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Alcohol dependence causes physical, social, and moral harms and currently represents
an important public health concern. According to the World Health Organization (WHO),
alcoholism is the third leading cause of death worldwide, after tobacco consumption
and hypertension. Recent epidemiologic studies have shown a growing trend in
alcohol abuse among adolescents, characterized by the consumption of large doses
of alcohol over a short time period. Since brain development is an ongoing process
during adolescence, short- and long-term brain damage associated with drinking
behavior could lead to serious consequences for health and wellbeing. Accumulating
evidence indicates that alcohol impairs the function of different components of the
melanocortin system, a major player involved in the consolidation of addictive behaviors
during adolescence and adulthood. Here, we hypothesize the possible implications
of melanocortins and glial cells in the onset and progression of alcohol addiction. In
particular, we propose that alcohol-induced decrease in α-MSH levels may trigger a
cascade of glial inflammatory pathways that culminate in altered gliotransmission in
the ventral tegmental area and nucleus accumbens (NAc). The latter might potentiate
dopaminergic drive in the NAc, contributing to increase the vulnerability to alcohol
dependence and addiction in the adolescence and adulthood.

Keywords: alcohol drinking, melanocortins, neuroinflammation, metabolism and bioenergetics, synaptic
dysfunction

INTRODUCTION

Alcohol is the most commonly used and abused drug worldwide (Koob and Le Moal, 2005).
According to the Global Information System on Alcohol and Health (World Health Organization,
2014), the annual consumption during 2010 was equal to 6.2 L of pure alcohol per person aged
15 years or older, which implies consumption of 13.5 g of pure alcohol per day. Alcoholism is
a complex and multifactorial disorder characterized by a lack of control over excessive alcohol
consumption, in spite of its significant negative consequences (Edenberg and Foroud, 2013).
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Individuals suffering of this disorder exhibit compulsive alcohol
use and a loss of behavioral control, as well as alcohol
tolerance and withdrawal symptoms, which may include anxiety,
depressive episodes, social avoidance, insomnia, nausea and
seizures, generating substantial health, societal and economic
consequences (Spanagel, 2009). In fact, alcohol abuse causes
approximately 3.3 million deaths every year (or 5.9% of all
deaths), and 5.1% of the global burden of disease is attributable to
this dependence syndrome. Given this, in 2014 the World Health
Assembly approved a resolution to urge countries to strengthen
their national responses to public health problems caused by the
harmful use of alcohol (World Health Organization, 2014).

As occur with other drugs, addiction to alcohol is a chronically
relapsing disorder characterized by (i) compulsion to seek and
drink alcohol, (ii) loss of control in limiting consume, and (iii)
appearance of a negative emotional state (e.g., stress, dysphoria,
anxiety) reflecting a motivational withdrawal syndrome when
access to alcohol is prevented (defined as dependence) (Koob,
2013; Ron and Barak, 2016). Most of people begin to consume
alcohol as part of experimentation and social drinking, which
is accompanied of anxiolytic feelings and rewarding, as well as
socially facilitating effects (Everitt and Robbins, 2005). When
a person repeatedly consumes alcohol, develops tolerance to it
and drinking may become more automatic and less voluntary
(Everitt and Robbins, 2005). From a neurobiological perspective,
in this stage of the addiction cycle, alcohol consumption is a goal-
directed behavior, initiated and executed by brain areas within the
executive control network, with its rewarding effects processed by
appetitive drive regions (Kyzar and Pandey, 2015). These crucial
anatomical circuits comprise the mesocorticolimbic dopamine
system that originates in the ventral tegmental area (VTA) and
projects to the nucleus accumbens (NAc), opioid peptides in the
ventral striatum, extended amygdala, and VTA, and glutamate
in the dorsolateral prefrontal cortex and anterior cingulate
cortex (Koob, 2013). The behavioral transformation between
pursuing impulsively alcohol for its rewarding effects (positive
reinforcement) and seeking compulsively alcohol in order to
remove the negative emotional state associated with withdrawal
(negative reinforcement) are clinical features of alcohol addiction
(Koob, 2013).

Alcohol abuse not only occurs in the adult population, but
is also a well-known health concern during adolescence (Brown
and Tapert, 2004). Indeed, information from the WHO’s Global
Burden of Disease study reveals that 7.4% of all disabilities and
premature deaths in people aged 10–24 years are attributable to
alcohol, followed by unsafe sex (4%) or illicit drug use (2%) (Gore
et al., 2011). This evidence supports the idea that the onset of
drinking at an early age increases the risk of developing an alcohol
use disorder in adulthood (DeWit et al., 2000). Currently, several
governmental and health institutions worldwide are seeking
preventive strategies focused on understanding the etiology of
alcohol drinking behavior in young people. Here, we examine
the molecular mechanisms that prompt alcohol use and abuse in
adolescents by focusing in the possible role of glial cell signaling
and melanocortin (MC) system. In particular, we address the
signaling pathways that contribute to the switch from moderate
to uncontrolled excessive alcohol intake and dependence. As

alcoholism is thought to be a maladaptive form of learning
and memory that impact whole body homeostasis, we also
incorporate possible pathway molecules that have been linked to
synaptic plasticity, learning and memory, as well as whole body
metabolism.

HEAVY EPISODIC DRINKING IN
ADOLESCENTS AND BRAIN CIRCUITS
INVOLVED

In the last years, it has been observed that a growing number
of adolescents drink alcoholic beverages with the intention of
becoming intoxicated (Center for Disease Control, 2013). This
binge drinking practice is characterized by the consumption of
large amounts of alcohol over a short time period (minutes to
hours), especially during leisure time and at weekends, with
periods of abstinence between drinking episodes. In spite of
the fact that young people drink less often than adults, most
adolescents drink more than twice as much alcohol per drinking
episode on average when compared to adults (Center for Disease
Control, 2013).

In 2004, the National Institute for Alcohol Abuse and
Alcoholism (NIAAA) defined binge drinking as a pattern of
alcohol consumption that results in a blood alcohol concentration
(BAC) of 0.08 g/dL or greater (NIAAA Newstetter, 2004). Usually
people adopting this behavior drink five or more drinks in less
than two hours. This heavy drinking pattern produces several
short- and long-lasting negative effects in adolescents. According
to the Global Burden of Disease Study of 2013, alcohol abuse
was the highest risk factor for disability-adjusted life-years (7 %
overall, 10.5% for males, and 2.7% for females) for young people
aged between 20 and 24 years (Mokdad et al., 2016). In addition,
heavy alcohol consumption during adolescence is associated with
significant mental health impairment and adverse social effects
(McBride and Cheng, 2011), as well as the increased probability
of using and abusing other drugs, such as tobacco, marijuana
or other illicit drugs (Kirby and Barry, 2012). The relationship
between early alcohol consumption in young people and the
increased risk of developing alcoholism during adulthood has
been well documented. In fact, several studies have reported that
alcohol consumption prior to 14 years old produces a 4-fold
increase in the risk of becoming alcohol dependent in adulthood
(DeWit et al., 2000; Dawson et al., 2008).

Clinical and animal studies have revealed that adolescents
are more susceptible to alcohol influence than adults (Donovan,
2004; Spear and Swartzwelder, 2014). Adolescence is the
period of life particularly crucial for development of brain
circuits responsible for emotion and cognition, involving
changes in cortical volume, axonal growth, gene expression,
and refinement of cortical connections by a process known as
“synaptic pruning” (Tau and Peterson, 2010). The prefrontal
cortex and the limbic system are two important networks
that exhibit ongoing structural and functional maturation in
adolescents and young adults (Arain et al., 2013; Caballero
et al., 2016). While the prefrontal cortex is involved in higher
cognitive processing related to executive functioning (e.g.,
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planning, goal setting, inhibitory control), decision making,
and cognitive-affective behaviors (Gourley and Taylor, 2016),
the limbic system govern social and emotional processing and
is critical for immediate reward processing (Rolls, 2015). The
adolescent brain is particularly susceptible to the detrimental
effects of alcohol abuse given the so called “windows of
vulnerability” created by the earlier developing limbic system
and brain affective regions relative to the later maturation of
the prefrontal cortex (Crews et al., 2007). This “maturational
lag” produces that when making decisions, adolescents show
increased involvement of appetitive/impulsive motivational
systems (e.g., drink alcohol for immediate reward), but blunted
recruitment of top–down executive controls of the prefrontal
cortex (Steinberg, 2007; Crews et al., 2007). The asymmetry
between brain areas involved in the impulsive emotionality
and those implicated in reflective and executive function may
make adolescents more vulnerable to engaging in addictive
behaviors, including alcoholism. Interestingly, some studies
suggest that most drugs related to addictive behaviors may
strengthen this imbalance (Bechara, 2005). This highly sensitivity
to positive rewarding effects of alcohol along with the fact
that young people are less sensitive to negative aspects of
alcohol abuse (e.g., sedative effects); it may explain the excessive
alcohol intake during adolescence (Donovan, 2004; Spear and
Swartzwelder, 2014). In this context, heavy alcohol drinking
during adolescence could exerts long-lasting impacts on adult
brain networks, causing different changes including impairment
of intellectual function, rational decision making, and emotional
maturation.

What brain circuits linked to positive rewarding and
appetitive/impulsive function are hyper activated at the initial
stages of alcohol intoxication in adolescents? Similar to adults,
adolescents that engaged in binge drinking practices exhibit
increased dopaminergic function at the VTA and NAc, as
well as glutamatergic drive in the prefrontal cortex, which are
likely brain regions involved in the reinforcing effects of acute
alcohol abuse (Pascual et al., 2009; Maldonado-Devincci et al.,
2010; Allen et al., 2011). Another important brain region that
undergoes long-lasting neuroadaptive changes during alcohol
abuse in adults and adolescents is the hypothalamus (Barson
and Leibowitz, 2016). Indeed, different orexigenic neuropeptides
acting at the hypothalamus (e.g., galanin, encephalin, orexin)
stimulate alcohol consumption by enhancing positive reward
and most of them are upregulated by alcohol, which potentiate
even further consumption (Rada et al., 2004; Schneider
et al., 2007; Barson et al., 2010). Conversely, well-known
neuropeptides that have anorexigenic properties, including the
endogenous opioid dynorphin, corticotropin-releasing factor,
and MCs, inhibit alcohol drinking along with the positive reward
achieved by its consumption (Navarro et al., 2003; Thorsell
et al., 2005; Barson et al., 2010). The abnormal expression of
these neuropeptides and their receptors, besides their impact
at the limbic system have emerged as pivotal factors for
developing alcohol-related drinking behaviors and thereby, this
knowledge has been used also to explain alcohol binge drinking
patterns in adolescents (Crews et al., 2000; Slawecki et al.,
2004).

Accumulating anatomical, genetic, and pharmacological
evidence has shown that the MC pathway in the hypothalamus
and other brain areas is critical for developing dependency
and addictive behaviors related to alcohol consumption (Olney
et al., 2014). However, the molecular and cellular mechanisms
behind these changes remain to be fully understood and this is
particularly true for the initial stages of alcohol dependency in
adolescents.

CROSSTALK BETWEEN ALCOHOL
CONSUMPTION AND MELANOCORTIN
SYSTEM

Within the arcuate nucleus of the hypothalamus (Arc) and
the nucleus of the solitary tract (NST), cleavage of the
polypeptide precursor pro-opiomelanocortin (POMC) gives born
to different MC peptides (Cone, 2005; Ellacott and Cone,
2006) (Figure 1). Among these are α-, β-, and γ-melanocyte
stimulating hormones (MSH), as well as adrenocorticotrophic
hormone (ACTH) (Hadley and Haskell-Luevano, 1999). In
rodents, MC peptides act through at least five receptor subtypes,
namely MC1-5R, which are coupled to heterotrimeric G-proteins
that stimulate adenylyl cyclase activity (Hadley and Haskell-
Luevano, 1999). MC3R and MC4R are the most predominant
MCR subtypes expressed in the brain (Mountjoy, 2010b).
Immunohistochemical and in situ hybridization studies have
detected MC4R localization in various brain regions, including
the hippocampus, paraventricular nucleus of the hypothalamus
(PVN), Arc, ventromedial hypothalamus (VMH), amygdala,
VTA, and NAc (Kishi et al., 2003; Liu et al., 2003). Similar
evidence has shown the specific expression of MC3Rs in
the hypothalamus and the limbic system (Roselli-Rehfuss
et al., 1993). Interestingly, both receptors have an endogenous
agonist (α-MSH), and an physiological antagonist (agouti-related
protein; AgRP) (Haskell-Luevano and Monck, 2001; Nijenhuis
et al., 2001; Chai et al., 2003). These transmitters display opposing
actions on MC3Rs and MC4Rs, impacting neuronal circuits
and further hypothalamic-dependent physiological functions
(Figure 1).

Multiple studies have revealed the involvement of MC
system in the neurobiological response to alcohol consumption.
In the first place, α-MSH and other MCs are expressed in
different brain areas involved in the neurobiological response
to ethanol, including the striatum, NAc, VTA, amygdala,
hippocampus, and hypothalamus (Dube et al., 1978; Jacobowitz
and O’Donohue, 1978; Bloch et al., 1979; O’Donohue et al.,
1979; O’Donohue and Jacobowitz, 1980; Yamazoe et al., 1984).
Second, intracerebroventricular infusion of a non-selective MCR
agonist, melatonin-II, reduces voluntary ethanol drinking in
adult alko alcohol (AA) rats (Ploj et al., 2002) and C57BL/6J mice
(Navarro et al., 2003), while the administration of AgRP increases
alcohol consumption (Navarro et al., 2003). Importantly, MCR
agonists fail in mitigate alcohol intake on mutant mice lacking
MC4Rs (Navarro et al., 2011), unveiling the fundamental role of
this receptor in dependency and behavioral response to alcohol
(Navarro et al., 2011). In agreement with these data, infusion of
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FIGURE 1 | The hypothalamic melanocortin system. In the arcuate nucleus of the hypothalamus (Arc), neuropeptide Y/agouti-related protein/γ-amino butyric
acid (AgRP/NPY/GABA) neurons (blue) embrace the first-order sensory networks of the melanocortin (MC) system. These neurons project to second-order target
areas to regulate multiple physiological functions, including the neurobiological responses to alcohol abuse. NYP (blue) acts on Y1, as well as on Y2 and Y5
receptors (not depicted), whereas via activation of its metabotropic receptors, GABA may establish an inhibitory tone (1). AgRP is a potent endogenous antagonist of
MC3Rs and MC4Rs, and therefore, antagonizes actions of α-melanocyte-stimulating hormone (α-MSH) (2). At the other end, pro-opiomelanocortin/cocaine- and
amphetamine-regulated transcript (POMC/CART) neurons (red) constitute the other first-order sensory network in the MC system at the Arc. They synthesize α-MSH
and release it to activate MC receptors in different second-order regions of the brain (3). In addition, GABA released from NPY/AgRP/GABA neurons suppresses the
action of α-MSH by inhibiting POMC/CART neurons at the Arc (4).

a selective MC4R agonist (cyclo (NH-CH2-CH2-CO-His-D-Phe-
Arg-Trp-Glu)-NH2) at the NAc and VTA, but not into the lateral
hypothalamus (LH), diminish voluntary alcohol consumption
in rats (Lerma-Cabrera et al., 2012). Follow-up work has
demonstrated that MC signaling within the NAc contributes to
alcohol consumption by modulating the non-homeostatic aspects

(palatability) of intake (Lerma-Cabrera et al., 2013b), which bring
to light the key role of MCs in limbic regions implicated in the
hedonic response to alcohol.

The interaction between MCs and alcohol is not only
limited to the neuromodulatory effect of these transmitters on
alcohol consumption, but also implies the well-known regulation
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of alcohol on MC system. Numerous animal research has
demonstrated that ethanol, the predominant alcohol in alcoholic
beverages, disturbs the function of MC system depending on how
this drug is administered (for review see Olney et al., 2014). For
example, acute exposure to ethanol results in a drastic reduction
of α-MSH-immunoreactivity in the PVN, Arc, and dorsomedial
hypothalamic-dorsal (DMNd) and -ventral (DMNv) nuclei, as
well as the central nucleus of amygdala (CeA) (Kokare et al.,
2008). Similar findings have been found by others groups in the
Arc, LH, CeA, and the paraventricular nucleus of the thalamus
(PVT) in rats subjected to acute and chronic treatment with
ethanol (Navarro et al., 2008). In addition, chronic exposure
to an ethanol-containing diet significantly decreases levels of
POMC in the Arc in conjunction with the expression of pro-
prohormone convertases 1 (PC1) and 2 (PC2), both responsible
for POMC processing (Navarro et al., 2013). In contrast, other
works indicate that chronic ethanol treatment significantly raises
the α-MSH-immunoreactivity in the PVN, Arc, DMNd, DMNv,
and CeA, response that is potentiated following 24 h ethanol
withdrawal (Kokare et al., 2008). The reasons for this discrepancy
may rely in differences in the dose and duration of ethanol
treatment. Another relevant issue that may explain the diverse
outcomes regarding the regulation of MC system under different
ethanol consumption paradigms is the innate differences. As
such, C57BL/6J mice, which display high rates of voluntary
ethanol intake, have elevated basal α-MSH immunoreactivity in
hypothalamic areas and lower α-MSH expression in the medial
amygdala relative to 129/SvJ mice, a strain which exhibit low
rates of spontaneous ethanol consumption (Cubero et al., 2010).
In the same way, AA rats, which are selectively bred to prefer
ethanol, exhibit abnormal expression patterns of MC3Rs in the
PVN, Arc, and VMH compared to alko-non-alcohol (ANA) rats
(Lindblom et al., 2002). Together these findings suggest that the
different patterns of drinking observed amongst these animals
may be attributable to innate differences in the function of the
MC system.

Nowadays, although plenty of evidence support the
involvement of MC system in adult alcoholism, the contribution
of this pathway in binge drinking during adolescence is just
beginning to be explored (Lerma-Cabrera et al., 2013a). In the
following sections, we describe and discuss some of the possible
mechanisms underlying this issue.

ASTROCYTES AND MICROGLIA:
PRIMARY TARGETS OF ALCOHOL
ABUSE

Astroglial Dysfunction and Alcohol
Abuse
Astrocytes constitute the major glial cell type in the CNS and
encompass a far-reaching syncytial network that anatomically
and functionally connect neuronal synapses with brain blood
vessels (Volterra and Meldolesi, 2005; Barres, 2008; Perea et al.,
2009). Astroglial processes, together with pre- and postsynaptic
neuronal complexes, embrace the “tripartite synapse” (Schafer

et al., 2013). Within this anatomical and functional arrangement,
astrocytes sense neuronal activity and respond locally through
the release of bioactive molecules termed “gliotransmitters” (e.g.,
glutamate, ATP, and D-serine) (Perea et al., 2009). Besides
to surrounding the synaptic cleft, astrocytes project the well-
known specialized terminal processes called “endfeet”, toward
multiple vascular elements, including capillaries, intracerebral
arterioles and venules (Simard et al., 2003). The above provides to
astrocytes with an unparalleled architectural position to favor the
local and long distance release of gliotransmitters and vasoactive
factors that control different neuronal circuits. Along with their
trophic and synaptic role in the brain parenchyma, astrocytes
are major protagonists in supplying energy to neurons (e.g.,
lactate), maintaining the homeostatic balance of extracellular pH,
neurotransmitters and ions, as well as controlling the reactive
oxygen species (ROS) response and intercellular communication
and propagation of Ca2+ signaling.

Does alcohol consumption affect astrocyte function? A vast
number of studies have shown that astrocytes subjected to in vitro
and in vivo alcohol administration become activated and undergo
long-lasting molecular and morphological changes, referred to
as reactive astrogliosis (Blanco and Guerri, 2007; Adermark
and Bowers, 2016; Saito et al., 2016). This phenomenon
constitutes a graded, multistage and evolutionarily conserved
astroglial reaction that counteract acute damage, restoring the
homeostasis and limiting the brain parenchyma injury (Pekny
and Nilsson, 2005). Along with hypertrophy of astrocytes
processes and enlargement of the intermediate filament network
via upregulation of glial fibrillary acidic protein (GFAP), this
reaction also involves disturbances on astroglial functions such as
altered gliotransmission and Ca2+ signaling, elevated production
of cytokines and nitric oxide (NO) (Pekny and Nilsson, 2005).
Despite that reactive astrogliosis is an adaptive mechanism of
protection, when it persists, can turn into a detrimental response,
leading to neuronal damage and recruitment of the innate
immune response.

In terms of astrocyte number and GFAP expression, ethanol
seems to induce different outcomes depending on developmental
period, addiction stage, brain region and method of ethanol
administration (e.g., amount and periodicity of exposure) (Bull
et al., 2015). For example, adult rats exposed to repeated gavage of
ethanol or ethanol-containing diet exhibit an increased number
of GFAP positive astrocytes in the cerebral cortex (Dalcik
et al., 2009; Udomuksorn et al., 2011) and similar findings
have been observed at the prelimbic and anterior cingulate
cortex (Bull et al., 2014) or during ethanol abstinence at the
prelimbic cortex (Miguel-Hidalgo et al., 2006) and Nac (Bull
et al., 2014). In contrast, prelimbic and orbitofrontal prefrontal
cortex of rats that had continuous access to ethanol show a
reduction in GFAP positive astrocytes after 3-week abstinence,
whereas astrocyte density decreases at the anterior cingulate and
orbitofrontal cortex during abstinence in a model of operant
ethanol self-administration (Bull et al., 2015). In the same
manner, a diminished astrocyte number is also found in the rat
dorsolateral and orbitofrontal prefrontal cortex (Miguel-Hidalgo
et al., 2002, 2006) and hippocampus of human alcoholics (Korbo,
1999). These changes also take place in adolescents and young
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adults. Indeed, ethanol exposure increases the expression of
GFAP and the number of astrocytes in the hippocampus, corpus
stratum and frontal cortex of adolescent rodents (Evrard et al.,
2006; Kane et al., 2014), whereas a recent study has found
that chronic ethanol administration during adolescence reduced
GFAP positive astrocytes at the CA3 hippocampal area and hilus
sub-regions (Oliveira et al., 2015). As mentioned before, these
conflicting results may be linked to differences in time of ethanol
exposure, amounts and methods of administration.

Treatments with alcohol cause profound alterations in cell-to-
cell coupling and electrophysiological properties of astrocytes. In
fact, ethanol inhibits gap junctional coupling among astrocytes,
whereas also blunts their slope of conductance, increase
their input resistance and decreased their capacitance without
affecting the resting membrane potential (Adermark et al.,
2004; Adermark and Lovinger, 2006). In addition, acute ethanol
exposure induces astroglial swelling and intracellular free Ca2+

concentration ([Ca2+]i) transients (Allansson et al., 2001),
whereas Gonzalez and colleagues linked this response with
ROS production and further increased expression of GFAP
(Gonzalez et al., 2007). Follow-up studies revealed that ethanol-
induced [Ca2+]i oscillations triggers the release of glutamate in
astrocytes (Salazar et al., 2008), but inverse effects have been seen
when they are pre-incubated with ethanol and further kainate-
dependent release of glutamate is analyzed (Santofimia-Castaño
et al., 2011). At one end, this ethanol-mediated regulation
of extracellular glutamate has been attributed to alterations
in the expression and function of astroglial excitatory amino
acid transporters GLAST and GLT-1 in brain regions linked
to positive reward, including the Nac (Smith and Zsigo, 1996;
Zink et al., 2004; Alhaddad et al., 2014; Smith et al., 2014;
Das et al., 2015; Sari et al., 2016). These transporters remove
glutamate from the extracellular environment and thereby,
their function is crucial because excessive glutamate can lead
to synaptic dysfunction and neuronal excitotoxicity (Ayers-
Ringler et al., 2016). Ethanol blunts adenosine uptake via
the inhibition of astrocytic nucleoside transporter 1 (ENT1),
leading to increased levels of adenosine and activation of
purinergic receptors, which result in the downregulation of
GLT-1 and further enhanced levels of extracellular glutamate
(Wu et al., 2010, 2011; Nam et al., 2012). At the other
end, disturbances in extracellular levels of glutamate and
other gliotransmitters have been associated to ethanol-mediated
astroglial swelling. Indeed, acute treatment with ethanol triggers
astrocyte swelling via Na+/K+/2Cl− cotransporter or the
Na+/K+-ATPase, resulting in the release of glutamate, aspartate
and taurine (Kimelberg et al., 1993; Allansson et al., 2001;
Aschner et al., 2001a,b; Vargova and Sykova, 2014). Relevant
to this point, extracellular levels of taurine are crucial for the
ethanol-induced dopamine release in the Nac (Ericson et al.,
2011). Furthermore, positive reward caused by impulsive alcohol
consumption are associated with aquaporin-4 (AQP4) function
(Lee et al., 2013) and its expression correlates with dopamine
levels in the Nac (Kuppers et al., 2008), and suppression
of cell swelling mitigates ethanol-induced dopamine release
(Adermark et al., 2011). Altogether this evidence suggests that
gliotransmitter release associated to transporters or astrocyte

swelling is modulated by ethanol and could be determinant in
regulating synaptic transmission in brain areas related to alcohol
consumption.

A number of studies by Guerri’s group and others, have shown
that in vitro or in vivo treatment with ethanol augments the
function and/or expression of different inflammatory mediators
in astrocytes, including cyclooxygenase 2 (COX2), cytochrome
P4502E1, inducible NO synthase (iNOS), NO, IL-1β, and TNF-α
(Montoliu et al., 1995; Blanco et al., 2004; Valles et al., 2004).
Importantly, these effects base on the activation of different
cellular pathways including the nuclear factor κB (NF-κB),
IL-1β receptor type I (IL-1RI) and toll-like receptor type 4
(TLR4) (Blanco et al., 2004, 2005, 2008; Alfonso-Loeches et al.,
2010). In particular, the ethanol-induced upregulation of iNOS,
COX2, and IL-1β occurs via the stimulation of RhoE, as well
as IRAK and MAP kinases, such as ERK1/2, p-38, and JNK,
which trigger the downstream activation of oxidant-sensitive
transcription factors NF-κB and AP-1 (Valles et al., 2004; Guasch
et al., 2007). Alterations in the expression of pro-inflammatory
immune genes occur in postmortem brain from alcoholics
and animals exposed to alcohol, whereas molecules known
to reduce inflammation have shown to ameliorate alcohol-
mediated behaviors in animal models (Mayfield et al., 2013;
Cui et al., 2014; Truitt et al., 2016; Nennig and Schank,
2017). Increased free radical production and low antioxidant
levels are major features of alcohol-induced brain damage
(Crews et al., 2000). At the CNS, mechanisms of antioxidant
defense and metabolic homeostatic balance largely depend
on glial cells, in particular astrocytes (Fernandez-Fernandez
et al., 2012). Astrocyte-to-astrocyte signaling protects neurons
against oxidative injury by suppressing the accumulation of free
radicals and stabilizing Ca2+ homeostasis in neurons (Blanc
et al., 1998). During early stages of alcohol consumption,
astrocytes may help to compensate the alcohol abuse-induced
disturbances in redox balance and antioxidant mechanisms.
Accordingly, they prevent ethanol-induced neuronal death
by maintaining glutathione (GSH) homeostasis (Watts et al.,
2005; Narasimhan et al., 2012). Nonetheless, in situations of
chronic and progressive alcohol abuse, ethanol may impair
astroglial function, thus altering antioxidant and metabolic
coupling between neurons and astrocytes. Supporting this line
of thought, ethanol acutely reduces astrocytic gap junction
coupling (Adermark et al., 2004; Adermark and Lovinger,
2006), and induces the production of free radicals, and further
oxidative stress in astrocytes (Montoliu et al., 1995; Russo
et al., 2001; Muscoli et al., 2002; Salazar et al., 2008). Under
this view, anomalies in the inflammatory and antioxidant
profile of astrocytes, along with the impairment of immune
function of microglia (see next section), may be vital for the
function of brain networks involved in alcohol reward and
dependency.

Microglia-Mediated Inflammation and
Redox Imbalance during Alcohol Abuse
Microglia comprises almost 5–15% of the entire number
of brain cells and are the predominant pieces of the innate
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immune system at the CNS (Lawson et al., 1990). Originating
from mielomonocytic precursor cells of the hemangioblastic
mesoderm, microglia populates the brain parenchyma prior
to the developmental closure of the blood–brain barrier (BBB)
(Ginhoux et al., 2010). In the normal brain, most microglia
displays a “resting” surveillance nature, which correlates
with a dynamic environmental pursuing and unceasing
seeking of exogenous or endogenous signals constituting a
brain threat (Streit, 2001; Kettenmann et al., 2011). When
homeostatic equilibrium is disturbed, the resting features
of microglia turn into a reactive phenotype implicating a
wide array of modifications in different microglial functions,
including proliferation, morphology, motility, migration,
proteostasis, phagocytosis and intercellular communication
(Hanisch, 2002; Block et al., 2007). This complex number
of changes is denominated as “microglial activation” and
embrace large-scale and functional remodeling that depend
on the nature, intensity and duration of the stimulus
(Ransohoff and El Khoury, 2015). At this point, microglia
becomes an unrestrained core of inflammatory mediators
(e.g., cytokines and free radicals) that drive neuronal damage
rather than exhibiting a repair-orientated profile (Block
et al., 2007). Although an efficient immune response is
necessary to resolve brain threats, under these circumstances,
dysfunctional microglia can induce detrimental processes
leading to the subsequent recruitment of other cell types
involved in the innate immune response. This may worsen
disease progression by altering synaptic function, ion
homeostasis, antioxidant defense and cell survival (Block
et al., 2007).

As mentioned before, a broad number of data have shown
that alcohol elevates inflammation in the brain, contributing
to the impaired neurological function and neurodegeneration
associated with alcohol consumption (Yakovleva et al., 2011).
From this angle and given their inflammatory properties,
microglia arise as crucial players in the onset and progression
of alcohol-induced neuronal dysfunction and behavioral
abnormalities (Chastain and Sarkar, 2014; Yang et al., 2014;
Suk, 2007). Considerable evidence has described that ethanol
triggers microglial activation in cell cultures (Fernandez-Lizarbe
et al., 2009; Alfonso-Loeches et al., 2010; Boyadjieva and Sarkar,
2010, 2013; Fernandez-Lizarbe et al., 2013; Alfonso-Loeches
et al., 2016), animal models (Alfonso-Loeches and Guerri, 2011;
McClain et al., 2011; Qin and Crews, 2012a; Zhao et al., 2013;
Ahlers et al., 2015; Alfonso-Loeches et al., 2016) and postmortem
brains of alcoholics (He and Crews, 2008; Byun et al., 2014;
Coleman et al., 2017). Indeed, ethanol increases the number
of microglia showing large cell bodies and thick processes
characteristic of activated morphology (Nixon et al., 2008;
Fernandez-Lizarbe et al., 2009; McClain et al., 2011; Ahlers et al.,
2015) and most of these changes are accompanied with elevated
expression of pro-inflammatory cytokines, including TNF-α,
MCP-1, and IL-1β, as well as neuronal damage (Alfonso-Loeches
and Guerri, 2011; Boyadjieva and Sarkar, 2013; Lippai et al.,
2013a; Zhao et al., 2013; Byun et al., 2014; Coleman et al.,
2017).

A crucial role for microglia-mediated inflammation has been
attributed to TLR activation, cytokine production and NF-κB
signaling. In particular, TLR4/TLR2 are required for ethanol-
induced activation of microglia and subsequent release of IL-1β,
TNF-α, MIP-1α, MIP-2, and IL-6 and other inflammatory
mediators (NO and free radicals), which in turn, lead to neuronal
apoptosis (Fernandez-Lizarbe et al., 2009, 2013; Alfonso-Loeches
et al., 2010; Boyadjieva and Sarkar, 2010). Essential for these
processes is the upregulation of NF-κB and recruitment of
TLR4/TLR2 into the lipid rafts, along with the stimulation of p38
MAP kinase, IRF-3, STAT-1/IRF-1, iNOS, and COX2 pathways
(Fernandez-Lizarbe et al., 2009, 2013). Furthermore, in vivo and
in vitro ethanol exposure fails to trigger neuroinflammation,
microglial activation, myelin alterations and neural death in
TLR4 knockout cultures and mice (Fernandez-Lizarbe et al.,
2009; Alfonso-Loeches et al., 2010, 2012). On the other hand,
although some findings indicate that chronic ethanol exposure
does not alter microglial proliferation (Dlugos and Pentney,
2001; Riikonen et al., 2002; Valles et al., 2004), other studies
have shown the opposite during alcohol withdrawal and different
periods of abstinence (Nixon et al., 2008; Saito et al., 2010;
McClain et al., 2011; Zhao et al., 2013; Alfonso-Loeches et al.,
2016).

Microglia are a major source of ROS and free radicals
at the CNS. Excessive production of these mediators is a
major hallmark of postmortem brain tissue from alcoholic
people and likely one the major causes of neuroinflammation
and activation of signaling cascades that lead to cell damage
and further apoptosis (Upadhya et al., 2000; Matsumoto
and Matsumoto, 2008). In fact, uncontrolled consumption of
alcohol leads to redox imbalance, encompassed by a high
production of oxidants and low levels of antioxidants, and
functional alterations in several antioxidant enzymes and
molecules, including glutathione (GSH), glutathione peroxidase
(GSH-Px), superoxide dismutase (SOD), and catalase (Heaton
et al., 2003; Boyadjieva and Sarkar, 2013). Changes in these
molecules directly correlate with mitochondrial dysfunction
and further neuronal damage (Heaton et al., 2003; Boyadjieva
and Sarkar, 2013). Following exposure to ethanol, microglia
show increased activity of NADPH oxidase (NOX) (Block,
2008). This enzyme regulates the production of ROS in
microglia, with potentially significant consequences for neuronal
survival (Block, 2008; Choi et al., 2012). Alcohol consumption
increases the production of ROS in activated microglia and
astrocytes, resulting in impaired neuronal function and cell
death (Qin and Crews, 2012b). Complementary studies from
Boyadjieva and Sarkar (2013) showed that concentrations of
ethanol ≥25 mM induce neuronal apoptosis via microglia and
a mechanism involving oxidative stress, since treatment with
antioxidant agents (e.g., GSH, catalase, and SOD) successfully
suppressed these effects (Boyadjieva and Sarkar, 2013). Given the
complex physiology of microglia, beyond doubt, the impact that
alcohol may cause on the inflammatory and redox properties
of these glial cells will rely on how it is administrated, its
concentration and the timeline in where the observations are
made.
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NEUROINFLAMMATION, OXIDATIVE
STRESS, AND GLIA-TO-NEURON
MISCOMMUNICATION: IMPLICATIONS
OF MELANOCORTIN SYSTEM IN
ALCOHOL ABUSE IN ADOLESCENTS

Anti-inflammatory Action of
Melanocortins and Their Impact on Glial
Cells
A substantial body of work has established in vivo and
in vitro the anti-inflammatory features of MCs in different
systemic and neuroinflammatory models (Catania et al., 2004,
2010; Catania, 2008). Indeed, α-MSH diminishes fever and
inflammation in models of acute, chronic, and systemic
inflammation (Lipton et al., 1999), whereas similar protective
findings have been observed for different brain pathologies,
including Alzheimer’s disease (AD) (Giuliani et al., 2014),
traumatic brain injury (Schaible et al., 2013), experimental
autoimmune encephalomyelitis (Mykicki et al., 2016), and
cerebral ischemia (Giuliani et al., 2006). Furthermore, systemic
administration of α-MSH abrogates brain inflammation and
cytokine expression evoked by cerebral ischemia or LPS (Rajora
et al., 1997; Huang and Tatro, 2002), much as α-, β-, and
γ-MSH reduced the production of NO, PGE2 during different
inflammatory conditions (Weidenfeld et al., 1995; Muceniece
et al., 2004; Cragnolini et al., 2006). Albeit MC3R and MC4R
expression at the CNS is predominant, until now, diverse lines
of evidence indicate that protective effects of MCs depend on the
activation of the latter receptor. Pioneering studies by Caruso and
colleagues revealed that central administration of α-MSH prevent
the LPS-mediated induction of iNOS and COX2 gene expression
at the hypothalamic level, an effect that occurred via the
activation of MC4Rs (Caruso et al., 2004). Similarly, agonists of
MC4Rs counteract neuroinflammation and cell damage (Giuliani
et al., 2006, 2014, 2017; Spaccapelo et al., 2011; Liu et al., 2015),
whereas its pharmacological blockade or downregulation prevent
the neuroprotective effects of α-MSH or its analogs and worse
the outcome in different brain disease models (Giuliani et al.,
2006; Zhang et al., 2015). While the neuroprotective actions
of α-MSH/MC4R pathway are not completely understood, it
has been proposed that they are in part exerted by inhibiting
the production of inflammatory mediators from glial cells
(Caruso et al., 2007). Supporting this idea, both astrocytes and
oligodendrocytes exhibit important levels of MC4Rs (Caruso
et al., 2007; Selkirk et al., 2007; Benjamins et al., 2013), whereas
microglia express all isoforms of MC receptors (Delgado et al.,
1998; Lindberg et al., 2005; Benjamins et al., 2013).

In astrocytes, α-MSH increases the production of cAMP and
proliferation, as well as morphological features that resemble
differentiation (Evans et al., 1984; Zohar and Salomon, 1992). In
addition, selective activation of MC4Rs suppress the production
of NO and PGE2, as well as the apoptosis triggered by LPS
and IFN-γ in astrocytes (Caruso et al., 2007). In the same line,
MC-dependent MCR4 stimulation blunts astroglial activation
(Aronsson et al., 2006, 2007; Niu) and enhance the expression

of BDNF in these glial cells through a cAMP-PKA pathway
(Caruso et al., 2012). In the case of microglia, α-MSH inhibits the
release of TNF-α, IL-6, and NO (Delgado et al., 1998; Galimberti
et al., 1999), while its analogs stimulate the production of the
anti-inflammatory cytokines IL-10 and TGF-β from microglia
and astrocytes (Carniglia et al., 2013). Recently, Giuliani and
coworkers demonstrated that stimulation of MC4Rs prevents
the neurodegenerative changes seen in the triple-transgenic
(3xTg-AD) mice, an animal model of AD (Giuliani et al.,
2014). These responses were associated to decreasing levels
of oxidative and nitrosative species, as along with reduction
in the phosphorylation of tau protein and modulation of the
inflammatory and apoptotic cascades that are implicated in AD
(Giuliani et al., 2014).

As mentioned in previous sections, alcohol consumption
strongly reduces the expression of α-MSH in the limbic system
and hypothalamus (Olney et al., 2014), whereas MC4R activation
within the Nac suppress ethanol drinking (Navarro et al., 2011;
Lerma-Cabrera et al., 2013b). In spite of this evidence, it is
unknown whether alcohol addiction, in particular during the
adolescence, occurs due to an imbalance in the inflammatory
profile of glial cells caused by low signaling of the MC system.
In the next section, we propose a possible mechanism by which
lower drive of MC system may increase inflammatory and
activated status of glial cells, resulting in impaired glia-to-neuron
communication.

Decreased Drive of Melanocortin System
and Its Effect on Pro-inflammatory
Profile of Glial Cells and
Gliotransmission
A new line of evidence suggests that endogenous α-MSH may
exert an inhibitory tone on different inflammatory mediators
via MC4Rs, acting as a local anti-inflammatory agent within
the hypothalamus (Caruso et al., 2004). Supporting this idea,
multiple neuroprotective actions of MCs and their analogs
reside in the suppression of canonical inflammatory pathways
in glial cells such as NF-κB, iNOS, and COX2, a phenomenon
that fail when blockade or downregulation of MCRs occurs
(Delgado et al., 1998; Galimberti et al., 1999; Caruso et al.,
2004, 2007; Giuliani et al., 2006; Spaccapelo et al., 2011). Given
that in vitro or in vivo treatment with ethanol augments the
inflammatory profile of glial cells, it is plausible speculate that this
phenomenon may arise as reflex of decreasing anti-inflammatory
drive of the MC system. Indeed, although downregulation of
MCRs during ethanol consumption has not been yet truly
demonstrated, a substantial body of evidence indicates that
ethanol administration reduces the expression of α-MSH in the
Arc, CeA, PVT, and LH (Rainero et al., 1990; Kokare et al.,
2008; Navarro et al., 2008). Whether reduced α-MSH expression
triggered by ethanol could be critical for developing early stages
of alcohol addiction and whether this take place due the lacking
inhibitory tone of MCs on the inflammatory profile of glial cells
remain unknown.

There are some clues that strengthen the potential role
of neuroinflammation in the onset and progression of
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alcohol addiction. For instance, pro-inflammatory molecules,
including cytokines and chemokines, reinforce alcohol drinking
(Blednov et al., 2012), whereas the opposite is observed when
anti-inflammatory molecules are administrated (Blednov et al.,
2011). Together these findings argue that pro-inflammatory
mediators trigger persistent alcohol intake, which may in turn
be the result of deficient α-MSH signaling and subsequent glial
inflammation. In line with this, minocycline, a well-known
inhibitor of microglial activation and inflammatory mediators,
reduces ethanol drinking (Agrawal et al., 2011), while at Nac,
astrocytes increase [Ca2+]I, modulating the motivation to
self-administer ethanol (Bull et al., 2014). How the decreased
drive of MC system is connected to glial inflammation and
further reinforcement of alcohol consumption? We believe
that downregulation of α-MSH signaling may disturb the
inflammatory profile and function of glial cells, resulting in
further impaired communication with neurons located in
brains areas that are crucial for alcohol rewarding and are
more susceptible during adolescence. Different studies have
shown that inflammatory mediators disturb intracellular
Ca2+ dynamics in glial cells, thus affecting the release of
gliotransmitters and further impairing the crosstalk between
neurons and glial cells (Ida et al., 2008; Wuchert et al., 2009).
Taking into account that glial cells are persistently activated
in animal models of alcohol consumption (Yakovleva et al.,
2011), it is possible that impairment of intracellular pathways
and coordination between glial cells and neurons could play
an essential role in brain dysfunction observed in alcohol use
disorders.

Recent studies have reviewed the potential impact of astrocytes
and microglia in the onset and progression of alcohol disorders
(Yang et al., 2014; Adermark and Bowers, 2016). Here we
do not overview all of this evidence discussed elsewhere, but
rather focus on a particular mechanism of gliotransmission
that is known to be altered during inflammatory conditions:
the hemichannel-mediated paracrine signaling. Hemichannels
are plasma membrane channels constituted by a six-fold ring
of connexin monomers and serve as aqueous pores permeable
to ions and small molecules, providing a diffusional pathway
of exchange between intra- and extracellular compartments
(Montero and Orellana, 2015). Connexins are abundantly
expressed in brain cells and belong to a highly conserved
protein family encoded by 21 genes in humans and 20 in
mice, with orthologues in other vertebrate species (Abascal
and Zardoya, 2013). In the last decade, another gene family
encoding a set of three membrane proteins termed pannexins
was identified (Bruzzone et al., 2003). Although connexins
and pannexins do not share significant amino acid sequences,
they have similar secondary and tertiary structures and most
of evidence indicates that pannexins form single membrane
channels, similar to connexin hemichannels (Sosinsky et al.,
2011). In the normal brain, hemichannels and pannexons
mediate the physiological release of gliotransmitters (e.g.,
ATP, glutamate, D-serine, lactate), serving as crucial players
during ischemic tolerance, fear memory consolidation, synaptic
transmission, neuronal oscillations and glucose sensing (Cheung
et al., 2014). Nevertheless, the uncontrolled opening of these

channels seem to be critical to the initiation and maintenance
of the homeostatic imbalances that are observed in diverse
CNS diseases (Salameh et al., 2013; Orellana et al., 2014a,
2016).

How hemichannels/pannexons could be involved in the
miscommunication of glial cell and neurons during ethanol
disorders? We speculate that reduced levels of α-MSH caused
by ethanol may unlock the tonic inhibition of this neuropeptide
on NF-κB pathways, particularly, in glial cells (Figure 2). In
this context, the well-known stimulant effect of ethanol in
the generation of inflammatory mediators (e.g., cytokines and
ROS) could alter the functional state of glial hemichannels
and pannexons. According with this line of though, different
independent groups have shown that NF-κB-mediated pro-
inflammatory mediators promote the opening of hemichannels
and pannexons in glial cells. Pioneering observations by Takeuchi
et al. (2006) described that TNF-α elicits the release of glutamate
via Cx32 hemichannels in microglia, resulting in neuritic
beading and neuronal death, while comparable results have
been found in human microglial CHME-5 cells (Shaikh et al.,
2012). Similarly, TNF-α plus IFN-γ increment the expression
of Cx43 and Panx1 in EOC20 microglial cells in conjunction
with the activation of hemichannels and pannexons (Sáez
et al., 2013). Furthermore, the mixture of TNF-α and IL-1β

increases the opening of astroglial Cx43 hemichannels by a
mechanism depending on the activation of p38 MAP kinase
pathway and further production of NO (Retamal et al., 2007;
Abudara et al., 2015). With this in mind, it is reasonable to
theorize that glial activation elicited by ethanol may induce the
opening of hemichannels and pannexons via autocrine release
of cytokines and further stimulation of diverse downstream
inflammatory mediators such as NO, prostaglandins, ATP,
and ROS. Relevant to this point, increased levels of [Ca2+]i,
iNOS, and COX2 activation, as well as production of NO,
underpin the Panx1 channel-dependent release of ATP in
LPS-stimulated microglia (Orellana et al., 2013), whereas
NO-mediated Cx43 s-nitrosylation is pivotal in the activation
of astroglial hemichannels triggered by oxidative stress (Retamal
et al., 2006). Importantly, the stimulation of these pathways
has been linked to glial hemichannel/pannexon activation under
different pathological conditions, including amyloid β treatment
(Gajardo-Gómez et al., 2017), prenatal inflammation (Avendaño
et al., 2015), restraint stress (Orellana et al., 2015), spinal cord
injury (Garré et al., 2016), high cholesterol diet (Orellana et al.,
2014b), AD (Yi et al., 2016), and Niemann-Pick type C disease
(Sáez et al., 2013).

Because the above inflammatory mediators (cytokines, ROS,
NO, ATP) are elevated during alcohol drinking (Fernandez-
Lizarbe et al., 2009, 2013; Alfonso-Loeches et al., 2010;
Boyadjieva and Sarkar, 2010), their role may be critical
for the possible deregulation of hemichannel/pannexon-
mediated gliotransmission (Figure 2). An important aspect
is the modulatory action that microglia exert on astroglial
hemichannel/pannexon activity, which seems to be decisive
for neuronal function and survival (Montero and Orellana,
2015; Gajardo-Gómez et al., 2016; Orellana et al., 2016). In fact,
microglia subjected to inflammatory conditions release TNF-α
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FIGURE 2 | The ethanol-induced decrease in α-MSH drive and its impact on glial inflammation and hemichannel/pannexon-dependent
gliotransmission. (A) At one end, ethanol reduces the brain levels of α-MSH (1), decreasing the MC4R-mediated anti-inflammatory drive of melanocortin (MC)
system on microglia (2). In parallel, ethanol stimulates TLR4Rs (3), resulting in the activation of NF-κβ pathway and further autocrine/paracrine release of TNF-α,

(Continued)
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FIGURE 2 | Continued
which acts upon its receptor TNFR1 (4). The latter leads to the activation of glutaminase and the consequent release of glutamate through Cx32 hemichannels (HCs)
(5). Similarly, NF-κβ signaling promotes the autocrine/paracrine release of IL-1β, which stimulates its receptor as well as accessory proteins (IL1RI and IL1RAcP) (6),
resulting in iNOS activation, NO production, COX activation and PGE2 production via unknown mechanisms. PGE2 released by microglia binds to the EP1
metabotropic receptor (not depicted) to elicit Ca2+ release from intracellular stores (7). This release increases [Ca2+]i, which is known to open Cx43 HCs and Panx1
channels (CHs) and subsequently the release glutamate and ATP through them. Furthermore, protein-to-protein interactions between Panx1 CHs and P2X7Rs
trigger the signaling that activate the inflammasome (9), perpetuating the cycle of maturation and secretion of pro-inflammatory mediators (e.g., IL-1β), as well as the
uncontrolled release of gliotransmitters during ethanol consumption. (B) As with microglia, decreased levels of α-MSH caused by ethanol (1), blunt the
MC4R-mediated anti-inflammatory drive of MC system on astrocytes (2). At the same time, ethanol activates TLR4Rs (3) and NF-κβ pathways, establishing the
interrelated autocrine/paracrine release of TNF-α (4) and IL-1β (5), similar to what described for microglia. The latter results in the activation of p38 MAP kinase and
NO production, as well as the opening of Cx43 hemichannels via s-nitrosylation of Cx43 and release of taurine and glutamate (6). Increases in [Ca2+]i, which is
known to open Panx1 CHs may also evoke the release glutamate through them. In addition, pro-inflammatory cytokines released from microglia could potentiate the
activation of these pathways, perpetuating the dysfunctional release of gliotransmitters during ethanol consumption (7).

and IL-1β, resulting in the further increase of Cx43 hemichannel
currents in astrocytes in cell cultures and hippocampal slices
(Retamal et al., 2007; Abudara et al., 2015). Interestingly,
microglia-evoked Cx43 hemichannel opening allow Ca2+ entry
and further release of glutamate, affecting excitatory synaptic
activity in the hippocampus (Abudara et al., 2015). In the same
manner, the release of ATP via astroglial Cx43 hemichannels
and/or Panx1 channels (Braet et al., 2003; Iglesias et al., 2009;
Garré et al., 2010) comprises a fundamental signaling through
which astrocytes control microglial behavior (Verderio and
Matteoli, 2001; Schipke et al., 2002). Acting on P2X7Rs, ATP
evokes Ca2+-dependent ATP release in microglia, as acute
application of this gliotransmitter induces the opening of Cx43
hemichannels and Panx1 channels in these cells (Bernier et al.,
2012; Sáez et al., 2013). Despite of P2X7Rs increase [Ca2+]i
(Baroja-Mazo et al., 2013); a well-accepted condition that opens
Cx43 hemichannels and Panx1 channels (Locovei et al., 2006;
De Bock et al., 2012); the ATP-induced release of ATP linked
to Panx1 channel opening imply protein-protein interactions
between this pannexon and P2X7Rs (Locovei et al., 2007).
Noteworthy, P2X7R-dependent opening of Panx1 channels has
been related to the secretion of IL-1β by a mechanism engaging
the activation of the inflammasome (Pelegrin and Surprenant,
2006; Kanneganti et al., 2007). Indeed, in neurons and astrocytes,
opening of Panx1 channels triggers caspase-1 activation in
association with components of the multiprotein inflammasome
complex, including the P2X7R (Silverman et al., 2009; Murphy
et al., 2012; Minkiewicz et al., 2013). Remarkably, both purinergic
receptors and the inflamasome have been shown to be activated
by ethanol in vitro and in vivo in glial cells and neurons (Lippai
et al., 2013b; Alfonso-Loeches et al., 2014; Wang et al., 2015).

Recent studies have revealed that gliotransmission through
hemichannels and pannexons is crucial for synaptic transmission
and consolidation of fear and spatial memory (Prochnow et al.,
2012; Ardiles et al., 2014; Chever et al., 2014; Walrave et al.,
2016). Nevertheless, over activation of these channels has been
associated to the release of large amounts of gliotransmitters
(e.g., glutamate and ATP), resulting in neuronal dysfunction
and even with excitotoxicity. We hypothesize that uncontrolled
opening of glial hemichannels and pannexons may be a
relevant downstream target that disturbs proper glia-to-neuron
communication, affecting synaptic transmission in neural circuits
crucial for alcohol rewarding.

Impaired Gliotransmission Mediated by
Hemichannels and Pannexons and Its
Impact on Neural Circuits Linked to
Alcohol Reward in Adolescents
As mentioned in previous sections, the mesocorticolimbic
dopamine system, particularly the VTA-NAc circuit, constitutes
one of the major neurochemical pathway for reward (Everitt
and Robbins, 2005) and alcohol is a well-known elicitor of
extracellular dopamine at the NAc (Koob, 2013). During the
adolescence, the top–down control of prefrontal cortex over the
VTA-NAc circuit is relatively weak, resulting in a chronically
VTA-induced activation of NAc (Crews et al., 2007). The latter
could be potentiated by synaptic changes evoked by ethanol,
especially those originated as cause of impaired gliotransmission.
In this context, we believe that uncontrolled opening of
hemichannels and pannexons in activated glial cells may enhance
the dopaminergic drive of VTA on neurons of the NAc. Indeed,
rodents chronically treated with ethanol exhibit increased levels
of GFAP (Ortiz et al., 1995) in the VTA, while similar findings
have been observed for different microglial inflammatory
markers (He and Crews, 2008; Yang et al., 2014). At one
end, astroglial hemichannel/pannexon opening potentiated by
inflammatory mediators released from microglia, could promote
presynaptic glutamate release in the VTA (Figure 3). Supporting
this idea, high concentrations of glutamate at the synaptic cleft
could be neurotoxic under pathological conditions (Lau and
Tymianski, 2010; Ashpole et al., 2013). Importantly, glutamate
released through glial hemichannels and pannexons triggers
neuronal dysfunction and cell death as result of N-methyl-D-
aspartate receptor (NMDAR) activation (Takeuchi et al., 2006;
Orellana et al., 2011a,b). Presynaptic glutamate release may
also be enhanced by the interaction of NMDARs and Panx1
channels in neurons. In fact, most of the glutamate released from
glial hemichannels/pannexons modulate neuronal function by
activating Panx1 channels in them (Orellana et al., 2011a,b). How
NMDARs do elicit the activity of neuronal pannexons? A possible
mechanism involves the phosphorylation of the C-terminal of
Panx1 caused by the interaction of NMDARs with Src family
kinases (Weilinger et al., 2016). It is possible that glial-induced
changes in synaptic transmission at the VTA may relies on
intracellular Ca2+ regulation depending on the opening of Panx1
channels in presynaptic and postsynaptic structures (Figure 3).
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FIGURE 3 | Uncontrolled opening of hemichannels/pannexons and their effect on neuronal circuits that govern ethanol consumption. (A) One
mechanism by which glial hemichannels or pannexons may increase ventral tegmental area (VTA) dopaminergic neuron activity and nucleus accumbens (NAc)
dopamine (DA) levels involves the synaptic release of glutamate via these channels. Stimulation of NMDARs could then augment VTA dopaminergic activity and
trigger the firing of GABAergic neurons in the NAc, increasing alcohol consumption. (B) In addition, increased glutamate released from glial hemichannels and
pannexons may enhance DA levels at the NAc by activation of unknown glutamate receptors on presynaptic dopaminergic terminals at the VTA. Potentiated
activation of dopaminergic D1or D2 receptors (D1R/D2R) on medium spiny neurons (MSNs) at the NAc may then promote alcohol consumption. (C) Finally, taurine
release through astroglial Cx43 hemichannels may activate glycine receptors on MSNs GABAergic neurons, decreasing their inhibitory tone on VTA dopaminergic
neurons.
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On the other hand, glial cells could increase VTA
dopaminergic drive by decreasing inhibitory synapses into
VTA. Studies by Molander et al. (2005) revealed that GABAergic
neurons at the NAc suppres in a tonic fashion the dopaminergic
firing at the VTA via the activation of accumbal glycine
receptors (Molander et al., 2005). In a follow-up study, they
propose that astrocyte cell swelling evoked by acute ethanol
treatment leads to an increase in extracellular taurine, a well-
known agonist of glycine receptors (Adermark et al., 2011).
An alternative mechanism by which astrocytes could be key
players in the increased dopamine concentration in the NAc
may reside in the release of taurine through hemichannels
(Figure 3), as they have been reported to allow the release
of this transmitter (Stridh et al., 2008). Up to now, the only
attempt to evaluate the role of hemichannels in alcohol addiction
corresponds to Bull and colleagues (Bull et al., 2014). They
found that motivation to self-administer ethanol after 3 weeks
abstinence was increased following microinjection of mefloquine
and 18-a-glycyrrhetinic acid at the NAc, two unspecific and
general blockers of gap junction channels, hemichannels
and pannexons (D’hondt et al., 2009). Without doubt, the
interpretation of these findings in terms of the VTA-NAc
circuit is complex, as these blockers have the potential to act
in different brain cell types, each of them expressing their
own array of connexin and pannexin-based channels. The
intracerebral injection in limbic regions of specific mimetic
peptides that selectively distinguish hemichannels v/s gap
junction channels and pannexons (e.g., Gap19, TAT-L2) will
disentangle the contribution of connexins and pannexins in
alcohol addiction.

MELANOCORTIN-DEPENDENT
IMPAIRMENT OF GLIAL CELLS AND ITS
CONSEQUENCES ON BRAIN AND
PERIPHERAL FUNCTION DURING
ALCOHOLISM

Episodes of adolescent binge drinking could have long-term
consequences that will affect not only the circuits involved in
alcohol reward, but also those implicated in memory, learning
and feeding behavior. The latter may in addition influence
and disturb whole body metabolism and energy balance.
In the following sections, we discuss in brief how ethanol-
induced impairment in MC system may influence synaptic
plasticity and peripheral metabolism, in particular, skeletal
muscle.

Alcohol Abuse during Adolescence and
Synaptic Communication: Possible Role
of Melanocortin Networks
Accumulative evidence suggests that prolonged alcohol
consumption affects memory and cognitive processes
(Zeigler et al., 2005), which are well-established indicators
of CNS integrity and function. For instance, hippocampal
neurons chronically exposed to ethanol exhibit an increased

glutamatergic drive, i.e., increased levels of extracellular
glutamate and alterations in its receptors and transporters
(Tsai and Coyle, 1998; Krystal et al., 2003). Clinical studies
have shown that there is a direct correlation between alcohol
dependence and levels of glutamate in the cerebrospinal fluid
(CSF) (Umhau et al., 2010). An imbalance in glutamate levels
can affect the dynamics of glutamate receptors, however, alcohol
can also directly affect the activity of glutamate receptors.
Specific alterations in NMDARs include perturbations in the
direct occupancy of receptors, alterations in gating, as well
as changes in the phosphorylation and activation states of
NMDARs (Lovinger et al., 1989; Woodward, 2000). Moreover,
alcohol can also influence α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs) by inducing
an increase in their expression and localization (Chen et al.,
1999; Christian et al., 2012). In the mammalian CNS, both
AMPARs and NMDARs mainly mediate fast excitatory
neurotransmission, and participate directly in the control
of synaptic transmission and plasticity (Traynelis et al.,
2010).

The Rosetta stone of synaptic plasticity is LTP. This
phenomenon entails a long-lasting enhancement of synaptic
transmission between two neurons after high frequency
stimulation, which results in the strengthening of neuronal
synapses (Bliss and Collingridge, 1993). Notably, ethanol
exposure dramatically blunts the induction of LTP (Givens
and McMahon, 1995; White et al., 2000) and induces loss of
hippocampal-dependent memory (Melia et al., 1996). How
do MCs participate in the ethanol-induced alterations in
synaptic plasticity? Several extracellular factors, including MC
peptides such as α-MSH and their receptors (e.g., MC4R),
modulate hippocampal synaptic transmission (Shen et al.,
2013). In fact, d-Tyr-MTII, an agonist of MC4Rs, increases
LTP in hippocampal slices by a mechanism involving the
PKA-dependent insertion of AMPARs into presynaptic sites
(Shen et al., 2013). PKA is an important target of MC4Rs
and is a key player in plasticity-related events (Abel and
Nguyen, 2008). Alcohol-mediated alterations in NMDARs
and their function in synaptic plasticity is likely to have a
structural basis. Chronic administration of ethanol decreases
neuronal spine density, in particular that in mature cells
(Korkotian et al., 2015). Importantly, downregulation of
MC4Rs dramatically abolishes the increase in mature spines
triggered by d-Tyr MTII (Shen et al., 2013), suggesting the
possibility that ethanol-induced structural synaptic changes may
involve impairments in MC4Rs. Further studies are needed to
understand the underlying basis by which ethanol influences
synaptic transmission, and whether glial cells play a role in this
process.

Heavy Drinking in Adolescents and
Melanocortin-dependent Control of
Whole Body Metabolism: Focus on
Skeletal Muscle
Skeletal muscle is a dynamic and highly plastic tissue that
adapts to various external stimuli (e.g., contractile activity,
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loading conditions and substrate supply) to match structural,
functional, and metabolic demands (Bassel-Duby and Olson,
2006). This tissue plays a critical role in glycemic control and
metabolic homeostasis, and is the predominant site of glucose
disposal under insulin-stimulated conditions (DeFronzo et al.,
1981). In this context, exercise increases skeletal muscle glucose
uptake via an insulin-independent pathway (Lee et al., 1995),
indicating that muscle contraction directly impacts on glucose
homeostasis, and increases insulin sensitivity and glucose uptake
in skeletal muscle fibers (Pereira and Lancha, 2004; Holloszy,
2005; Rose and Richter, 2005). Glucose uptake is important
for the actions of both exercise and insulin at skeletal muscle
fibers (Sakamoto et al., 2002; Pereira and Lancha, 2004). Each
stimulus results in the redistribution of the glucose transporter
type 4 (GLUT4) from intracellular vesicles to the sarcolemma,
increasing the rate of glucose uptake into muscle fibers (Douen
et al., 1990; McCarthy and Elmendorf, 2007; Foley et al.,
2011).

Alcohol has profound effects on muscle and whole-body
fuel metabolism, thus contributing to increased morbidity and
mortality in people with alcohol dependence (Steiner et al.,
2015). In fact, alcohol abuse increases the synthesis and secretion
of various catabolic agents, such as inflammatory cytokines
and glucocorticoids, as well as the production of oxidative
metabolites generated by the hepatic metabolism of ethanol
(Avogaro and Tiengo, 1993; Gonzalez-Reimers et al., 2011).
Interestingly, Molina and colleagues found differential glucose
uptake in muscles from rats exposed to alcohol (Molina et al.,
1991), whereas studies carried out in healthy people show
that alcohol acutely decreases insulin-stimulated whole-body
glucose uptake (Yki-Jarvinen and Nikkila, 1985; Avogaro et al.,
1987; Avogaro et al., 1996). While there is no consensus about
the mechanism underlying alcohol-induced insulin resistance,
it appears that alcohol may alter the actions of insulin at a
number of key regulatory steps, including PI3K/Akt signaling
pathways and/or GLUT4 translocation (Wasserman, 2009). For
instance, alcohol intake reduces GLUT4 protein in the plasma
membrane fraction of the gastrocnemius, but not in whole
muscle homogenate from rats (Wilkes and Nagy, 1996; Lang
et al., 2014). Similarly, in vitro incubation of myotubes with
alcohol acutely inhibits insulin-stimulated GLUT4 translocation
(Yu et al., 2000).

The brain regulates most energy metabolism in muscle
(Braun and Marks, 2011), however, whether alcohol-induced
impairment in muscle energetics and peripheral metabolism
occurs as result of alterations in central neuronal circuits
has not yet been examined. Energy homeostasis, the balance
between caloric intake and energy expenditure, is regulated by
the neuroendocrine and autonomic systems which are both
controlled by the CNS. Specific neuronal circuits located in
the hypothalamus and brain-stem continuously monitor signals
reflecting energy status, and initiate appropriate behavioral and
metabolic responses to deal with nutrient availability (Seeley
and Woods, 2003; Lam et al., 2005; Plum et al., 2006). One
of these networks is the MC system, which governs and
modulates nutrient intake and energy metabolism (Williams
et al., 2011; Edenberg and Foroud, 2013). MC3Rs and MC4Rs

are the most relevant receptors involved in the regulation
of energy homeostasis in different tissues (Fan et al., 1997),
including skeletal muscle (Gavini et al., 2016). Recently, Gavini
et al. (2016) found that the activation of MC receptors in
the VMH increased heat dissipation in the gastrocnemius
muscle during controlled activity, as well as augmenting skeletal
muscle norepinephrine turnover and the expression of mediators
of muscle energy. Furthermore, MC receptors play a critical
role in appetite control and body-weight regulation, and are
involved in obesity and diabetes mellitus type 2 (DM2; Cone,
1999; Nogueiras et al., 2007). In rodent models, activation
of MC4Rs (Nargund et al., 2006) or ablation of AgRP/NPY-
coexpressing neurons (Bewick et al., 2005; Gropp et al., 2005;
Luquet et al., 2005; Ste Marie et al., 2005) results in anorexia
and weight loss, whereas downregulation of MC3Rs, or the
removal of agonist-producing neurons, leads to hyperphagia
and obesity (Huszar et al., 1997; Chen et al., 2000). The role
of MC3Rs in energy homeostasis is unclear, however, they
may be one of the major receptors responsible for the anti-
inflammatory properties of MC peptides, and perhaps owing
to this role may influence energy homeostasis (Mountjoy,
2010a,b). Of relevance to this point is the fact that both obesity
and DM2 are associated with chronic low-grade inflammation,
caused by an imbalance between pro- and anti-inflammatory
cytokines.

Complementary studies in patients (Festa et al., 2000;
Calder et al., 2011; Donath and Shoelson, 2011) showed that
blockade of central MC4R signaling promotes insulin resistance
in skeletal muscle (Mountjoy, 2010b). Furthermore, loss-of-
function mutations in MC4Rs are associated with hyperphagia,
severe early onset obesity, hyperinsulinemia, and increased lean
mass (Vaisse et al., 1998, 2000; Yeo et al., 1998; Farooqi et al.,
2003; Yeo et al., 2003; Biebermann et al., 2006). Similar effects
have also been observed in studies with MC4R knockout mice
(Huszar et al., 1997). These findings support an important role
for the MC system in whole-body and muscle energy homeostasis
across mammalian species. Thus, MCs and their receptors could
be one of the major ways by which ethanol exerts its effects
on metabolism and muscle in people with alcohol dependence.
In fact, neuronal networks that sustain MC signaling are major
targets for crucial endocrine messengers and hormones that
control energy demands and body weight, including leptin,
insulin, cholecystokinin, and ghrelin (Moran, 2004; Cone, 2005;
Aja and Moran, 2006; Harrold and Williams, 2006; Moran,
2006; Xu and Barsh, 2006). Indeed, the crucial mechanisms
by which insulin and leptin govern energy homeostasis are
determined by their influence on hypothalamic POMC or AgRP
neurons (Varela and Horvath, 2012). For example, the actions of
insulin in AgRP neurons reduces gluconeogenesis in the liver,
but in POMC neurons has an inverse effect, favoring energy
expenditure in an MC-dependent manner (Lin et al., 2010).
In the same manner, the MC system directly controls hepatic
glucose metabolism (Obici et al., 2001), and thermogenesis
in brown adipose tissue (Voss-Andreae et al., 2007) and
skeletal muscle (Gavini et al., 2016), revealing the existence
of direct neuroendocrine control of MCs over peripheral cell
metabolism.
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CONCLUSION AND FUTURE
DIRECTIONS

Decreased α-MSH drive, glial inflammation, increased
hemichannel, and pannexon opening, and over activation of
VTA-Nac circuit may constitute an interdependent cyclic process
during heavy alcohol drinking. The latter could be potentiated
during adolescence and thereby, whether interruption of any
of these steps can ameliorate the cascade of events that lead
to alcohol addiction could be crucial to interrupt further
chronic alcoholism in adults. Because ethanol-induced decrease
in α-MSH drive may potentiates glial inflammation in other
brain areas including the hippocampus and hypothalamus,
its impact on synaptic transmission and memory, as well
as whole body metabolism and energy expenditure could
be critical to ameliorate the major devastating effect of
heavy drinking. Accordingly, the different components of
MC system may serve as potential targets for therapeutic
interventions in alcohol abuse among adolescents and later
in the adulthood. Nevertheless, further studies are required
to determine how gliotransmission mediated by hemichannels
and pannexons contributes to ethanol addiction and drinking
behaviors.
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