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Injury to the fragile immature brain is implicated in the manifestation of long-term
neurological disorders, including childhood disability such as cerebral palsy, learning
disability and behavioral disorders. Advancements in perinatal practice and improved
care mean the majority of infants suffering from perinatal brain injury will survive,
with many subtle clinical symptoms going undiagnosed until later in life. Hypoxic-
ischemia is the dominant cause of perinatal brain injury, and constitutes a significant
socioeconomic burden to both developed and developing countries. Therapeutic
hypothermia is the sole validated clinical intervention to perinatal asphyxia; however
it is not always neuroprotective and its utility is limited to developed countries.
There is an urgent need to better understand the molecular pathways underlying
hypoxic-ischemic injury to identify new therapeutic targets in such a small but
critical therapeutic window. Mitochondria are highly implicated following ischemic
injury due to their roles as the powerhouse and main energy generators of the
cell, as well as cell death processes. While the link between impaired mitochondrial
bioenergetics and secondary energy failure following loss of high-energy phosphates is
well established after hypoxia-ischemia (HI), there is emerging evidence that the roles
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of mitochondria in disease extend far beyond this. Indeed, mitochondrial turnover,
including processes such as mitochondrial biogenesis, fusion, fission and mitophagy,
affect recovery of neurons after injury and mitochondria are involved in the regulation
of the innate immune response to inflammation. This review article will explore these
mitochondrial pathways, and finally will summarize past and current efforts in targeting
these pathways after hypoxic-ischemic injury, as a means of identifying new avenues for
clinical intervention.
Keywords: perinatal brain injury, hypoxia-ischemia, mitochondria, neuroprotection

INTRODUCTION

Perinatal brain injury remains a significant cause of long-term
neurological and physical disability, and a significant
socioeconomic burden in both developed and developing
countries (Kruse et al., 2009; Lawn et al., 2011). While preterm
birth carries a significantly increased risk of brain injury, babies
born term are also at risk of exposure to insults including
hypoxic-ischemeic encephalopathy (HIE), metabolic disease, or
neonatal stroke (Hagberg et al., 2015). Moderate hypothermia
is a validated and increasingly used intervention in infants that
develop brain injury, including from hypoxia-ischemia (HI;
Hutchison et al., 2008; Azzopardi et al., 2013). However, its
availability is typically restricted to developed countries due to
the cost of equipment needed as well as the need for a stable
supply of electricity to maintain a therapeutic level of cooling
(Kumar et al., 2009). While there is recognition that cooling
may still be effective in low resource settings that do not have
tertiary intensive care, there remains the ethical dilemma of
performing clinical trials on neonatal encephalopathy with
the addition of normothermia groups (Montaldo et al., 2015;
Tagin et al., 2015). Furthermore, hypothermia does not always
confer neuroprotection (Azzopardi et al., 2009). There is a need
to better understand the underlying pathogenesis of perinatal
brain injury to be able to identify new therapeutic targets,
and thus reduce the prevalence of neurological impairment
and associated lifelong physical disability such as cerebral
palsy.

Mitochondria are the powerhouses of the cell, primarily
responsible for the production of adenosine triphosphate (ATP)
as well as playing regulatory roles in cell death, including
autophagy and apoptosis (Nunnari and Suomalainen, 2012).
Advances in genomic and proteomic sequencing have provided
irrefutable evidence that these vestiges of bacterial ancestry also
perform more diverse roles, particularly in disease (Hagberg
et al., 2014). These range from early work showing that mutations
in mitochondrial DNA (mtDNA) are implicated in diseases such
as Parkinson’s disease (Swerdlow et al., 1996), to research on
the epigenetic modulation of mtDNA, including methylation by
DNA methyltransferases, which add yet another layer in which
mitochondria can influence and contribute to disease (van der
Wijst and Rots, 2015). There is thus a growing appreciation that
identifying and targeting mitochondrial pathways thought to be
responsible for the manifestation of initial injury post asphyxia
as well as long-term neurodevelopment holds great promise in
the field of perinatal medicine. In addition, recent work suggests

that mitochondria, and reactive oxygen species (ROS) derived
from mitochondria, have important roles in the regulation of
inflammation both in response to sterile and microbial insults
(Suliman and Piantadosi, 2016). This review article seeks to
summarize past therapeutic interventions, as well as current
efforts to target these mitochondrial pathways during the fragile
early period of development, and to identify new avenues
for therapeutic intervention. First, however it is important to
understand the different phases of hypoxic-ischemic injury to
identify targets for intervention.

THE PHASES OF HYPOXIC-ISCHEMIC
INJURY

The understanding of the pathogenesis of perinatal brain injury
has evolved rapidly in recent years. Initial thoughts centered
on a cascade of energy and nutrient deficiency, inflammation,
oxidative stress and subsequent cell death and neuronal loss
(Volpe, 2001; Hagberg et al., 2015). Currently it is well
accepted that HI triggers an acute series of events, as well
as a tertiary phase of injury response, which extends days
to months after the initial insult (Fleiss and Gressens, 2012).
Briefly, the events preceding these later outcomes can be divided
into three distinct periods—the primary, secondary and tertiary
phases, each identified by different molecular processes as well
as the involvement of different cellular subtypes (Fleiss and
Gressens, 2012). During the primary phase in the minutes-to-
hours following asphyxia, neural energy failure occurs through
a rapid decrease of high energy phosphates (phosphocreatine
(pCr), ATP). This is followed by a transient recovery to
baseline levels during reperfusion generating a ‘‘latent’’ phase
therapeutic window. A secondary ‘‘delayed’’ phase subsequently
occurs from hours to days post injury characterized by an
apoptotic-necroptotic cell death phenotype (Northington et al.,
2011). The tertiary phase is thought to be responsible for
persisting effects years after injury, including immune memory
(Hoeijmakers et al., 2016) and proper development of white
matter tracts in adulthood (Favrais et al., 2011). This suggests
that inflammation during the early perinatal phase can modify
later risk to developing neurological and psychiatric disorders
(Hagberg et al., 2012). Mitochondria play essential roles in
both proper neurodevelopment as well as in response to HI
injury pathogenesis (Hagberg et al., 2014), so effective targeting
of mitochondria derangement might have therapeutic merit,
especially during this open therapeutic window.
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PHYSIOLOGICAL ROLES OF
MITOCHONDRIA, STRUCTURE,
TRAFFICKING

Mitochondria are small membrane-enclosed organelles,
remarkably mobile and plastic, associated with ATP generation,
calcium regulation and the biosynthesis of amino acids, lipids
and nucleotides (Green et al., 2011).

Mitochondria constantly change their shape and undergo
fusion, fission, migration biogenesis and degradation
(mitophagy); matching the cellular needs (Archer, 2013;
Figure 1). In order to understand variations in mitochondria
function and consequent selective vulnerability to injury, the
organelle must be placed within the context of its cellular,
functional, developmental and neuroanatomical environment
(Dubinsky, 2009; Rintoul and Reynolds, 2010). The location
of mitochondria in the cell varies between cell types, but they
are most often localized near sites of high ATP utilization as
their major role is to produce and supply energy, ATP, to the
cells through the enzyme complexes forming the respiratory
chain. Electron flow through the electron transport chain (ETC)
generates a proton gradient across the inner mitochondrial
membrane, which drives the production of ATP by ATP
synthase. Under normal conditions, this machinery provides
almost all (>90%) of the ATP in the brain (Hagberg et al.,
2014). However, a small proportion of electrons escape the ETC
complexes I, II and III under normal conditions to react with
oxygen to form superoxide (O−2 •; Grivennikova et al., 2010).
Mitochondrial function is critically important during brain
development and throughout life in metabolic tasks and for the
regulation of cell death.

MITOCHONDRIAL MORPHOBIOGENESIS:
PHYSIOLOGICAL MECHANISMS AND
BRAIN DEVELOPMENT

Mitophagy
The mitochondrial genome is unprotected and mtDNA repair
is inefficient compared with that in the nucleus (Hiona
et al., 2010). Damaged mitochondria can generate large
amounts of ROS which is not only toxic to mtDNA but
can promote lipid peroxidation, mitochondrial dysfunction,
impaired cellular function and induce apoptosis (Murphy,
2009; Grivennikova et al., 2010). Therefore, damaged and
dysfunctional mitochondria are constantly being degraded
(mitophagy) to reduce the oxidative load and are replaced by
new mitochondria through mitochondrial biogenesis (Gottlieb
and Carreira, 2010). This process is particularly important in
long-lived non-proliferative cells such as neurons. Dissipation
of mitochondrial membrane potential results in accumulation
of the kinase PINK-1 at the outer mitochondrial membrane
which phosphorylates ubiquitin and parkin resulting in binding
of mitophagy receptors (e.g., optineurin, NDP52) to the
mitochondrial surface. The latter will recruit the autophagy
machinery proteins (e.g., ULK1, DFCP1 and WIPI1) and the
mitochondria will be wrapped into the autophagosome and

degraded by fusion with lysosomes (Lazarou et al., 2015;
Pickrell and Youle, 2015). The importance of mitophagy for
brain development remains unknown. However, deletion of the
autophagy (Atg5 or Atg7) genes results in neurodegeneration
during early life in mice (Hara et al., 2006; Komatsu et al.,
2006) and suppression of genes involved in lysosomal function
causes severe central nervous system (CNS) abnormalities
(Levine and Kroemer, 2008). More specifically to mitophagy,
mutations in the human genes Parkin and PINK-1 result in
a juvenile form of neurodegeneration (Levine and Kroemer,
2008).

Biogenesis
Mitochondrial biogenesis usually occurs starting from already
existing mitochondria and needs proteins encoded by both
nuclear and mtDNA (Scarpulla, 2011). Peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α) is
the key regulator in this process, forming complexes with
DNA and supporting the function of transcription factors
such as nuclear respiratory factors (Wu et al., 1999; Huss
et al., 2002). These factors regulate transcription of nuclear
genes encoding mitochondrial proteins. Additionally, the
mitochondrial transcription factor A (TFAM) is expressed
from nuclear DNA, translated in the cytosol, and transported
into the mitochondria (Attardi and Schatz, 1988). TFAM
drives the transcription of 13 additional key enzymes
needed for assembly of the ETC, encoded within the
mitochondrial genome, together with the RNA needed for
their translation (Larsson et al., 1998). During neuronal
differentiation, the number of mitochondria per cell increases,
and inhibition of mitochondrial biogenesis impairs neuronal
differentiation (Vayssière et al., 1992; Mattson et al., 2008).
PGC-1α is expressed at high concentrations in neurons due
to their high energy demands (Andersson and Scarpulla,
2001).

Overexpression of PGC-1α in cultured neurons increases
the number of dendritic spines and promotes synaptic
differentiation, whereas deletion of the gene for PGC-1α,
has the opposite effect (Cheng et al., 2012). In addition, mice
with knockdown of the PGC-1α gene exhibit progressive
neuropathology and abnormal behavior (Lin et al., 2004; Cheng
et al., 2012). These data strongly suggest that mitochondrial
biogenesis has an important regulatory role in synaptic and brain
development.

Fusion/Fission
Mitochondria constantly fuse and divide which appears to be
crucial for a number of functions such as the maintenance
of organelle function, mediating DNA or protein quality
control and repair of injured mitochondria (Tanaka and
Youle, 2008). The process is driven by dynamin-related
protein 1 (DRP1) recruited to mitochondria by fission proteins
(e.g., FIS1, Mff, MiD49/51; Sheridan and Martin, 2010;
van der Bliek et al., 2013). Mitofusins 1 and 2 mediate
fusion of the outer mitochondrial membrane, whereas Optic
atrophy 1 (OPA1) fuses the inner membrane (Benard and
Karbowski, 2009). The fusion–fission cycle is critical for
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FIGURE 1 | The mitochondrial life cycle. Mitochondria turnover occurs continuously throughout life, with mitochondria constantly being degraded (mitophagy) and
replaced (biogenesis). Mitochondria are also able to produce reactive oxygen species (ROS), which causes mitochondrial membrane destabilization and damage to
their proteins and DNA, resulting in their degradation. Mitochondria also undergo fragmentation (fission) and fusion, which are vital to many cellular processes and in
particular allow adaptation to cellular needs (Gottlieb and Carreira, 2010).

embryonic and brain development (Benard and Karbowski,
2009). Mitochondrial fission appears essential for dendritic
development. Disruption of DRP1-dependent fission leads
to very elongated mitochondria in Purkinje cells resulting
in abnormal spines, dendrites and synapses, and ultimately
in ataxic behavior (Liu and Shio, 2008). Overexpression of
dominant-negative alleles of the gene that encodes DRP1,
leads to fewer spines and synapses, reversed by DRP1 which
increases the density of dendritic spines (Li et al., 2004).
Cultured neurons deficient in DRP1 have decreased numbers
of neurites and defective synapses (Ishihara et al., 2009); a
dominant-negative mutation of the DRP1 gene was found
in a newborn girl with microcephaly and abnormal brain
development (Waterham et al., 2007). These results support
that fission is an important means to increase the number
of mitochondria to meet energy demands during neuronal
plasticity. Inability to meet these demands has severe effects
on CNS development. Mitochondrial fusion is also critical
for brain development. Mitofusin 1 and mitofusin 2 are
both essential for embryonic CNS development in mice
and for cerebellar development. A mutation in mitofusin
2 causes the neurodegenerative disorder Charcot-Marie-Tooth
neuropathy type 2A (Chen et al., 2003; Zuchner et al., 2004).
Additionally, overexpression of OPA1 leads to a decrease in

dendritic spines, and OPA1 gene mutation causes autosomal-
dominant optic atrophy type 1 (Delettre et al., 2000; Li
et al., 2004). Mitochondrial fusion proteins may also attenuate
apoptosis by inhibiting the release of proapoptotic agents
like cytochrome c (cyt c), while mitochondrial fission protein
DRP1 promotes apoptosis through Bax, leading to mitochondrial
outer membrane permeabilization and cell death (Cassidy-Stone
et al., 2008).

MITOCHONDRIAL ROLE IN APOPTOSIS
AND SECONDARY BRAIN INJURY

Apoptosis (programmed cell death) is essential for the normal
development of tissues and is especially key in neuronal
development (Raff et al., 1993). The balance between cell survival
and cell death is therefore required to be highly regulated; as
such it is unsurprising that aberrant activation of apoptotic
pathways occurs in several neurological conditions including
stroke and a variety of neurodegenerative diseases (Vila and
Przedborski, 2003). Cellular apoptosis can be achieved through
two routes, the extrinsic pathway activated in response to
extracellular signals such as the cell death receptor Fas and tumor
necrosis factor alpha (TNF-α) and mediated by death receptors
(Green, 2000) and the intrinsic pathway activated in response
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to DNA damage or cellular stress. Although each pathway has
unique members, both mechanisms may converge downstream
at the level of the mitochondrion, where if the insult is severe
enough, there is catastrophic permeabilization from which the
cell cannot recover. It is important to note that mechanisms
of mitochondrial permeabilization are age-dependant and while
Cyclophilin D is critical in the adult brain, Bax-dependent
mechanisms dominate in the immature brain (Wang et al.,
2009).

Mitochondrial permeabilization results in the release of
mitochondrial apoptogenic factors into the cytosol including
apoptosis-inducing factor (AIF), endonuclease g (Endo G),
cyt c and Smac/Diablo. These proteins have a number
of pro-apoptotic functions; cyt c interacts with Apaf-1
to form an active apoptosome, providing a platform for
procaspase-9 cleavage; Smac/Diablo interacts with inhibitors
of apoptosis (IAP) reducing their negative influence on
the activity of caspases (Vila and Przedborski, 2003). In
contrast with cyt c and Smac/Diablo, AIF and Endo G
operate through a caspase-independent pathway. Both
are translocated to the nucleus from the mitochondria in
response to death—inducing stimuli where they induce
fragmentation of nuclear DNA (Susin et al., 1999; Li et al.,
2001).

Some plasma membrane receptors contain the so-called
death domain in their intracellular domain (e.g., TNF-R1, DR4,
DR5, Fas) and are able to trigger apoptosis when activated
from the binding of the corresponding ligand (e.g., TNF-α,
TRAIL, FasL). This extrinsic pathway of apoptosis continues
with the activation of a death-inducing signaling complex
(DISC) adjacent to the death domain of the receptor. Activated
DISC catalyzes the proteolytic cleavage and transactivation of
procaspase-8 (Love, 2003). Activated caspase-8 either directly
activates caspase-3 or mediates cleavage of Bcl-2 interacting
domain (BID) to truncated Bid (tBid), which integrates
different death pathways at the mitochondria (Sugawara
et al., 2004). tBid translocates to the mitochondria where it
interacts with other proapoptotic proteins and triggers the
release of apoptogenic factors like cyt c and AIF from the
mitochondria. Apoptosis then proceeds in the same way as
for the intrinsic pathway with caspase-dependent and caspase-
independent cell death regulated by mitochondria. There is
ample evidence to suggest that both the intrinsic (Zhu et al.,
2000, 2005) and to some extent the extrinsic pathway (Graham
et al., 2004; Kichev et al., 2014) are critical contributors to
immature brain injury (see this issue). In addition, AIF is
released from mitochondria after neonatal HI (Zhu et al.,
2003) and binds to cyclophilin A in the cytosol and the
complex translocates to the nucleus and induces DNA damage
(Zhu et al., 2007a) and contributes to brain injury (Zhu
et al., 2007b). Notably, the caspase-dependent route appears
to be more important in females while the AIF pathway
is more predominant in males (Zhu et al., 2006; Johnston
and Hagberg, 2007). The knowledge about mitochondrial
physiology and its role in cell death has expanded dramatically
over the past decade. Nonetheless, more detailed information
regarding the role of mitochondria in perinatal injury and

brain development is urgently needed in order to develop more
effective mitoprotective therapies.

CONTRIBUTION OF MITOCHONDRIA TO
INFLAMMATION

Inflammation is an important risk factor for injury in the
developing brain (Strunk et al., 2014; Hagberg et al., 2015;
Lai et al., 2017). Mitochondria regulate innate immune
responses and play a direct role in the assembly of innate
sensing machineries that trigger the host immune response.
This is achieved mainly through transcriptional regulation
of inflammatory cytokines/chemokines and their maturation
by inflammasomes (Monlun et al., 2017). Mitochondria
converge on signaling pathways involved in inflammation
through: (a) mitochondrial ROS (mtROS) production;
(b) mtDNA release; and (c) mitochondrial antiviral signaling
protein (MAVS). These act as key triggers in the activation
of innate immune response following a variety of stress
signals that include infection, tissue damage and metabolic
dysregulation (Sandhir et al., 2017). ROS produced by
mitochondria, are a major host defense mechanism since
they act as a crucial signaling molecule and as mediators of
inflammation.

The movement of O−2 • across mitochondrial membranes
is highly limited because of its negative charge. However, the
presence of transmembrane proteins, such as voltage-dependent
anion channels (VDAC) found in mitochondria, allow trans-
membrane passage of O−2 • produced in ETC (Han et al., 2003).
Thereby allowing access to cytosolic targets leading to multiple
functional outcomes such as activation of redox-sensitive
transcription factors like hypoxia inducible factor 1 alpha
(HIF-1α) and NF-κB, causing activation of pro-inflammatory
cytokines and inflammasomes (Chandel et al., 2000; Wang et al.,
2010).

Pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs) bind to specific
receptors including RIG-I-like receptors (RLRs), NOD-like
receptors (NLRs) and Toll-like receptors (TLR), to generate
cytokines that are essential for eliminating pathogens or repairing
tissue damage (Mogensen, 2009). mtDNA is a rich source of
DAMPs which activate several innate immune pathways
involving toll-like receptor 9 (TLR9), NLRP3 and STING
signaling thereby resulting in effector responses (Weinberg et al.,
2015). Systemic activation of toll-like receptor 2 (TLR2) induces
brain inflammation and increases the vulnerability to HI,
possibly through suppression of mitochondrial respiration
(Mottahedin et al., 2017a,b).

During viral infection, the pattern recognition receptors
RIG-I and MDA5 attach to viral RNA interacting the
mitochondrial polypeptide adaptor, MAVS, which drives the
production of type I interferon (Saitoh and Akira, 2010).
Studies have demonstrated that viral-mediated disruption of
mtDNA homeostasis serves as a cell-intrinsic indicator of
infection that works in parallel with virus sensing mechanisms
to engage antiviral innate immunity (West et al., 2015).
Interestingly, recent studies have demonstrated that mtDNA
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induces lung and liver inflammation (Zhang et al., 2010). It is also
proposed that mitochondrial DAMPs drive hyperactivation of
innate immunity, which might underlie systemic inflammatory
response syndrome (Tait and Green, 2012).

Effect of Inflammation on Mitochondrial
Metabolism
As the site of cellular respiration and energy production,
mitochondrial metabolism is one of the central processes
affected by inflammation. Acutely triggered immune responses,
as well as chronic inflammation, are characterized by significant
changes in mitochondrial metabolism. This can result in shifts
in energy supply/demand causing metabolic acidosis and
hypoxia, thereby triggering phenotypic shifts in immune cells
like microglia. Thus, strategies directed at controlling excessive
inflammation mediated by mitochondria through metabolic
control may represent novel preventive and therapeutic
interventions.

Mitochondria can exert immune regulation at different levels
by manipulation of metabolic pathways, thereby allowing an
appropriate cytokine response to each situation, which is crucial
for the correct establishment of immune responses (Monlun
et al., 2017; Tur et al., 2017). In macrophages, activation via the
lipopolysaccharide (LPS)/Toll-like receptor 4 (TLR4) pathway
cause accumulation of Krebs cycle intermediates such as
succinate in the mitochondria, resulting in the stabilization of
HIF-1α and promoting inflammatory gene expression, such as
induction of interleukin-1 beta (IL-1β; Tannahill et al., 2013;
Mills et al., 2016).

The switch from oxidative phosphorylation (OXPHOS) to
glycolysis, a phenomenon similar to the Warburg effect, is
an important concept for understanding metabolic changes
occurring in immune cells upon activation (Kelly and O’Neill,
2015). The preferential use of glycolysis over OXPHOS,
although inefficient in terms of total energy production, allows
immune cells to churn-out ATP and intermediates for cytokine
production at a faster rate (Marelli-Berg et al., 2012; Chang
et al., 2013). In anti-microbial defense mechanisms, such as
neutrophil extracellular traps (NETs), neutrophils derive energy
from glycolysis as they contain very few mitochondria. NET
formation is inhibited by the glycolysis inhibitor, 2-deoxy-
glucose, and to a lesser extent by the ATP synthase inhibitor
oligomycin (Rodríguez-Espinosa et al., 2015). These examples
provide evidence of cross talk between metabolism and immune
response and thus the possibility of metabolism-based immune
regulation.

Mitochondrial metabolism is necessary for T cell activation
and pharmacologic inhibition of OXPHOS and glycolysis in vitro
ablate T cell proliferation (Chang et al., 2013). Activated T cells
isolated from a mouse model of systemic lupus erythematosus
(SLE) are dependent on mitochondrial metabolism (Wahl et al.,
2010) and furthermore, peripheral blood lymphocytes from
patients with SLE have increased mitochondrial metabolism and
ROS production (Gergely et al., 2002).

Release of mtDNA can cause activation of inflammasomes
resulting in caspase-1-dependent secretion of the inflammatory
cytokines IL-1β and IL-18, and an inflammatory form

of cell death referred to as pyroptosis (Yu et al., 2014).
Pyroptosis has been defined as a type of programmed
cell death triggered by pathological stimuli and is
important in controlling microbial infections (Bergsbaken
et al., 2009). NLRP3-mediated inflammatory signaling,
IL-1β production and pyroptosis in macrophages causes
a disruption of glycolytic flux, an important signal for
host-cell response to the intracellular pathogen, which disrupt
metabolism by uptake of host-cell glucose (Sanman et al.,
2016).

Recent data indicate that TFAM when released from
necrotic cells could act as a specific DAMP causing a
pro-inflammatory and cytotoxic responses (Little et al.,
2014). TFAM exacerbates the inflammatory response in
T cells through lysosomal dysfunction (Baixauli et al.,
2015). Following necrosis, TFAM acts as a danger
signal enhancing the plasmacytoid dendritic cell (pDC)
response by binding to the receptor for advanced
glycation end products (RAGE) and TLR9 (Cherry et al.,
2016).

It is clear from above that there is a link between
mitochondrial function, inflammation and energy metabolism
in immune cells, however, such effects have thus far remained
poorly characterized in the brain. In microglia cells, a short
exposure to a low dose of LPS causes a transient increase in
OXPHOS (Figure 2). This increase in OXPHOS is however
suppressed in response to a prolonged exposure to high dose
of LPS, forcing a shift in metabolism towards glycolysis to
match the metabolic demand. This LPS-induced metabolic
reprogramming is directly related to mitochondrial dynamics
as preventing excessive mitochondrial fission in microglia
by a DRP-1 inhibitor reverses the LPS induced metabolic
switch and reduces the pro-inflammatory cytokine output
in microglia (Nair et al., 2016). Thus, in addition to their
well-appreciated roles in cellular metabolism and programmed
cell death, mitochondria appear to have a cardinal role in
regulating the immune system. In summary, patients with
inflammatory diseases may benefit from detailed evaluation
of mitochondrial function and suitable metabolic support
to improve immune dysfunction. Altering mitochondrial
dynamics may be a therapeutic modality for preventing
neuroinflammation-induced microglia over-activation and
may prevent neuronal cell death associated with various
neurodegenerative processes. This is of particular importance
given the lack of treatment options for perinatal brain
injury despite many showing promise at the pre-clinical
phases.

THERAPIES FOR PERINATAL BRAIN
INJURY

Despite improvements in the standard of care, the only
‘‘treatment’’ available for perinatal brain injury is preventative
in nature—clinical hypothermia. Hypothermia, or cooling of
the infants’ body temperature to 33–34◦C within several
hours of an hypoxic-ischemic event, was first shown in a
pilot study to reduce both mortality and long term motor
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FIGURE 2 | Mitochondria play a critical role in the regulation of cellular metabolism in microglia after exposure to lipopolysaccharide (LPS). Metabolic reprogramming
in microglia cells during inflammation: in microglia cells, a short exposure to a low dose of LPS causes a transient increase in oxidative phosphorylation (OXPHOS).
This increase in OXPHOS is however suppressed in response to a prolonged exposure to high dose of LPS, forcing a shift in metabolism towards glycolysis to match
the metabolic demand.

outcomes (Eicher et al., 2005), and is now widely established in
neonatal care (Shankaran et al., 2005; Azzopardi et al., 2009;
Edwards et al., 2010). Despite this, hypothermia is not always
effective, e.g., with head cooling studies showing no effect in
infants with severe brain injury after HIE (Gluckman et al., 2005).
A factor contributing to the variance in therapeutic efficacy is
the requirement of maintaining core body temperature within
a small and narrow window, which is particularly challenging
in low resource settings (Kumar et al., 2009). To overcome
these caveats, hypothermia has been used in combination with
other experimental therapies that have shown promise in clinical
trials.

COMBINATION TREATMENTS APPROVED
FOR CLINICAL TRIALS

Erythropoietin (EPO)
Erythropoietin (EPO) is a naturally produced angiogenic
hormone having neuroprotective, neurogenic (Wang et al.,
2004) as well as anti-inflammatory (Sun Y. et al., 2005; Rees
et al., 2010) and anti-apoptotic (Kellert et al., 2007) properties.
Recombinant human EPO (rhEPO) is safe for administration
and is currently used to treat patients with low circulating
levels as a result of chronic kidney disease or chemotherapy.
Importantly, EPO is an activator of mitochondrial biogenesis
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(Carraway et al., 2010), and within the CNS appears to work by
increasing the expression of the mitochondrial regulator PGC-1α
in astrocytes and neurons (Horng et al., 2015). In a rodent model
of adult stroke, rhEPO also increased vascular endothelial growth
factor (VEGF) and brain-derived neurotrophic factor (BDNF),
stimulating recovery as well as reducing stroke infarct size and
improving functional outcomes (Wang et al., 2004). rhEPO also
ameliorated hyperoxia-induced apoptosis and inflammation in
neonatal mice (Kaindl et al., 2008; Sifringer et al., 2010), possibly
via modulation of key autophagic proteins (Bendix et al., 2012).

In humans, an early clinical trial showed infants with HIE
treated with a combination of rhEPO and hypothermia, had
improved neurological outcomes, as well as fewer white matter
tract abnormalities (Elmahdy et al., 2010). Even though EPO
is one of the most promising neuroprotective interventions
currently undergoing clinical testing, a recent 2-year follow-up
study in very preterm infants treated with EPO (NCT00413946)
showed no demonstrable differences in neurodevelopmental
outcomes (Natalucci et al., 2016). However, in a Chinese study
preterm infants were randomly assigned to receive rhEPO
(500 IU/kg; n = 366) or placebo (n = 377) intravenously within
72 h after birth and then once every other day for 2 weeks (Song
et al., 2016). The rate of moderate/severe neurological disability
in the rhEPO group (7.1%) was significantly lower compared
to the placebo group (18.8%; p < 0.001; Song et al., 2016).
Furthermore, the considerable variation in between timing and
dosage even in pre-clinical studies (see commentary by Juul,
2013) can mean the difference between improved neurological
outcomes (Fan et al., 2013) and no therapeutic merit (Fang et al.,
2013).

Melatonin
Melatonin, more commonly known as the sleep hormone, has
been widely used as an anti-oxidative therapy in experimental
models for a number of years (Balduini et al., 2012; Manchester
et al., 2015). Melatonin works primarily via scavenging free
radicals and stimulating the innate anti-oxidant system (Barlow-
Walden et al., 1995). There is evidence that melatonin
pre-treatment is neuroprotective in a rat model of middle
cerebral artery occlusion (MCAO; Pei and Cheung, 2004), and
furthermore, this protection was observed when melatonin was
administered to the fetus directly (Welin et al., 2007) or via
the maternal circulation (Miller et al., 2005). After umbilical
cord occlusion, melatonin significantly reduced DNA and RNA
fragmentation, apoptosis, as well as inflammation and astroglial
activation (Miller et al., 2005). Crucially, melatonin can also
promote white matter maturation, one of the key deficits in
diseases of childhood disability such as cerebral palsy (Olivier
et al., 2009). Recently mitochondria have been postulated as a
major synthesis site for melatonin (He et al., 2016), suggesting
thatmitochondriamay play a critical role in its anti-oxidative and
therapeutic properties. Indeed, melatonin administration has
been shown to be mitoprotective via acting as a mitochondrial
antioxidant (Martin et al., 2000) and can also directly inhibit
the opening of the mitochondrial permeability transition pore
(mtPTP), responsible for release of calcium and cyt c from the
mitochondria (Andrabi et al., 2004). Melatonin also modulates

mitochondrial bioenergetics, decreasing mitochondrial fission
and increasing mitochondrial fusion after oxidative stress
(Parameyong et al., 2015; Chuang et al., 2016), and regulating
autophagy and mitophagy (see review by Coto-Montes et al.,
2012). In clinical trials, melatonin combined with clinical
hypothermia improved white matter tract development and
reduced apoptosis in a piglet model of HIE (Robertson et al.,
2013) and a phase I clinical trial is currently underway
(NCT02621944).

Stem Cell Therapies
There has been a focus on cell therapies in the field of
regenerative medicine in recent years (Baraniak and McDevitt,
2010). Cell therapies have been heralded as the next pillar
of modern medicine due to their reported multiple modes of
action, touted as an advantage over traditional pharmacological
agents that typically only target a single pathway in the
pathophysiology of perinatal brain injury. Umbilical cord
blood cells (UCBs) are one of the most well-studied and
characterized cells in perinatal brain injury to date. UCBs
consist of a combination of cell types including hematopoietic
stem cells, endothelial progenitors, lymphocytes, monocytes and
mesenchymal stem cells (MSCs; Pimentel-Coelho et al., 2012).
UCBs have anti-inflammatory and anti-apoptotic properties in
animal models of HIE, with their primary mode of action being
the modulation of immune cells after injury (Schwarting et al.,
2008), protecting from hypoxia-induced apoptosis (Hall et al.,
2009) and release of trophic factors that promote neural recovery
and repair post-ischemia such as BDNF and neurotrophins
(Fan et al., 2005; Newman et al., 2006). During injury these
UCBs, including MSCs, hone towards sites of injury, their
migratory ability powered via interactions with chemokine and
cytokine receptors including the fractalkine receptor CX3CR1 (Ji
et al., 2004). Once there, MSCs drive neuronal differentiation
after injury, promote cellular regeneration (Busch et al., 2011)
and confer anti-inflammatory properties which reduce immune
cell proliferation and activation (Li et al., 2005), and improve
long-term motor outcomes (Van Velthoven et al., 2010). Recent
evidence however suggests that MSCs can also participate
in transfer of mitochondria via structures termed tunneling
nanotubes (TNTs; Hsu et al., 2016). TNT formation is a
result of F-actin polymerization, and is driven by activation
of the pro-apoptotic p53 signaling within the stressed cell
and downstream activation of the Akt/PI3K/mTor pathways
(Wang et al., 2011). Co-culture of MSCs and human umbilical
vein endothelial cells (HUVECs) exposed to glucose-oxygen
deprivation resulted in the formation of TNTs and transfer
of mitochondria from MSCs to HUVECs, restoring functional
aerobic respiration and reducing apoptosis (Liu et al., 2014). This
transfer has also been observed in corneal epithelium (Jiang et al.,
2016) or pulmonary epithelium providing protection (Wecht and
Rojas, 2016).

Tissue banking following birth is a growing market, and
while UCB administration has been proven safe (Sun W. et al.,
2005), there is some concern that few patients ever require
therapy, with some approximating that 1 in 3000 children
will require transfusion (Nietfeld et al., 2008). Together
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UCBs have been utilized in 30 clinical trials worldwide as
an intervention for cerebral palsy (Clinicaltrials.gov, search
query ‘‘umbilical cord cells’’ AND ‘‘cerebral palsy’’), with one
study completed (NCT01193660, Clinicaltrials.gov). The study
showed that a combination therapy of UCBs and EPO resulted
in significant improvements in motor and cognition, with
associated improvements in structural and metabolic changes in
the brain (Min et al., 2013).

MITOCHONDRIAL-TARGETED THERAPIES

Whilst it is clear that broadly targeting excitotoxicity has
some merit, it is clear from the mixed success of ion channel
blockers that more targeted therapies are required in perinatal
brain injury. Mitochondria play a pivotal role in bioenergetics,
cell-cycle regulation and the oxidative stress response, and thus
represent an emerging target for neuroprotective therapies.

Protecting from Mitochondrial
Permeabilization
Mitochondrial Calcium Uniporter (Mcu)
Mitochondrial calcium uniporter (Mcu) is the pore-forming
complex located on the mitochondrial inner membrane, and
is responsible for fine-tuning the mitochondrial membrane
potential (Oxenoid et al., 2016). Mcu plays a crucial role in
mediating NMDA-receptor-induced excitotoxic death (Stout
et al., 1998), as it allows Ca2+ influx into the mitochondria,
perpetuating the downward apoptotic spiral. Crucially,
knockdown of Mcu stabilizes the mitochondrial membrane and
confers resistance to excitotoxicity, as well as neuroprotection
as modulated by synaptic firing by adjacent neurons (Qiu
et al., 2013; Utkina-Sosunova et al., 2013). This opens up the
possibility that targeting of Mcu by pharmacological agents
might have therapeutic merit in clinical conditions (Camara
et al., 2010, 2011) where excitotoxicity-induced cell death is a
major pathological feature.

Sigma-1 Receptors
Other ways of preventing mitochondrial destabilization are
via modulators such as the sigma-1 receptor, located on the
endoplasmic reticulum. The administration of 4-Phenyl-1-(4-
phenylbutyl)piperidine (PPBP), a sigma-1 agonist, reduced
neuronal death in vitro and in an in vivo model of excitotoxic
developmental brain injury, with a concomitant decrease in
microglial activation and loss of mitochondrial membrane
potential (Wegleiter et al., 2014). Other sigma-1 agonists such
as dehydroepiandrosterone (DHEA; Hashimoto et al., 2006) and
allopregnanolone (Shirayama et al., 2011) have also been shown
to improve cognitive deficits and infer anti-depressant effects in
models of neuropsychiatric disorders, likely via interactions with
NMDA receptors.

Mitochondrial ATP-Sensitive K+ (mitoKATP) Channel
Openers
The mitochondrial ATP-sensitive K+ (mitoKATP) channel is
essential for the tightly regulated leak of K+ ions across
the mitochondrial membrane, allowing precise control over

its membrane potential (Facundo et al., 2006). Interestingly,
opening mitoKATP channels by compounds such as diazoxide
result in protection from ischemic damage as well as reducing
mtROS release (Facundo et al., 2007) and cell death (Fornazari
et al., 2008). In a piglet model of HIE, diazoxide protects the
integrity of the mitochondrial membrane and accumulating
Ca2+ levels in CA1 pyramidal neurons (Domoki et al., 2004), and
in a mouse model of MCAO confers neuroprotection to hypoxic
neurons via modulation of pro- and anti-apoptotic proteins
along the Bax-Bcl2 pathways (Liu et al., 2002). Furthermore,
opening of the mitoKATP channel seems to be critical for
induction of tolerance in the brain, a phenomenon whereby
a sub-threshold insult of e.g., hypoxia, ischemia or a drug
renders the CNS resistant to a second severe insult (Sanders
et al., 2010; Hagberg et al., 2014). However, there is some
contention as to whether diazoxide works entirely via mitoKATP
channels, as the use of diazoxide in submitochondrial particles
from pig heart did not affect both mitochondrial membrane
potential and nicotinamide adenine dinucleotide (reduced form)
(NADH) oxidation (Hanley et al., 2002). Further research
have since corroborated these findings (Anastacio et al., 2013;
Coetzee, 2013) and identified numerous other pathways by which
diazoxide exerts its physiological effects, including activating
cardiovascular and endothelial KATP channels (Coetzee, 2013)
and regulating the release of neurotransmitters such as
norepinephrine (Mohan and Paterson, 2000) and acetylcholine
(Kilbinger et al., 2002).

Directly Targeting Mitochondrial
Downstream Apoptotic Pathways
Caspase Inhibitors
Caspases such as caspase-3 and -8 play a pivotal role in the
early stages of apoptosis after HI injury. This is particularly true
for perinatal brain injury (Hu et al., 2000), as altered caspase
activity during this crucial period interrupts the programmed cell
death critical for the proper functional development of the CNS
(Raff et al., 1993). Early efforts using specific and pan-caspase
inhibitors hadmixed success, with some studies showing reduced
neuronal apoptosis (Cheng et al., 1998) and necrosis (Han
et al., 2002) after HIE; however another study reported no
benefit of pre-treatment with a pan-caspase inhibitor (Joly et al.,
2004). The lack of protection may be due to differences in the
bioavailability of the pharmacological compounds, or more likely
reflects the importance of caspase-independent death pathways
in perinatal brain injury. More recent efforts have turned to
the generation of safer, more specific and pharmacokinetically
enhanced inhibitors. Both quinoline-Val-Asp(Ome)-CH2-O-
phenoxy (Q-VD-OPh) and the methyloxyphenylketone (mOPh)
derivative, TRP601, were effective in neonatal models of ischemic
injury, reducing infarct size, improving neurological function
(Renolleau et al., 2007) and attenuating glial activation and
inflammation (Chauvier et al., 2011). TRP601 preferentially
inhibits caspase-2, an initiator caspase positioned upstream
of mitochondrial permeabilization. TRP601 targets caspase-2
activation preventing truncation of Bid, and translocation
of Bax to the mitochondrial membrane for mitochondrial
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permeabilization and release of pro-apoptotic proteins such as
cyt C (Carlsson et al., 2011; Chauvier et al., 2011).

Phosphatase and Tensin Homolog Deleted on
Chromosome 10 (PTEN) Modulators
Phosphatase and tensin homolog deleted on chromosome 10
(PTEN) is a negative regulator of members of the PI3K/Akt
signaling pathway, responsible for regulating cell growth and
survival. PTEN is also thought to couple PI3K/Akt signaling
to the pro-death c-Jun N-terminal kinase (JNK) pathway. As
PTEN has phosphatase activity, the usage of specific tyrosine
phosphatase inhibitors such as bpv(pic) have been used to
rescue neuronal cell death after ischemic injury via blocking
PTEN-mediated downregulation of the PI3K pathway and
decoupling from JNK1/2 signaling (Zhang et al., 2007). In
a mouse model of kainate-induced excitotoxicity, bpv(pic)
also displayed anti-inflammatory properties, reducing reactive
astrogliosis and mitochondria apoptosis (Grande et al., 2014).
PTEN inhibition has also been shown to rescue cortical neurons
after HI in the immature brain (Zhao et al., 2013) and
neuroprotective trophic factors such as IGF-1, growth hormone
and hexarelin (Gustafson et al., 1999; Brywe et al., 2005a,b) all
seem to act by enhancing PI3K/Akt signaling preventing BAX
dependent mitochondrial permeabilization.

JNK Inhibitors
Activation of the JNK pathways leads to further downstream
pro-apoptotic pathways including BCL-2 (Jin et al., 2006) and
MAPK-activating death domain-containing protein (MADD;
Centeno et al., 2007). Interestingly, Jnk3−/− mice are resistant
to ischemic (Kuan et al., 2003), hypoxic-ischemic (Pirianov
et al., 2007) and excitotoxic brain injury (Brecht et al.,
2005), thus raising the possibility of targeting JNK activity
as a therapy for perinatal brain injury. The JNK inhibitor
SP600125 reduced infarct size and reduced apoptosis primarily
via blockade of mitochondrial translocation of pro-apoptotic
proteins Bax and Bim, and thus release of cyt c (Gao et al.,
2005). Interestingly from a therapeutic standpoint, blockade
of JNK activity was neuroprotective when administered either
before or after ischemia (Guan et al., 2006) and via either
intracerebral or intravenous injection (Guan et al., 2006). JNK
inhibitors also have long-lasting activity, improving white matter
development as well as cognitive and motor function in rats
with HIE up to 14 weeks after injury (Nijboer et al., 2010,
2013).

p53 Inhibitors
p53, along with Ca2+ leak and ROS generation, are the
major causes of mitochondrial permeabilization via interactions
with the pro-apoptotic BCL-2 family (Galluzzi et al., 2009).
Reduction of available p53 also reduces binding to DNA sites
responsible for cell death (Leker et al., 2004) as well as reduced
expression of BAX and caspase activity (Culmsee et al., 2001).
Blocking p53 association with the mitochondrial membrane
with pifithrin-µ reduced cerebral damage, ROS production
and improved sensorimotor function after 6–10 weeks post-HI
(Nijboer et al., 2011). There is some debate however whether the
primary mode of action of pifithrin-µ is via p53 blockade as its

use accompanied with partial or complete neuronal p53 deletion
confer no or limited neuroprotection (Baburamani et al., 2017).

It is evident that directly targeting mitochondrial pathways in
pre-clinical studies have shown a plethora of therapeutic merit.
However studies have also reported that indirect protection
of mitochondria via maintaining the homeostasis of the CNS
microenvironment, or blocking subsequent energy failure, could
also have merit.

Indirect Protection of Mitochondrial
Function
Creatine
Creatine is a vital component in both aerobic respiration
and ATP recycling in all tissues of the body. Creatine is
used to enhance athletic performance by a biphasic ‘‘loading’’
period involving ingestion of 20 g/day for the first week
and then a ‘‘maintenance’’ phase of 2 g/day (Hultman et al.,
1996), resulting in sustained improvements in high-intensity
exercise performance and lean body mass (Buford et al., 2007).
In traumatic brain injury, creatine improved mitochondrial
bioenergetics and reduced ROS production (Sullivan et al.,
2000), and reduced the severity of cerebral infarcts in a model
of unilateral carotid artery ligation (Berger et al., 2004). In
perinatal brain injury, creatine supplementation reduces ATP
depletion after ischemic injury (Brewer and Wallimann, 2000)
thereby protecting neurons from oxygen-glucose deprivation-
mediated apoptosis and necrosis (Balestrino et al., 2002). In
models of ischemia, creatine supplementation has been shown to
reduce severity of infarcts and improving neurological function
(Lensman et al., 2006) likely via improving cerebral blood flow
(Prass et al., 2007). There is also limited evidence that creatine
has anti-oxidant properties, scavenging hydroxyl free radicals
and affording cytoprotection (Sestili et al., 2011). From a clinical
standpoint, while creatine weakly crosses the blood-brain barrier
(BBB), creatine can also be supplemented maternally as creatine
can cross the placental barrier, and supplementation via this
route is also neuroprotective in a spiny mouse model of birth
asphyxia (Ireland et al., 2011). Efforts to create more lipophilic
Cr-derived compounds resulted in the generation of PCr-Mg-
complex acetate (PCr-Mg-CPLX), which readily crossed the BBB
(Lunardi et al., 2006) and when administered in a model of
MCAO improved stroke and behavioral outcomes (Perasso et al.,
2009).

Dichloroacetate (DCA)
Dichloroacetate (DCA) is a small molecule inhibitor of pyruvate
dehydrogenase (PDH) kinase (PDHK), which regulates the
activity of PDH. PDH is responsible for the conversion of
pyruvate to acetyl-CoA, a critical component of the Krebs
cycle. DCA is used in clinic to treat congenital lactic acidosis
(Berendzen et al., 2006), of which 90% of reported cases are
a result of a genetic defect in the α subunit of PDH (Lissens
et al., 2000). Importantly, long-term administration of DCA is
well-tolerated in children (Stacpoole et al., 2008) and is able to
cross the BBB (Williams et al., 2001). DCA was initially used in
models of ischemic-reperfusion injury as a means of reducing
secondary energy failure, with administration of DCA increasing
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levels of ATP and PCr 4 h after ischemic injury (Katayama and
Welsh, 1989) and also decreasing levels of lactate within the brain
(Kaplan et al., 1987). Recently, intraperitoneal administration
of DCA in a model of unilateral HI reduced infarct size and
apoptosis via increased mitochondrial biogenesis as a result of
increased availability of mitochondrial acetyl-CoA (Sun et al.,
2016). More studies are required to assess DCA as a potential
therapy after HI injury.

Protecting Astrocytes
Astrocytes are the most abundant cell-type in the brain,
crucial for maintenance of optimal bioenergetics in the brain
as well as providing trophic support and neurotransmitter
release. High densities of mitochondria have been localized
in the fine astrocytic processes responsible for regulating
cerebrovascular flow (Zonta et al., 2003), and therefore
neurovascular coupling (Otsu et al., 2015). However, these
processes are damaged after ischemia (Ito et al., 2009), leading
to neuronal dysfunction and death (Bambrick et al., 2004).
Protecting astrocytes could have therapeutic merit, given
their ability to re-uptake glutamate, delaying or preventing
excitotoxic injury. Furthermore, astrocytic mitochondrial
function is restored between 30 min and 1 h after ischemic
injury (Morken et al., 2014), substantially quicker than neuronal
mitochondrial recovery, and as such are ideally placed to
reduce the impact in the secondary phase of hypoxia-induced
injury (Berger et al., 2016). In vivo, astrocytes participate in
mitochondrial transfer towards injured neurons, improving
cell survival and neurological outcomes, a mechanism which
is governed by CD38 signaling (Hayakawa et al., 2016).
Modulation of astrocytic signaling, such as inhibition of the
SNAP (Soluble NSF Attachment Protein) REceptor (SNARE)
pathway also influences NMDA receptor expression and
therefore sensitivity towards excitotoxic injury (Hines and
Haydon, 2013). Administration of anti-oxidants such as
resveratrol, melatonin or nicotinamide adenine dinucleotide
phosphate (reduced form) (NADPH) inhibitors are protective
towards astrocytic function after ischemia (Fernández-
Gajardo et al., 2014), via inhibition of apoptotic pathways
and stabilization of mitochondrial function (Lin et al.,
2014).

CONCLUSION

The only clinically approved therapy for a hypoxic-ischemic
event, whole-body hypothermia, has been shown to be effective
at neuroprotection and reducing mortality rates. However,
no therapies exist that target mitochondria and the stages of

perinatal brain injury once they have manifested, critically the
latent phases are responsible for later neurological impairment
and disabilities such as cerebral palsy.

Evidence in recent years has identified mitochondrial
dysfunction and downstream activation of pro-apoptotic
pathways as a major target for future therapies. In pre-clinical
models, these therapies have shown promise at not just reducing
inflammation but also improving neurological outcomes weeks
after the onset of ischemic injury. Critically, therapies targeting
multiple pathogenic pathways, including cell therapies, are
currently in late phase clinical trials.

Advances in technology may soon allow researchers to
overcome themajor problem of CNS therapies, namely the ability
to cross the BBB. Nanoparticle-based drug delivery systems
including synthetic polyamidoamine dendrimers have been used
to great effect in an animal model of cerebral palsy, showing
localization to glial cells and suppressing neuroinflammation
(Kannan et al., 2012). Compounds such as creatine can also be
infused in large amounts into albumin-coated gold nanospheres,
providing a quicker and more effective administration route
to cross the BBB (López-Viota et al., 2009). However, more
research into the exact roles that mitochondria play in disease
and subsequent therapy is needed, with a particular emphasis on
more accurately mapping the chronological events downstream
of perinatal brain injury and thus identifying therapeutic
windows for novel intervention.
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