
et al., 2009; Liston and Gan, 2011), the presence of both elevated
levels of CRH and CRHR1 (with CRHR1 mRNA expression
detected at ∼300–600% of adult levels at PND6; Avishai-
Eliner et al., 1996) during early developmental stages points
toward their critical role in development (and thereby particular
sensitivity of the brain to their dysregulation). Hippocampal
CRH-immunoreactive neurons are already detected at PND1
(Yan et al., 1998; Chen et al., 2001) and numbers increase to peak
levels at PND18, after which levels reduce to those observed in
adulthood (Chen et al., 2001). Interestingly, at this initial stage of
development, hippocampal CRH mRNA is not only detected in
basket- and chandelier-type GABAergic interneurons (Yan et al.,
1998; Chen et al., 2001) synapsing on somata of hippocampal
pyramidal neurons, but also a second population of CRH-
expressing neurons is present, possessing the morphology of
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hippocampal Cajal-Retzius cells. These non-GABAergic neurons
disappear by the end of the second postnatal week (Chen et al.,
2001), but emphasize the potential modulatory role CRH can
have during early development. CRH is tonically released in
the hippocampus, as becomes apparent from the abnormal
dendritic structure (i.e., hypertrophy), spine morphology, and
impaired synaptic potentiation and spatial learning observed
when CRHR1s are chronically blocked (Chen et al., 2004) and
in mice lacking CRHR1 (Contarino et al., 1999; Schierloh et al.,
2007; Wang et al., 2011). However, the balance seems to be
critical. CRH applied to slice cultures was shown to reduce
spine density (Chen et al., 2008) and induce dendritic atrophy
(Lin and Koleske, 2010), whereas CRH administration into the
hippocampus recapitulated the learning and memory problems
associated with ELS (Brunson et al., 2001b). Importantly, all these
effects are observed when corticosteroid levels are maintained at
basal levels. Additionally, both CRH mRNA and protein levels
are generally upregulated in ELS animals (Wang et al., 2014),
the number of CRH expressing interneurons in the CA1 and
CA3 is increased (Ivy et al., 2010), and blockage of CRHR1
prevents dendritic atrophy and LTP attenuation, as well as the
impairment in memory performance observed in neonatally
stressed animals (Ivy et al., 2010). Therefore, elevated CRHR1-
activation has been suggested to mediate the ELS effects on
hippocampal function (Maras and Baram, 2012); a hypothesis
that was further corroborated by the observation that mice
lacking CRHR1 are resistant to the detrimental effects of ELS on
hippocampal function (Wang et al., 2011).

ELS also affects neurogenesis in the DG, one of the brain’s only
sites that displays neurogenesis well into adulthood (Drew et al.,
2013). Reductions in adult neurogenesis and cell proliferation
are observed as a consequence of PS (Lemaire et al., 2000;
Morley-Fletcher et al., 2011; Belnoue et al., 2013), with the
severity of the reduction depending on the severity of the PS
paradigm and gestational stage affected (Mandyam et al., 2008;
Madhyastha et al., 2013), with stress later in pregnancy inducing
stronger effects. As theDG for the larger part develops postnatally
(Altman and Bayer, 1990a,b), this structure may be particularly
sensitive to stress during the first weeks of life. In line with this, it
was shown that neonatal stress strongly affects DG neurogenesis
in a sex-, age-, and possibly species-specific manner. When
assessed at the end of the SHRP, neurogenesis was found to be
reduced in rats as a consequence of MS (Lajud et al., 2012), but
increased in mice exposed to LN (Naninck et al., 2015). At the
age of weaning, sex-specific effects were observed following MS,
with male rats showing increased neurogenesis, whereas female
rats displayed decreased levels (Oomen et al., 2009). Sex-specific
effects of ELS were also observed in adulthood, but in an opposite
direction; adult neurogenesis was reduced in MS and LN males
(Oomen et al., 2010; Lajud et al., 2012; Naninck et al., 2015),
whereas no effects were found in females (Oomen et al., 2011;
Naninck et al., 2015). For cell death, conflicting results have been
found, ranging from unaffected levels in both sexes (Lemaire
et al., 2000; Mandyam et al., 2008), to increased levels in PS males
(Mandyam et al., 2008).

Potentially related to these effects on neurogenesis and cell
survival, volume reductions have been observed in the DG as

a consequence of LN (Naninck et al., 2015), but not MS (Huot
et al., 2002). ELS is also reported to locally decrease neuron and
glia cell numbers (Leventopoulos et al., 2007; Fabricius et al.,
2008; Oomen et al., 2011). Other hippocampal regions were
not found to be reduced in volume by ELS (Fabricius et al.,
2008; Hui et al., 2011; Zalosnik et al., 2014). Cell proliferation
seems to be particularly affected in the caudal/ventral part of the
DG (Oomen et al., 2010; Hulshof et al., 2011), implying altered
hippocampal contribution to emotional behaviors (Bannerman
et al., 2004; Fanselow and Dong, 2010) as a consequence of
ELS. Alterations in expression levels of the neurotrophic factor
BDNF, which stimulates the survival of newborn cells and is
involved in cell proliferation, might be mediating these effects
on cell proliferation. Hippocampal BDNF levels in female adult
offspring were found to be reduced as a consequence of PS,
which was related to a decreased DNA methylation in bdnf
exon IV. No such effects were however observed in the male
offspring (St-Cyr and McGowan, 2015) and another study even
reported on increased BDNF levels in PS males (Zuena et al.,
2008). Reports on the effects of neonatal stress on BDNF are
conflicting, as both increased (Roceri et al., 2004) and decreased
BDNFmRNA expression (Kuma et al., 2004) have been observed
in MS-exposed infants, and either similar BDNF mRNA (Roceri
et al., 2004; Greisen et al., 2005) accompanied by increased BDNF
protein levels (Greisen et al., 2005), decreased BDNF mRNA
(Aisa et al., 2009), or increased BDNF mRNA levels (Kuma et al.,
2004) have been observed in MS adults. Differences in duration
and developmental phase affected by the MS paradigm might be
responsible for these inconsistencies, although differences in rat
strain might contribute as well.

Interestingly, although adult MS animals mostly show
normal basal levels of corticosterone (see Table 3), depleting
corticosterone (by adrenalectomy) can reverse this suppression of
cell proliferation and neurogenesis, implicating inhibited cellular
plasticity due to hypersensitivity to corticosterone signaling in
the hippocampus (Mirescu et al., 2004). This abnormal sensitivity
to corticosterone might be mediated by altered corticosteroid
receptor expression or MR/GR balance as a consequence of
ELS. PS has been found to decrease hippocampal MR mRNA
levels, density, and binding capacity (Henry et al., 1994; Maccari
et al., 1995; Koehl et al., 1999; Van Waes et al., 2006; Brunton
and Russell, 2010), which could relate to the increased basal
CRH levels in the PVN. Moreover, PS was shown to reduce
hippocampal GR levels (Henry et al., 1994; Barbazanges et al.,
1996; Koehl et al., 1999; Szuran et al., 2000; Chung et al.,
2005; Van Waes et al., 2006; Mueller and Bale, 2008; Green
et al., 2011; Bingham et al., 2013), attenuating its negative
feedback on the HPA-axis, potentially explaining the stronger
and prolonged corticosterone responses in PS animals (Chung
et al., 2005; Koenig et al., 2005). These effects seemed to be
mediated by increased prenatal corticosteroid exposure of the
pups, as they were prevented by adrenalectomy in the mothers
and reinstated by corticosterone injection in adrenalectomized
dams (Barbazanges et al., 1996). MS during the SHRP induced an
immediate decrease in CA1 MR (but not GR) mRNA expression
in rat pups (Vázquez et al., 1996), whereas MS toward the end of
the SHRP induced an immediate downregulation of both CA1
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MR and GR mRNA expression (van Oers et al., 1998a). No
effects were observed in the other hippocampal subregions in
these studies. In adulthood, mixed effects of MS on hippocampal
MR mRNA expression are found, with levels found to be either
increased in all hippocampal subregions (Ladd et al., 2004), in the
DG only (Workel et al., 2001), or unaffected (Ladd et al., 2005;
Batalha et al., 2013). GR protein levels are however univocally
downregulated in the hippocampus in neonatally stressed adults
(Weaver et al., 2004; Aisa et al., 2007, 2008; Batalha et al., 2013;
Arnett et al., 2015) although these effects not always translate
to the mRNA level (Ladd et al., 2004, 2005; Brunson et al.,
2005). Moreover, these effects may be sex-specific and occur only
upon repeated stress exposures, as downregulation in GR and
MR expression were observed in males, but upregulation of GR
was observed in females as a consequence of 24 h MS (Sutanto
et al., 1996). Overall, these alterationsmight result in an increased
MR/GR ratio in the hippocampus (Ladd et al., 2004), which
may result in an amplified initial stress reaction by increased
activation of the membrane MR in a feed-forward fashion, and
an impaired containment of this response by reduced membrane
and genomic GR-mediated negative feedback (Oitzl et al., 2010).

Studies have recently focused on the putative association
between DNA methylation at the GR gene (NR3C1) and ELS,
mediating this reduction in GR expression (in males at least).
This line of work started with the discovery by Weaver and
colleagues that differential levels of maternal care critically
modulated methylation levels of the GR promoter exon 17,
influencing local transcription factor (NGF1-A) binding, histone
acetylation, and ultimately hippocampal GR expression and
corticosterone responding in the offspring (Weaver et al.,
2004). These differences emerged over the first week of life,
were reversed by cross-fostering, and persisted into adulthood.
Moreover, they were prevented by the central infusion of a
histone deacetylase inhibitor, suggesting a causal relation among
epigenomic state, GR expression and the maternal effect on stress
responses in the offspring. These findings were replicated in a
study in human suicide victims with a history of childhood abuse;
the hippocampi of early life abuse victims were characterized by
decreased GR mRNA levels, GR transcripts of the GR 1F-splice
variant, as well as increased methylation of the NR3C1 promoter
(McGowan et al., 2009). Another recent study replicated this
finding of enhanced DNA methylation at this splice variant and
additionally identified altered DNA methylation in other splice
variants of the GR promoter (Labonte et al., 2012). Moreover,
it showed that this epigenetic response to ELS is brain region-
specific, not occurring in the anterior cingulate. Studies like this,
as well as the observation that epigenetic mechanisms critically
contribute to conferring cell-type identity during development
and cell division, suggest that the impact of environmental
factors on epigenetic marks is likely to be to some extent cell-
type specific, emphasizing the relevance of limiting analysis
to appropriate tissues of interest instead of mere analyses of
leukocytes (please see McGowan, 2013 for an extensive review
on this issue). Nevertheless, these initial human data translate
rodent findings to humans, suggesting a common effect of early
life environment on the epigenetic regulation of hippocampal GR
expression.

Prefrontal Cortex
The PFC is key to stress coping and emotion regulation (Arnsten,
2009) through its inhibitory connections to both the amygdala
(Banks et al., 2007) and the PVN, where it inhibits CRH release
(Radley et al., 2006). It represses the HPA-axis predominantly
through inhibitory projections from the infralimbic (IL),
prelimbic (PL), and anterior cingulate cortex (ACC) that
target HPA-axis neurons directly or indirectly (Heidbreder and
Groenewegen, 2003), although the exact functional implications
for the HPA-axis seem to be subregion-specific (Radley et al.,
2006). It represents the functionally most advanced area of the
brain with the longest period of maturation. This prolonged
development allows for the acquisition of complex cognitive
abilities through experience, but also makes it susceptible to
factors that can lead to abnormal functioning, which is often
manifested in neuropsychiatric disorders (Schubert et al., 2015).
Its development starts prenatally with the proliferation and
migration of neurons, growth of dendrites, the formation
of neural micro- and macro-circuits through efferent/afferent
axonal projections, but continues after birth with the initial
overproduction of neurons and their connection being fine-
tuned by reducing synaptic contacts (e.g., by the pruning and
cell death of unused connections; Kolb et al., 2012) and neuronal
density steered by experience.

ELS typically impairs PFC function in adulthood, as is
exemplified by increased impulsivity (Gondré-Lewis et al., 2016),
deficits in extradimensional shifts of attention (Mehta and
Schmauss, 2011), and impaired working, short-term, and long-
term memory (Gué et al., 2004; Markham et al., 2010; Negrón-
Oyarzo et al., 2015; Alteba et al., 2016). In line with this, PS has
been shown to impair prefrontal LTP, which was accompanied
by an increase in the mean frequency of spontaneous excitatory
postsynaptic currents (sEPSCs) in layer II/III pyramidal neurons
(Sowa et al., 2015). Similar results have been observed in rats
following chronic corticosterone treatment (Bartosz et al., 2011),
suggesting a role for glucocorticoids in this impaired LTP. MS
has been shown to result in LTP impairment in the IL layer
II/III-layer V (Xiong et al., 2014), and ELS to impair extinction
retrieval of context-dependent fear memories by preventing the
synaptic potentiation of hippocampal-PL cortex neural pathway,
which displayed synaptic inhibition rather than potentiation
(Judo et al., 2010). Another study into the effects of PS confirmed
this aberrant hippocampal-PFC functional connectivity as the
temporal coupling between neuronal discharge in themedial PFC
(mPFC) and hippocampal sharp-wave ripples was decreased by
PS (Negrón-Oyarzo et al., 2015). In line with this, decreased
regional CBF was elicited in the dorsal mid-cingulate and
posterior cingulate cortex inMS rats in response to a conditioned
tone compared to controls (Sadler et al., 2011).

These functional changes in the frontal cortex might be
mediated by structural alterations caused by ELS. Comprehensive
insight into the modulatory role of ELS on PFC neural
morphology is derived from a series of experiments in a
precocious rodent, the degu. In contrast to classical laboratory
rats and mice, degus (like human babies) are born with relatively
mature sensory systems and can thus perceive and more
elaborately interact with their early life environment, making
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them a very suitable model to study the impact of neonatal
stress (Bock and Braun, 2011; Braun and Bock, 2011). Brief
MS increases corticosterone levels (Gruss et al., 2006) and both
MS and ESD downregulate PFC activity during the separation
period (Bock et al., 2012). Repeated separation has been shown
to increase spine density in the basal dendrites of layer III
dorsal ACC neurons in adolescent animals when compared
to nonstressed controls (Helmeke et al., 2001). This finding
could potentially be explained by either delayed or permanently
impaired synaptic pruning during PFC development. The
effect of this increased excitatory spine density may even be
exaggerated by a decrease of inhibitory shaft synapses on the
neurons by stress (Ovtscharoff and Braun, 2001), inducing a
dysbalance of PFC synaptic input and neuronal output. Besides
altering synaptic contacts, neonatal stress was shown to also
affect the number and type of inhibitory interneurons in the
ACC (Helmeke et al., 2008), as wells as reduce mPFC GABAa
receptor binding (Caldji et al., 2000), further substantiating
evidence for a transient dysbalance in small neuronal feedback
loops, and potentially providing a substrate for the development
of dysfunctional large-scale neuronal networks. Work in the
classical rodent models has substantiated these findings of altered
PFC development by ELS, reporting on alterations in both
dendritic length and regional spine density depending on the
age (developmental stage) and the molecular layer in which
they are assessed. Mild PS was found to increase spine density
in layer III cingulate cortex neurons at weaning (Mychasiuk
et al., 2012), and a mild postnatal stressor caused similar effects
assessed pre-puberty (PND35; Monroy et al., 2010). However, in
adulthood, PS was found to reduce spine density and dendritic
branching and length in dACC and orbitofrontal cortex layer
II/III pyramidal neurons (Murmu et al., 2006), and to reduce
the ratio of mushroom spines; the type forming the most strong
and stable synapses (Michelsen et al., 2007). ESD was also found
to reduce apical dendritic length in several PFC subregions in
the adult offspring, and reduce spine density in frontal cortex
layer III neurons (Monroy et al., 2010; Romano-López et al.,
2016). Reduced local expression of BDNF mRNA in adult MS
(Roceri et al., 2004), LN (Roth et al., 2009), and PS offspring
due to increased Bdnf DNA methylation [associated with an
increase in DNAmethyltransferase 1 (DNMT1) expression; Roth
et al., 2009; Dong et al., 2015], may relate to these changes.
However, findings are not indisputable (Muhammad et al.,
2012; Boersma et al., 2014), and it has been suggested that the
extent and direction of the effects of ELS on frontal neuronal
morphology may depend on the developmental status of the
neuronal layer at the time the stress is experienced. ESD on
PND1-3 was shown to decrease dendritic spine density in layer
II/III neurons of the ACC, but failed to have an effect when
applied on PND5-7. ESD on PND14-16 however increased spine
density on these neurons (Bock et al., 2005). Conversely, ESD on
PND5-7 reduced spine density on layer V pyramidal neurons,
whereas ESD during the other time intervals did not induce
any effects (Gos et al., 2008). As pyramidal cells in layers V/VI
are ontogenetically older and therefore establish their synaptic
connections earlier than layer II/III pyramidal neurons (Zhang,
2004), these neuron-specific responses to ELS may be due to

their different degree of maturity at the time the stressor is
experienced. The differential innervation and receptor patterns
amongst neuronal layers may be an alternative explanation
for their differential sensitivity toward stress (e.g., Zilles et al.,
1993). Furthermore, the effects of stress exposure might critically
depend on its intensity. Supporting this idea, stressor intensity
was found to criticallymodulate frontal cortex globalmethylation
levels; mild PS increased overall methylation levels at PND21,
whereas intense PS induced the opposite effect (Mychasiuk et al.,
2011).

Prefrontal CRHR1s have been associated with anxiety
(Sotnikov et al., 2014), contribute to the HPA-axis stress response
(Jaferi and Bhatnagar, 2007) and were recently found to mediate
acute stress-induced executive dysfunction (Uribe-Marino et al.,
2016). MS has been observed to significantly increase CRHR1
protein levels in response to acute stress, compared to non-MS
controls (O’Malley et al., 2011). However, reported effects of MS
on basal CRHR1 expression levels have been mixed, with both
no effects (O’Malley et al., 2011) and decreases reported (Ladd
et al., 2005). Importantly, ELS reduces GR expression in the
PFC, and thereby compromises its negative feedback function
on the HPA-axis (Diorio et al., 1993). PS was shown to reduce
PFC GR protein levels (Green et al., 2011; Bingham et al., 2013)
and binding capacity (McCormick et al., 1995). Also LN and MS
induce a significant reduction in PFC GR density (Avishai-Eliner
et al., 2001; Ladd et al., 2004, 2005), although this effect is not
consistently observed (Huot et al., 2004). Interestingly, a study
in which monkeys were prenatally treated with the synthetic
glucocorticoid dexamethasone did not observe a decrease in
GR expression (Heijtz et al., 2010), suggesting that increased
corticosterone exposure in itself is not sufficient to establish
these effects. Instead, findings in MS pups of which the dam
was given a foster nest for the duration of the separation period
implicated a critical role for maternal stress (and potentially
care) in influencing GR expression; MS pups from a dam
with a foster nest showed increased instead of decreased GR
density, accompanied by an (albeit partial) restoration of PVN
CRH mRNA levels and ACTH response to stress (Huot et al.,
2004). Future research should investigate the exact aspects of the
maternal behavior that mediate these normative effects.

EARLY LIFE STRESS EFFECTS IN A
“MATCHING” STRESSFUL ADULT
ENVIRONMENT

Although findings on basal neuroendocrine function as a
consequence of ELS are rather inconsistent, general consensus
points toward exaggerated neuroendocrine responses upon the
encounter of an acute stressor in most ELS models. Such
increased responsivity to environmental challenges is typically
considered to be maladaptive, as maladaptation is often defined
as deviation from the norm. However, we would like to argue
that this increased environmental sensitivity can be both adaptive
and maladaptive depending on the context at which it is
displayed. Enhanced attention to threat (Pollak and Tolley-
Schell, 2003; Shackman et al., 2007) for example, might be
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very adaptive in dangerous environments, but maladaptive
in a save, non-threatening context. Evidence supporting this
interpretation of an adaptive role for ELS in case of exposure
to adult life stressors has been accumulating. Offspring receiving
relatively poor maternal care (low licking/grooming) not only
displays impaired spatial learning (Liu et al., 2000b), deficits in
long term neutral memory (Bredy et al., 2003), and increased
acoustic startle and pre-pulse inhibition (PPI) (Daskalakis
et al., 2012), but also enhanced memory for stressful events
(i.e., contextual fear-conditioning; Champagne et al., 2008;
Bagot et al., 2009). Similarly, MD offspring showed impaired
spatial learning in the water maze (Oomen et al., 2010), but
improved cue fear-conditioned memory (Oomen et al., 2011)
and contextual learning in a high-stress environment (Oomen
et al., 2010). In line with this, mild ELS reduced responsiveness
to acute stress exposure (acoustic and restraint) in terms of
corticosteroid release and reduction in body weight (Kiank
et al., 2009). Some studies even indicated anxiolytic effects
of mild-moderate ELS (Cannizzaro et al., 2006; Ehrlich and
Rainnie, 2015). Besides this enhanced coping with acutely
stressful conditions, ELS also seems to “protect” against the
detrimental effects of prolonged stress exposure in adulthood.
Isolation rearing was shown to significantly disrupt PPI in
control animals but not in those that were maternally deprived
(Ellenbroek and Cools, 2002), and to more severely affect
anxious, social, and depressive phenotypes in controls compared
to LN offspring (Santarelli et al., 2014). Moreover, offspring
that received enhanced maternal care (high licking/grooming)
reared in isolation displayed lower PPI levels and the highest
apomorphine-induced gnawing, a measure marking psychosis
susceptibility, compared to offspring that received low maternal
care (Daskalakis et al., 2012). Even the effects of severe prolonged
stress (i.e., 24 days of chronic unpredictable stress) were
buffered by ELS; whereas this stressor induced a significant
impairment in contextual fear memory in control animals,
stressed MD rats displayed similar performance to non-stressed
control animals (Zalosnik et al., 2014). All these findings seem
to support the match-mismatch theory, proposing adaptive
effects of ELS exposure in a matching stressful environment
in adulthood. Importantly, the adaptive potential of ELS seems
to interact with an individual’s programming sensitivity (or
early plasticity), which might be determined by three factors;
heritable variation, developmental experience, and the timing of
the experience (Nederhof and Schmidt, 2012). Animals exposed
to inescapable shock stress for example showed reduced escape
latencies to escapable stress when they experienced MS early
in life, and this effect was more pronounced in animals with
reduced expression levels of the serotonin transporter (van der
Doelen et al., 2013), supposedly reflecting higher susceptibility
to environmental factors (“programming sensitivity”). Another
study showed that MS decreased anxiety- and depressive-like
behaviors and enhanced social interaction in rats with heightened
inborn stress-susceptibility (i.e., Wistar–Kyoto rats), whereas MS
induced opposite effects in Wistar MS offspring (Rana et al.,
2015).

Similar protective effects of ELS to stress exposure in
adulthood are emerging in terms of neuroendocrine responding.

While MS seems to result in significantly higher corticosterone
stress responses in adulthood (Ladd et al., 2004, 2005; Plotsky
et al., 2005; Lippmann et al., 2007; Lajud et al., 2012), the
additional experience of chronic stress in adult life has been
shown to normalize these responses to the level observed in
non-stressed non-MS controls (Ladd et al., 2005) or to even
reduce basal ACTH and corticosterone levels compared to
stressed non-MS animals (Renard et al., 2007). These effects
were associated with an upregulation in hippocampal GR
expression, and a normalization of GR levels in the PVN
(Renard et al., 2010). Moreover, exposure to chronic stress
reduced amygdala CRH mRNA expression in MS offspring
and did not induce an increase in PVN expression levels (as
observed in the stressed control animals; Ladd et al., 2005).
At the same time, acute stress exposure reduced PVN CRHR1
mRNA expression specifically in MS animals, returning them
to similar levels as those in non-MS controls (O’Malley et al.,
2011). In terms of the HPA-axis’ external modulators, PS has
been found to protect rats from the degenerating effects of
chronic stress on spine density and morphology (reducing
the density of mushroom spines in particular) of mPFC
neurons (Michelsen et al., 2007). Additionally, MS was shown
to prevent the observed reduction in mPFC BDNF mRNA
expression in response to acute stress (Roceri et al., 2004).
Furthermore, exposure of MS animals to chronic stress later
in life was shown to significantly increase frontal cortex GR
mRNA expression levels, eliminating the significant difference
in expression with the non-stressed non-MS controls (Ladd
et al., 2005). In the hippocampus, corticosterone administration
enhanced CA1 LTP in offspring that received low maternal
care, whereas significant impairments due to corticosterone were
observed in high licking/grooming (LG) offspring (Champagne
et al., 2008). This CORT-induced impairment in LTP in
the high LG offspring was associated with increased NMDA
receptor function in these animals, and was also observed
in low LG offspring under basal conditions (Bagot et al.,
2012). Moreover, corticosterone was shown to enhance DG
LTP in MS animals compared to their non-MS controls,
even though the MS caused a reduction of neurogenesis and
an altered dendritic complexity (Oomen et al., 2010). These
studies imply that chronic stress in adulthood actually restores
PFC and hippocampal function and their inhibition of the
HPA-axis.

Although still preliminary, first evidence in humans
supporting the adaptive effects of early life adversity under
matching situations later in life has also become apparent. Stress
during pregnancy was shown to be a consistent predictor
of cortisol reactivity in infants; although PS increased
overall basal cortisol levels in children, it decreased cortisol
reactivity to maternal separation (Tollenaar et al., 2011).
Another study showed that moderate ELS was associated
with lower implicit anxiety than low ELS (Edge et al., 2009),
whereas neuroimaging work indicated that ELS was not only
associated with a reduced cortisol response to psychosocial
stress, but also with an attenuated stress-induced limbic
deactivation, reflecting relative stress resilience (Grimm et al.,
2014).
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However, the interaction between stress in early life and
adulthood is not always as straightforward. Acute stress exposure
was also shown to induce an increase in prefrontal CRHR1
expression in MS animals (compared to a decrease in controls),
but not a reduction in amygdala CRHR1 expression (as seen in
controls), and to induce significant increased amygdalar CRHR2
and hippocampal CRHR1 expression in MS animals specifically
(O’Malley et al., 2011). Moreover, chronic stress has been shown
to add to the effects of MS in terms of decreasing CRHR1
mRNA expression in the frontal and parietal cortex, whereas
it normalized CRHR1 binding potential in these regions to the
level of non-stressed controls (Ladd et al., 2005). The exact
meaning of these findings should be assessed in further studies.
Moreover, in contrast to these adaptive/protective effects of ELS,
other findings support the so-called “two/three-hit hypothesis,”
in which later life stressors worsen the effects of ELS and genetic
predispositions sensitize an animal to these detrimental effects
(Daskalakis et al., 2013). For example, a combination of MS and
later life corticosterone treatment or chronic stress exaggerated
the impairing effects of either treatment alone on learning and
memory, PPI, and hippocampal BDNF expression (Choy et al.,
2008, 2009; Llorente et al., 2011). Moreover, PS appeared to
increase vulnerability to chronic restraint stress in adulthood,
elevating anxiety and basal hypothalamic CRH and ACTH levels,
although basal corticosteroid levels were remarkably reduced
(Chung et al., 2005). Behaviorally, MS animals were found more
sensitive to social-defeat anhedonia (Der-Avakian and Markou,
2010), and to display elevated corticosterone stress responses
and increased depression-like behavior as a consequence of
repeated restraint stress in adulthood (Uchida et al., 2010). In
line with these behavioral findings, MS was shown to decrease
overall hippocampal GR levels (Aisa et al., 2007, 2008), and
even more so in case of adult chronic stress (Aisa et al.,
2008).

Finally, more ambiguous findings in support of both theories
have been reported. Chronic stress exposure induced a smaller
reduction in CA3 dendritic length and a blunted response
on thymus and adrenal weight in MS animals compared
to controls (Eiland and McEwen, 2012). However, at the
same time, MS animals displayed increased chronic stress-
induced anxiety and novelty-induced corticosterone secretion
(Eiland and McEwen, 2012). Again, it seems important to
note that all of the abovementioned phenotypic alterations
should be interpreted in the light of the specific environmental
context. While deviations from the norm (such as increased
anxiety and heightened corticosterone responses) are usually
seen as maladaptive, they could be highly adaptive if the
context requires. Moreover, besides the test context, the exact
extent of programming by ELS may critically determine how
individuals function in adult life. The match-mismatch theory
may apply to individuals that are sensitively programmed (by
a combination of genetic makeup and strong developmental
experience at a vulnerable time point in development) for
an adverse environment, while the cumulative stress (2/3-hit)
hypothesis might apply to individuals that did not undergo
such strong programming effects (Nederhof and Schmidt,
2012).

CONCLUSION AND DISCUSSION

As described in this review, ELS induces enduring neuroplasticity
of the HPA-axis by influencing the developmental trajectories
of brain maturation, and exerting a wide range of long-lasting
effects, encompassing alterations in neuroendocrine signaling,
neuronal morphology and plasticity, and regional brain volume
and function. Both PS and MS seem to induce a hyper-
responsive HPA-axis, boosting the amygdala’s excitatory drive,
while impairing regulatory negative feedback function of the
hippocampus and PFC. Human findings are in line with such
HPA-axis hyperactivity due to prenatal and “mild-moderate”
neonatal stress. Prenatal stress and anxiety were shown to
increase stress-induced cortisol responses in pre-adolescent
children (Gutteling et al., 2005; O’Connor et al., 2005), and also
adversity in early life (e.g., interparental aggression, corporal
punishment, or frequent emotional maternal withdrawal) was
found to increase basal cortisol levels (Davies et al., 2009),
as well as cortisol stress responses (Bugental et al., 2003).
Conversily, child-reported maternal warmth predicted lower
cortisol stress responses (Luecken et al., 2016). However,
more severe stress, ESD, seems to exert different effects
as stress-induced corticosterone levels in ESD animals are
either unaffected or decreased as compared to non-stressed
controls. Similarly, studies in human children exposed to severe
stress (due to severe neglect, abuse, or deprivation e.g., in
orphanages or institutions, or involvement with child protective
services) report on lower basal levels of corticosteroids (e.g.,
Carlson and Earls, 1997; Gunnar and Donzella, 2002; Bruce
et al., 2009; Bernard et al., 2015). This hypocortisolism might
either be caused by a reduced response of the pituitary
to the CRH-drive from the hypothalamus (Fries et al.,
2005) or by target tissue hypersensitivity to corticosteroids
(Yehuda et al., 2006). Interestingly, hypocortisolism is also
observed in PTSD patients, in combination with increased
glucocorticoid sensitivity (Rohleder et al., 2004). However,
similar to the described preclinical rodent studies, many
discrepancies regarding altered HPA-axis function as observed in
ELS-related psychopathology remain. Future dedicated research
into the exact nature, duration, and developmental period
affected by the early life adversity may shed light on these
obscurities.

Overall, many conflicting results have been reported for
the effects of ELS in rodents. Results may vary due to
the use of different stressors, their distinct severity, and
differential duration and frequency. Moreover, differences in
testing conditions, such as the time of the day (influencing
concurrent circulating corticosterone levels; Dickmeis, 2009),
or relatively stressful context of testing or sacrifice may affect
the outcome. Furthermore, the effects of stress exposure may
critically depend on the (additive or compensatory changes in)
alterations in maternal care caused by the stressor (Box 2). As
the developmental trajectories of brain regions and systems
are affected (either delayed or characterized by temporary
attempts to compensation), the age at which ELS effects are
assessed is also a critical factor. Moreover, gene x environment
interactions (Nugent et al., 2011) may underlie the differential
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effects observed for different strains of the animals (e.g., Long
Evans, Wistar, Sprague-Dawley, Brattleboro rats, CD1, C57BL/6J,
C57Bl/6N, BALB/C mice). Another important factor is sex (see
Box 3). Sexually dimprophic gonadal hormones critically interact
with the stress response (reviewed in Kajantie and Phillips, 2006).
The biological substrates of sex dimorphisms pertaining to stress
however remain understudied and require further investigation.
Lastly, the exact outcome of stress exposure seems to depend on
the maturational status of a given brain region at the time of the
stressor, e.g., the experience of adversity at times of frontal cortex
development induce differential effects from those experienced
during those of the hippocampus or amygdala (Lupien et al.,
2009). In line with this, experiments in rats revealed that MS
between PND2-20 was shown to exert negative effects on the
spine density in hippocampus (Andersen and Teicher, 2004),
whereas stress experienced later in development, i.e., PND30-
35, affected synaptic density in the prefrontal cortex (Leussis
et al., 2008). Findings in humans further corroborate this by
showing that the repeated experience of sexual abuse was related
to decreased hippocampal volume when it occurred early in
childhood, but with reduced prefrontal cortex volume if it
occurred during adolescence (Teicher et al., 2006; Andersen
et al., 2008). Similarly, the psychopathology developed as a
consequence of ELS may depend on the developmental stage
affected. Women were for example shown to display increased
risk for major depression when they experienced a trauma
before the age of 12, but to PTSD when the trauma occurred
between 12 and 18 years of age (Maercker et al., 2004). As the
hippocampus in humans develops till 2 years of age, whereas
that of the amygdala continues until the late 20 s and that
of the frontal cortex primarily takes place between 8 and 14
years of age (Giedd et al., 1996), the hippocampus might be
the brain area most vulnerable to the effects of stress early in
life.

Concluding
Thus, stress exposure during early life can have severe
consequences on our health during later life and increase
susceptibility to psychopathology. However, the severe, long-
lasting changes in the reactivity of the HPA-axis to stress are
not necessarily maladaptive. In this review we point toward
several factors that seem to be highly relevant in determining the
eventual outcome. Firstly, the nature and timing and duration
(Andersen, 2003) of the stressor in combination with the
genetic background of the individual, determine how well an
individual can adapt to it. Secondly, it depends on the specific
endophenotype tested and the context in which it is assessed.
High levels of anxiety could for example be adaptive in certain
environmental context, whereas impaired spatial memory is not.
The latter suggests that even within the same individual evidence
for the match/mismatch and cumulative stress hypothesis can be
obtained.
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