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Limited axon regeneration in the injured adult mammalian central nervous system (CNS)

usually results in irreversible functional deficits. Both the presence of extrinsic inhibitory

molecules at the injury site and the intrinsically low capacity of adult neurons to grow

axons are responsible for the diminished capacity of regeneration in the adult CNS.

Conversely, in the embryonic CNS, neurons show a high regenerative capacity, mostly

due to the expression of genes that positively control axon growth and downregulation

of genes that inhibit axon growth. A better understanding of the role of these key genes

controlling pro-regenerative mechanisms is pivotal to develop strategies to promote

robust axon regeneration following adult CNS injury. Genetic manipulation techniques

have been widely used to investigate the role of specific genes or a combination of

different genes in axon regrowth. This review summarizes a myriad of studies that used

genetic manipulations to promote axon growth in the injured CNS. We also review the

roles of some of these genes during CNS development and suggest possible approaches

to identify new candidate genes. Finally, we critically address the main advantages and

pitfalls of gene-manipulation techniques, and discuss new strategies to promote robust

axon regeneration in the mature CNS.

Keywords: genetic manipulation, adeno-associated virus, transgenic animals, axon regeneration, central nervous

system

INTRODUCTION

Damage to the adult mammalian central nervous system (CNS), including acute brain or spinal
cord injury, stroke, and neurodegenerative diseases, usually lead to permanent cognitive, sensory
and/or motor disabilities. Axon regeneration failure is largely responsible for these long-term
deficits and poor functional recovery. The promotion of robust axon regeneration in adult
mammalian CNS holds great therapeutic potential for neurological disorders and is one of the
major challenges in neuroscience.Moreover, the success of cell-based therapies to treat neurological
disorders relies on the capacity of new neurons to grow processes and establish new synaptic
contacts.

Numerous studies have focused on the characterization of the molecular mechanisms
responsible for regenerative failure. In the beginning of the twentieth century seminal studies by
Santiago Ramon y Cajal showed that axon fail to regenerate in the injured mature mammalian
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CNS (Ramon y Cajal, 1928), leading to the Ramon y Cajal’s
statement “once the development has ended, the founts of
growth and regeneration of the axons and dendrites dried up
irrevocably. In the adult centers the nerve paths are something
fixed, ended and immutable. Everything may die, nothing may be
regenerated. It is for science of the future to change, if possible,
this harsh decree.” Many years later, Aguayo and his colleagues
showed that after providing permissive substrates composed of
peripheral nervous system (PNS) “bridges,” CNS axons are able
to regenerate their axons (Richardson et al., 1980; Aguayo et al.,
1981; David and Aguayo, 1981). These findings suggest that
the CNS environment surrounding the injured adult neuron
contains inhibitory factors that block regrowth.

Based on these initial reports, several research groups
attempted to identify such factors and described a variety of
extracellular inhibitory molecules expressed by the adult CNS
oligodendrocytes and reactive astrocytes, including Nogo,
myelin-associated glycoprotein (MAG), oligodendrocyte myelin
glycoprotein (OMGP), chondroitin sulfate proteoglycans
(CSPGs), semaphorins, and ephrins (Schwab and Bartholdi,
1996; Case and Tessier-Lavigne, 2005; Harel and Strittmatter,
2006; Yiu and He, 2006; Fitch and Silver, 2008; Schwab and
Strittmatter, 2014; Silver et al., 2015). However, counteracting
or removing extracellular inhibitory molecules results in limited
and incomplete axon regeneration (Zheng et al., 2003; Liu et al.,
2011; Mar et al., 2014; He and Jin, 2016).

Unlike adult CNS neurons, developing mammalian neurons
can regenerate their axons after injury (Kalil and Reh, 1979), and
grow new ones when transplanted into the injured adult CNS
(Houlé and Reier, 1988), suggesting that mature mammalian
CNS neurons have an intrinsically low capacity for axon growth
compared to developing CNS neurons. Moreover, these findings
indicate that neurons having a high capacity of axon growth are
able to overcome the inhibitory environment of injured adult
CNS. The capacity of axon regrowth declines greatly as neurons
in the CNSmature. For instance, embryonic retinal ganglion cells
have a great ability to regenerate their axons after lesion, which
is dramatically reduced after birth (Bandtlow and Löschinger,
1997; Goldberg et al., 2002). Similar to developing CNS neurons,
injured adult PNS neurons also have the capacity to grow their
injured axons (Huebner and Strittmatter, 2009). These findings
imply that the intrinsic capacity of axon outgrowth is a key
feature regulating axon regeneration. This high intrinsic capacity
of axon regrowth of developing CNS and adult PNS neurons
is likely due to the expression of pro-regenerative genes, which
allows the regeneration of damaged axons.

In the last decade, a considerable amount of research has been
focused on the identification of genes regulating the intrinsic
regenerative capacity of CNS neurons. Gene manipulation
techniques have been widely used to modulate the expression
of these genes in order to promote axon regrowth. Here, we
review various studies that used genetic manipulation to foster
axon regeneration after a variety of trauma to adult mammalian
CNS (Table 1). We will first introduce a few commonly used
genemanipulation strategies and the twomost used experimental
models to study axon regeneration in the adult CNS. Then, we
will discuss the main findings involving the manipulation of

specific genes and, based on their developmental roles, consider
the possible pro-regenerative mechanisms that are triggered
upon modulation of such genes.

GENE MANIPULATION TECHNIQUES IN
THE CNS

Genetic manipulation approaches are particularly advantageous
for studying mechanisms controlling axon regeneration, because
it is possible to target and manipulate specific intracellular
signaling molecules in particular neuronal types. Manipulations
using viral vector-mediated gene transfer have been widely used
to investigate the role of specific genes during different events
that occur after CNS injuries (Table 1). In addition, the delivery
of therapeutic genes to the CNS using viral vectors is also
considered a valuable tool to potentially treat a number of
incurable neurological disorders (Kaplitt et al., 1994; Burger et al.,
2005; Cideciyan et al., 2009). Viral vectors have many advantages
compared to other techniques to manipulate intracellular
molecules, including delivery of recombinant proteins, naked
DNA, or pharmacological substances, because it can provide
long-term gene expression and targeting of specific neurons
(Kaplitt et al., 1994; Klein et al., 1998; Kügler et al., 2003).
The most used viral vectors for gene transfer in CNS neurons
are lentiviral and recombinant adeno-associated viral (AAV)
vectors. Lentiviral vectors are enveloped retroviruses containing
a positive, single-stranded RNA genome, capable of infecting
both dividing and non-dividing cells and provide long-term gene
expression via integration into the host cells’ genome (Ponder,
2000; Segura et al., 2013). However, one important disadvantage
of lentiviral vectors is the potential of integration into active
gene loci, which can result in insertional mutagenesis and the
formation of tumors (Li et al., 2002; Schröder et al., 2002; Hacein-
Bey-Abina et al., 2003; Themis et al., 2005). In addition, the
production of lentiviral vectors is much more complex and their
large diameter (∼80–100 nm) can influence their distribution
into the host tissue (Vogt and Simon, 1999; Segura et al., 2013).

In the last decades, recombinant AAV vectors have emerged
as a particularly promising gene delivery method into the
CNS. The AAV is a small (∼25 nm), non-enveloped virus
containing a linear single-stranded DNA genome (∼4.7 kb; Berns
and Giraud, 1996). AAV vectors provide long-term expression,
are not associated with human diseases, have a low risk of
insertionalmutagenesis, low immunogenicity and have the ability
to efficiently transduce a variety of neurons (Kaplitt et al., 1994;
Papale et al., 2009; McCown, 2011). There are 11 naturally
occurring AAV serotypes and even more variants (Wu et al.,
2006), which express different capsid proteins that interact
with a variety of receptors on target cells, resulting in distinct
cellular tropism and different kinetics of transgene expression
(Rabinowitz et al., 2002; Burger et al., 2005; Cearley and Wolfe,
2006; Vandenberghe et al., 2009). This, together with the route
administration, allows the user to select the most appropriate
AAV serotype to transduce the neuronal cell type of interest
(Auricchio et al., 2001; Allocca et al., 2007; Lebherz et al.,
2008; Hutson et al., 2012). The main drawback of AAV vectors,
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TABLE 1 | Summary of studies using genetic manipulation techniques to promote regeneration.

Target Modulation Methods Neuron type/model Main effects References

PTEN Deletion AAV-Cre/“floxed” mice RGC/optic nerve lesion Enhanced axon regeneration Park et al., 2008

Deletion AAV-Cre/“floxed” mice CSN/spinal cord lesion Enhanced axon regeneration and

sprouting

Liu et al., 2010; Danilov

and Steward, 2015; Du

et al., 2015

Knockdown AAV-shRNA CSN/spinal cord lesion Enhanced axon regeneration Zukor et al., 2013;

Lewandowski and

Steward, 2014

SOCS3 Inhibition (dominant

negative)

Lentiviral vector DRG neuron in vitro Increased neurite growth Miao et al., 2006

Deletion AAV-Cre/“floxed” mice RGC/optic nerve lesion Enhanced axon regeneration Smith et al., 2009

Overexpression AAV RGC/optic nerve lesion Decreased axon regeneration Hellström et al., 2011

STAT3 Overexpression Lentiviral vector DRG neuron in vitro Increased neurite growth Miao et al., 2006

Overexpression AAV DRG neuron/spinal cord

lesion

Enhanced axon regeneration and

sprouting

Bareyre et al., 2011

Overexpression AAV CSN/spinal cord lesion Enhanced axonal sprouting Lang et al., 2013

Overexpression

(hyperactive)

AAV RGC/optic nerve lesion Enhanced axon regeneration Mehta et al., 2016

Deletion AAV-Cre/“floxed” mice RGC/optic nerve lesion Decreased axon regeneration Sun et al., 2011

KLF4 Deletion Thy1-Cre/“floxed” mice RGC/optic nerve lesion Enhanced axon regeneration Moore et al., 2009

KLF7 Overexpression

(hyperactive)

AAV CSN/spinal cord lesion Enhanced axon regeneration and

sprouting

Blackmore et al., 2012

CREB Constitutively active Adenovirus DRG neuron/spinal cord

lesion

Enhanced axon regeneration Gao et al., 2004

Inhibition (dominant

negative)

Retrovirus Cortical neuron in vitro Decreased neurite growth Landeira et al., 2016

c-Jun Deletion Nestin-Cre/“floxed” mice facial motoneurons/axotomy Decreased axon regeneration Raivich et al., 2004

Knockdown Electroporation of siRNA DRG neuron/sciatic nerve

lesion

Decreased axon regeneration Saijilafu et al., 2011

Overexpression Lentiviral vector DRG neuron in vitro Increased neurite growth Chandran et al., 2016

ATF3 Overexpression Transgenic mice DRG neuron/sciatic nerve

lesion

Enhanced axon regeneration Seijffers et al., 2007

SOX11 Overexpression AAV CSN/spinal cord lesion Enhanced axon regeneration and

sprouting

Wang et al., 2015

ASCL1 Overexpression AAV Brainstem neurons/spinal

cord lesion

Enhanced axon regeneration Williams et al., 2015

c-Myc Overexpression AAV and tamoxifen-inducible

expression

RGC/optic nerve lesion Enhanced axon regeneration Belin et al., 2015

ROCK Inhibition (dominant

negative)

Lentiviral vector RSN/spinal cord lesion Enhanced axon regeneration Wu et al., 2009

Knockdown AAV-shRNA RSN/spinal cord lesion Enhanced axonal sprouting Challagundla et al.,

2015

Knockdown AAV-shRNA RGC/optic nerve lesion Enhanced axon regeneration Koch et al., 2014a

RhoA Knockdown AAV-shRNA RGC/optic nerve lesion Enhanced axon regeneration Koch et al., 2014b

PTEN/SOCS3 Co-deletion AAV-Cre/“floxed” mice RGC/optic nerve lesion Synergistic effect in increasing

axon regeneration

Sun et al., 2011

Co-deletion AAV-Cre/“floxed” mice CSN/spinal cord lesion Synergistic effect in increasing

axonal sprouting

Jin et al., 2015

SOCS3/KLF4 Co-deletion AAV-Cre/“floxed” mice RGC/optic nerve lesion Synergistic effect in increasing

axon regeneration

Qin et al., 2013

PTEN/SOCS3/c-

Myc

Co-deletion of

PTEN/SOCS3 and

overexpression of c-Myc

AAV-Cre/“floxed” mice and

AAV-c-Myc

RGC/optic nerve lesion Synergistic effect in increasing

axon regeneration

Belin et al., 2015

STAT3/ROCK Overexpression of STAT3

and inhibition of ROCK

AAV-STAT3 and

pharmacological inhibition

RGC/optic nerve lesion Synergistic effect in increasing

axon regeneration

Pernet et al., 2013

Rheb1/neural

activity

Overexpression of Rheb1

and visual stimulation

AAV-Rheb1 and high-contrast

images

RGC/optic nerve lesion Synergistic effect in increasing

axon regeneration

Lim et al., 2016

RGC, retinal ganglion cell; CSN, corticospinal neuron; DRG, dorsal root ganglia.
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however, is the relatively small size of the internal payload, with
a maximum capacity of ∼4.7 kb (Gray et al., 2011; Hastie and
Samulski, 2015). Nevertheless, recombinant AAV vectors have
one of the best characterized safety profile, and have emerged as
an appropriate delivery method for gene therapy into the CNS
leading to an increasing number of clinical trials, including recent
successes for the retinal degenerative disorder Leber’s congenital
amaurosis type 2 (Mandel and Burger, 2004; Cideciyan et al.,
2009; Vandenberghe et al., 2009; Lim et al., 2010; Simonelli et al.,
2010; Mingozzi and High, 2011; Testa et al., 2013). Therefore,
AAV vectors are the method of choice to evaluate the role of
specific genes and their products in axon regeneration.

Another common strategy used to manipulate gene
expression in animal (specially mice) models of CNS injuries is
the so-called Cre/lox system (Sauer, 1998). This is a site-specific
recombination system based on the activity of the enzyme
Cre recombinase (CRE), which recognizes specific 34 bp DNA
sequences called loxP sites. LoxP sites are added to a transgene
so that they flank a sequence of DNA, referred to as a “floxed”
sequence. The enzyme CRE recognizes these loxP sites and
either excise or invert DNA sequences depending on the loxP
sites orientation. Transgenic mice can be engineered to express
a transgene under the control of CRE. For that, a floxed stop
codon is placed directly upstream of the transgene, preventing
its expression. Following CRE expression, the stop codon
is removed and the transgene can be expressed. Transgenic
mice can also be engineered to insert loxP sites into specific
endogenous genes. In these animals, CRE activity leads to the
excision/inversion of DNA sequences with the consequent loss
of the targeted genes. Thus, the Cre/lox system can be used to
either induce or inhibit gene expression.

Tissue specific recombination can be achieved through the
use of transgenic lines in which CRE expression is regulated
by cell-type specific promoters. Moreover, transgenic animals
carrying the gene for an enzyme CRE fused to the truncated
estrogen receptor (ERT) allows the temporal control of CRE-
mediated DNA recombination, since the nuclear transport of the
fused CreERT requires the treatment with the estrogen analog
Tamoxifen. For example, crossing transgenic mice expressing
CreERT in neurons (Young et al., 2008) to transgenic mice
carrying a “floxed” sequence in the pten gene (Park et al., 2008)
would allow the temporal deletion of this gene at different time-
points after axonal injury. This strategy of gene deletion is called
“conditional knockout.”

Alternatively, CRE expression can be temporally and spatially
controlled through the use of viral vectors carrying plasmids
encoding for CRE under the control of cell-specific promoters.
Most of the studies using AAV vectors to express CRE, in
models of CNS injury, used ubiquitous promoters, such as
cytomegalovirus (CMV; Park et al., 2008; Du et al., 2015; Geoffroy
et al., 2015) and the hybrid CMV/chicken ß-actin (CAG)
promoters (Bei et al., 2016), or neuronal specific promoters such
as human synapsin (hSyn) (Qin et al., 2013). In addition to CRE,
expression of therapeutic genes delivered by viral vectors can also
be regulated through the use of cell-specific promoters.

The use of ubiquitous promoters has important caveats
due to transgene expression in undesired cell types, such

as local inhibitory neurons and glial cells (Nathanson et al.,
2009; Watakabe et al., 2015, 2017). Moreover, it has been
shown that high levels of transgene expression, driven by CMV
promoter, may be toxic to neurons (Watakabe et al., 2015).
The use of neuronal-specific promoters, such as hSyn, mouse-
calcium/calmodulin-dependent protein kinase II (CAMKII),
platelet-derived growth factor-ß chain (PDGF-ß), neuron-
specific enolase (NSE), among others, can avoid expression
of transgene in non-neuronal cells and also the toxic effect
produced by high levels of transgene expression (Klein et al.,
1998; Paterna et al., 2000; Kügler et al., 2003; Nathanson et al.,
2009; McLean et al., 2014; Watakabe et al., 2015). Nonetheless,
hSyn promoter controlled gene expression in the CNS leads to
transgene expression in both inhibitory and excitatory neurons,
whereas CAMKII promoter tend to be more specific to excitatory
neurons (Watakabe et al., 2015). Similar to neurons, glial cells
can also be targeted by using promoters of glia-specific genes,
such as myelin basic protein (Mbp) for oligodendrocytes or glial
fibrillary acidic protein (Gfap) for astrocytes (Lawlor et al., 2009;
von Jonquieres et al., 2013). Thus, through the choice of different
promoters, transgene expression can be selectively induced in
distinct cell types in the CNS, which allows the evaluation of
the contribution of different genes in specific cell types to axon
regeneration.

EXPERIMENTAL CNS INJURY MODELS

Many different injurymodels are used to study axon regeneration
in the CNS. Nonetheless, optic nerve lesion and spinal cord
injury are the most widely used experimental strategies and will
be the focus of this review. The optic nerve is part of the CNS
and contains the axons of retinal ganglion cells (RGCs), the
sole output of the retina. The axons of the optic nerve project
to different brain areas, including the dorsal lateral geniculate
nucleus, superior colliculus, and suprachiasmatic nucleus, among
others. Like other areas of the CNS, optic nerve axons cannot
regenerate after injury. Therefore, conditions such as glaucoma,
that involves degeneration of these axons, leads to irreversible
vision impairment. The optic nerve lesion model has many
advantages, such as the simple anatomy (i.e., all lesioned axons
belong to only one cell type), easy accessibility and the functional
relevance.Moreover, genemanipulation in retinal cells, including
RGCs, using viral vectors, has numerous benefits. First, the
anatomical organization of the retina in which the cells are
organized in different layers facilitate the transduction of specific
neuronal cell types (i.e., for RGC transduction intravitreal
injection is performed, while for photoreceptor transduction sub-
retinal injection is more appropriated). Second, the structure and
accessibility of the retina allow easy access to local administration
of viral vectors. Finally, the eye is a compartmentalized structure
and, due to the presence of the blood–retinal barrier, prevents the
unintentional systemic spread of vectors, thus limiting immune
responses toward the transgene and the vector proteins (Bennett,
2003; Streilein, 2003). Due to these advantages, AAV-mediated
gene therapy is a common strategy employed in animal models
to treat retinal diseases (Liang et al., 2001; Dejneka et al.,
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2004; Acland et al., 2005; Mingozzi and High, 2011), indicating
that gene manipulation using these vectors to promote axon
regeneration could be a valuable strategy for clinical applications.
Therefore, the optic nerve lesion model has been widely used to
investigate the role of specific genes in axon regeneration in the
CNS.

Spinal cord injury is another widely model to study axon
regeneration in the CNS. Traumatic spinal cord injuries in
humans can often result in permanent sensory and/or motor
deficits (Yip and Malaspina, 2012), that cannot be sufficiently
repaired by any existing therapy. One of the major challenges
to achieve functional recovery after such injuries is to promote
robust axonal regeneration. Usually, in animal models of spinal
cord injury, the main focus is pyramidal corticospinal neurons
(CSNs). CSNs are localized in the layer V of the primary motor
cortex and send their axons directly to the spinal cord, where
the majority of the axons form the dorsal corticospinal tract
(CST), which in rodents runs in the ventral portion of the dorsal
funiculus. The CST is an important descending motor pathway
that contains the axons of neurons controlling locomotion,
posture, and voluntary skilled movements, especially in the distal
part of the limbs (Steward et al., 2004; Lemon and Griffiths,
2005). Damage to CST axons usually occurs after spinal cord
lesion and lead to permanent motor deficits. Notably, CSNs have
a particularly low capacity for axon regrowth, with minimal
regeneration even after permissive tissue grafts or neutralization
of extracellular inhibitory molecules (Richardson et al., 1980;
Hollis et al., 2009; Lee et al., 2010). Thus, the promotion of
CST regeneration remains a fundamental step to restore motor
function after this type of injury.

Gene manipulation in CSNs is a common strategy to evaluate
the role of genes in CST axon regeneration. To this end, most
studies use AAV vectors, which are injected into the sensorimotor
cortex to transduce CSNs and modulate gene expression in this
neuronal type. In addition to CST axons, the spinal cord injury
model is also used to evaluate axon regeneration of other axonal
tracts, such as rubrospinal tract in the dorsal part of the lateral
column, which is also involved in motor control, and ascending
sensory axons in the dorsal column that mediate sensorial
stimuli. Although, gene manipulation of these other pathways
could be used to study axon regeneration in spinal cord injury
models, most of the studies focused on the CST. One important
disadvantage of spinal cord injury models is that usually the
animals require extensive post-operative care, including deliver
of fluids, pain medications, and bladder emptying to avoid
urinary tract infections.

PTEN/mTOR

To date, an increasing number of studies have targeted
neuron-intrinsic molecules and signaling pathways in order
to increase the capacity of injured adult mammalian CNS
neurons to regenerate their axons (Table 1). PTEN/mTOR
pathway manipulation has resulted in one of the most
robust effect on axon regeneration (Figure 1). PTEN
(phosphatase and tensin homolog) is a phosphatase that

inhibits protein kinase B (PKB, also termed Akt) activity
through conversion of phosphatidylinositol (3,4,5) trisphosphate
(PIP3) to phosphatidylinositol (4,5) bisphosphate (PIP2)
(Guertin and Sabatini, 2007; Carnero, 2010). On the contrary,
phosphoinositide 3-kinase (PI3-K) converts PIP2 to PIP3 and
activates Akt, which activates themechanistic target of rapamycin
(mTOR) (Luo et al., 2003). Thus, inactivation of PTEN induces
Akt activity culminating in the activation of mTOR, which is
a central regulator of cellular protein synthesis, autophagy,
growth and survival (Chong et al., 2012; Saxton and Sabatini,
2017). Activation of mTOR promotes protein synthesis mainly
by phosphorylating the kinase S6K and the translation regulator
4E-BP1 (Ma and Blenis, 2009). In addition to promoting protein
synthesis, mTOR also inhibits catabolism by blocking autophagy
through the phosphorylation of the ULK1–Atg13–FIP200
complex (Jung et al., 2009). Therefore, mTOR is an important
regulator of anabolism and catabolism mechanisms that could
play an important role on axon regeneration.

In the developing brain, PTEN/mTOR pathway play
an important role on the control of stem cell/progenitor
proliferation (Groszer et al., 2001; Lehtinen et al., 2011),
neuronal differentiation, migration, and process growth (Kwon
et al., 2006; Hsia et al., 2014; Morgan-Smith et al., 2014). More
importantly to our discussion, downregulation of PTEN in
developing neurons leads to increased axonal branching and
growth (Drinjakovic et al., 2010). Similarly, PTEN inhibition
enhances neurite outgrowth in neurons derived from human
embryonic stem cells (Wyatt et al., 2014). These observations
suggest that regulation of PTEN/mTOR signaling is key to
control axonal growth during development and, therefore, could
be a potential target to foster regeneration in the injured adult
CNS.

According to this notion, a leading study showing the effects
of PTEN deletion on axon regeneration was published in 2008
(Park et al., 2008). In this study they used conditional knockout
mice in which the gene encoding PTEN protein was flanked by
loxP sites. They deleted PTEN in RGCs by intravitreal injection of
AAV2 particles expressing Cre recombinase (AAV-Cre) in adult
mice. PTEN deletion resulted in robust axon regeneration after
optic nerve lesion, with a large number of regenerating axons
elongating up to 4 mm distal to the lesion site. In addition to
axon regeneration, PTEN deletion also increased RGC survival
after optic nerve lesion, with a protection rate of about two-fold
compared to control. Both, axon regeneration and RGC survival
were reduced by application of rapamycin, an inhibitor of mTOR,
suggesting that the observed effects induced by PTEN deletion
are dependent on mTOR pathway (Park et al., 2008).

After these pioneer findings, several studies examined the
effects of PTEN deletion in different models of CNS injury.
In a follow up study from the same research team, the effect
of PTEN deletion on axon regeneration was also investigated
in models of spinal cord injury. Using the same approach,
PTEN was deleted by injecting AAV-Cre into the sensorimotor
cortex of neonatal mice in order to evaluate CSNs axon
regeneration. As observed in RGCs, PTEN deletion induced
robust axon regeneration after spinal cord injury, both, by
enhanced compensatory sprouting of uninjured CSN axons and
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FIGURE 1 | The effects of gene manipulation on axon regeneration in optic nerve and spinal cord lesion models of CNS injury. The main technique to manipulate gene

expression is by direct injections of viral vectors to overexpress specific genes, deliver Cre recombinase for gene deletion, or deliver shRNA against endogenous

targets for gene knockdown. (A) In the optic nerve lesion model genetic manipulation is usually by intravitreal injections. The effects of different genes manipulation

(right box) range from short distance axon regeneration up to complete axon regrowth to target areas (numbers—left box). (B) In spinal cord injury model, genetic

manipulation is usually by injections into the sensorimotor cortex to transduce corticospinal neurons. The effects of manipulation of specific genes (right box) varies

from sprouting of lesioned axons (1), axon regeneration distal to the lesion (2), and compensatory sprouting of unlesioned axons (3) (left box). The left scheme shows

gene manipulation in lesioned neurons of a spinal cord injury model. The right scheme depicts a unilateral pyramidotomy and gene manipulation performed in

unlesioned neurons.

successful regeneration of injured CSN axons distal to the lesion
site (Liu et al., 2010). On both studies, the authors observed a
reduction of mTOR activity in adult CNS neurons as compared
to the developing CNS, and axonal lesion further reduced
this activity (Park et al., 2008; Liu et al., 2010). This suggests
that mTOR is a possible intrinsic regulator of axon growth
which could be developmentally downregulated. Regarding the
molecular mechanisms downstream of mTOR which could
regulate axon regeneration, it is believed that enhancement
of protein synthesis induced by mTOR activity could provide
building blocks for axonal regrowth and would be the main
reason for the increased axon regeneration. However, whether
other downstream targets of mTOR, including autophagy, are
also involved in the regulation of axon regeneration following
PTEN deletion remains to be determined.

In addition to these two publications, other studies also
showed that PTEN is in fact a valuable target to promote
axon regeneration. Two independent studies using AAVs to

deliver short hairpin RNAs (shRNA) against PTEN to CSNs,
have also shown that PTEN downregulation enhances CST
axon regeneration and improves the recovery of skilled motor
functions after spinal cord injury in rodents (Zukor et al.,
2013; Lewandowski and Steward, 2014). Moreover, conditional
deletion of PTEN in CSNs enhances regrowth of CST axons
and motor function recovery even after the spinal cord injury
(Danilov and Steward, 2015). Notably, PTEN deletion one year
after spinal cord injury still triggers robust CST regeneration (Du
et al., 2015).

Although, these studies do not describe any major detectable
pathology, long-term effect of PTEN interference is a
potential concern, because PTEN is a tumor suppressor,
whose manipulation could lead to undesirable side effects.
Moreover, PTEN deletion in hippocampal dentate granule cells
leads to mTOR hyper activation and promotes the rapid onset
of spontaneous seizures (LaSarge et al., 2015). In a recent study,
Gutilla and colleagues evaluate the long-term effect of neonatal
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PTEN deletion in mice. Albeit the authors found no evidence
of tumor formation or other major neuropathology, cortical
thickness was significantly increased and cortical lamination was
disrupted in the area of PTEN deletion (Gutilla et al., 2016).
However, the authors did not investigate the long-term effect of
PTEN deletion in adult animals. Therefore, PTEN interference
could be a potential pro-regenerative strategy for treating
CNS injuries, but systematic studies are necessary to prove the
long-term safety of PTEN interference.

JAK/STAT3/SOCS3

Several studies using gene manipulation techniques have
indicated that the JAK/STAT3/SOCS3 pathway is also an
important modulator of axon regeneration (Table 1; Figure 1;
Liu et al., 2015). In this pathway, cytokines, including interleukin-
6 (IL6) and ciliary neurotrophic factor (CNTF), bind to receptors
and activate the Janus kinase (JAK)/signal transducer and
activator of transcription (STAT) pathway (Krebs and Hilton,
2001), a critical intracellular cascade for the transduction of
extracellular signals to the nucleus. Upon binding of the ligand
to its receptor, JAK phosphorylates STATs, including STAT3,
which dimerizes and translocate to the nucleus, where it
interacts with various regulatory elements that induce target gene
expression (Darnell et al., 1994). The above signaling cascades
transcriptionally regulates a family of proteins called Suppressor
of cytokine signaling (SOCS), including SOCS3, which act as a
negative feedback signal by inhibiting JAK and STAT activation
and phosphorylation, limiting the response to cytokine and
growth factors signaling (Krebs and Hilton, 2001).

One of the first evidence showing that the JAK/STAT3/SOCS3
pathway regulates axon regeneration was observed in rat primary
sensory neurons in vitro (Miao et al., 2006). In this study,
they showed that overexpression and activation of STAT3, by
lentiviral transduction, stimulates neurite growth of cultured
sensory neurons. Overexpression of SOCS3 blocks nuclear
translocation of STAT3 and neurite outgrowth, and inhibition
of endogenous SOCS3 through overexpression of a dominant
negative mutant SOCS3 stimulates neurite outgrowth (Miao
et al., 2006). Thereafter, Smith and colleagues showed, using the
in vivo AAV-mediated conditional knockout approach discussed
above, that deletion of SOCS3 in adult RGCs is able to promote
extensive axon regrowth after optic nerve lesion. This effect was
abolished by co-deletion of gp130, a shared receptor component
required for this signaling, indicating that the regenerating effect
of SOCS3 deletion is dependent on gp130. Moreover, injection
of CNTF in SOCS3 deleted mice further increase the extent of
axon regeneration (Smith et al., 2009). Consistent with these
findings, overexpression of SOCS3 in RGCs, by using AAV
vectors, inhibited regeneration of optic nerve axons induced by
CNTF injection or peripheral nerve grafting (Hellström et al.,
2011). Altogether, these studies point to SOCS3 as a pivotal
negative regulator of JAK/STAT3/SOCS3 pathway in regulating
axon regeneration.

Several studies suggest that STAT3 is the primary effector
of axon regeneration induced by this pathway. In a study

combining in vivo time-lapse fluorescence microscopy with
genetic manipulations in mice, the authors showed that selective
deletion of STAT3 in dorsal root ganglion (DRG) neurons
impairs regeneration of peripheral DRG branches after nerve
cut. In addition, overexpression of STAT3 increases outgrowth
and collateral sprouting of central DRG branches after a dorsal
column lesion (Bareyre et al., 2011). Thereafter, another study
from the same group demonstrated that overexpression of
STAT3 in CSNs enhances remodeling of lesioned CST axons and
induces axonal sprouting from unlesioned CST axons, leading
to functional recovery (Lang et al., 2013). More recently, Mehta
and colleagues have shown that overexpression of STAT3 fused
with a viral activation domain (VP16), which hyper activates the
transcription activity of STAT3, in RGC results in regeneration of
optic nerve axons after injury (Mehta et al., 2016). Finally, AAV-
mediated conditional knockout study demonstrated that SOCS3
deletion leads to significant axon regeneration in the optic nerve,
while double SOCS3/STAT3 deletion reverts the regenerative
effects of SOCS3 deletion alone (Sun et al., 2011). These data
indicate that STAT3 is the critical mediator of axon regeneration
induced by SOCS3 deletion.

Interestingly, the JAK/STAT pathway also regulates the
generation of astroglial cells in the developing CNS (Bonni
et al., 1997; Miller and Gauthier, 2007). Timewise, axon growth
and astrogliogenesis partly overlap in the developing CNS,
suggesting that these two processes are intermingled and could
be manipulated to further stimulate axon growth in the injured
adult CNS. According to this notion, RNA-interference (RNAi) of
GFAP and Vimentin expression leads to suppression of astroglial
reactivity and scarring, and increase survival and neurite growth
of cortical neurons in culture (Desclaux et al., 2009).

The JAK/STAT3/SOCS3 pathway, thus, appears to play a
pivotal role in controlling axon growth, and represents a
promising target for therapeutic intervention. Modulating this
pathway after CNS injury could help axon regeneration and
ultimately functional recovery. Similar to PTEN, however,
SOCS3 acts a tumor suppressor, an effect likely mediated
via the JAK/STAT pathway (He et al., 2003; Tokita et al.,
2007). Therefore, additional studies are necessary to confirm
that manipulation of this pathway can promote long-term
regenerative benefits without leading to undesired side-effects in
the injured CNS.

KLF FAMILY OF TRANSCRIPTION
FACTORS

The members of the Krüppel-like factors (KLF) family of
transcription factors have also been implicated in the control of
axon regeneration (Table 1; Figure 1). Members of this family
are involved in the loss of axon growth capacity observed in
RGCs around birth (Goldberg et al., 2002; Moore et al., 2009).
Indeed, KLF4 expression is upregulated in RGC after birth,
and overexpression of this transcription factor in embryonic
RGCs induces a potent reduction in neurite outgrowth in vitro,
suggesting that this protein inhibits axon elongation in these
cells. Accordingly, KLF4 knockout increases the number and
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length of regenerating RGC axons after optic nerve injury
(Moore et al., 2009). In addition to KLF4, overexpression of
other members of the KLF family, including KLF15, KLF9,
KLF14, KLF13, KLF5, KLF12, and KLF1, also decreases neurite
growth in cortical neurons in vitro. Similar to KLF4, KLF9 is
clearly upregulated postnatally in RGCs (Moore et al., 2009).
Moreover, overexpression of another member, KLF16, inhibits
RGC neurite outgrowth in vitro and enhances RGC growth cone
collapse in response to exogenous ephrinA5 ligands (Wang et al.,
2016). In contrast, overexpression of KLF6 and KLF7 increases
neurite growth in cultured postnatal RGCs (Moore et al., 2009).
Similarly, overexpression of a chimeric KLF7 with the VP16
transactivation domain in CSNs, promotes both sprouting and
regenerative axon growth in the CST of adult mice (Blackmore
et al., 2012). These studies point to a complex role for the KLF
family of transcription factors as regulators of axon regeneration
in the CNS, by both promoting and inhibiting axon growth.
Thus, manipulation of different members of this family can be
potentially used to promote axon regrowth after CNS injury.
Although, it is clear that this family of transcription factors
is involved in the control of axon regeneration, the effects of
KLF manipulations are relatively modest. In addition, little is
known about protein-protein interactions of the members of
this family that are relevant to axon elongation in the CNS.
Understanding the crosstalk between these transcription factors
may yield better strategies for promoting robust CNS axon
regeneration.

OTHER TRANSCRIPTION FACTORS
(CREB/c-Jun/ATF3/SOX11/ASCL1/c-Myc)

The transcription factors cAMP Responsive Element Binding
Protein (CREB), Jun Proto-Oncogene (c-Jun), Activating
Transcription Factor 3 (ATF3), SRY (Sex Determining Region
Y)-Box 11 (SOX11), Achaete-Scute Family BHLH Transcription
Factor 1 (ASCL1), and the Proto-oncogene c-Myc, can also play
a role on axon regeneration (Table 1; Figure 1).

The transcription factor CREB belongs to the family of
leucine zipper transcription factors, which binds to the cAMP
response element (CRE), a conserved DNA sequence in promoter
elements that are activated by cAMP (Montminy and Bilezikjian,
1987). Overexpression of a dominant negative form of CREB
in cerebellar and DRG neurons, blocks neurite growth induced
by cAMP (Gao et al., 2004). Conversely, overexpression of a
constitutively active form of CREB in DRG neurons, promotes
regeneration of central DRG branches after a dorsal column
lesion (Gao et al., 2004). Moreover, recent work from our
laboratory has shown that CREB-mediated signaling is involved
in neurite elongation of immature cerebral cortex neurons
(Landeira et al., 2016), suggesting that this transcription factor
represents a potential target to promote corticospinal axon
regeneration.

The role of c-Jun transcription factor in axon regeneration
has also been examined. Conditional knockout of c-Jun in facial
motor neurons decreases axon regeneration of facial nerves
after axotomy (Raivich et al., 2004). Moreover, knockdown

of c-Jun in DRG neurons, using in vivo electroporation of
siRNA, significantly impairs axon regeneration of peripheral
branches after sciatic nerve lesion (Saijilafu et al., 2011), while
overexpression of c-Jun in these cells is able to promote neurite
outgrowth in vitro (Chandran et al., 2016). Although, c-Jun has a
positive effect on axon regeneration, it has been shown that c-Jun
expression in required for cell death of facial motoneurons after
axotomy as well as in RGC after optic nerve lesion (Yoshida et al.,
2002; Raivich et al., 2004; Lingor et al., 2005). Thus, these studies
demonstrate that c-Jun, an immediate early gene, has a dual role
in neurons, involved in the induction of axon regeneration and
neuronal cell death. While deletion of c-Jun impaired axonal
regrowth in the CNS and PNS, it remains to be tested whether
forced expression of c-Jun improves axon regeneration in the
CNS in vivo. In addition, the role of c-Jun on neuronal cell death
precludes the use of c-Jun for clinical applications.

The transcription factor ATF3, which can form heterodimer
with c-Jun, is also able to increase axonal regrowth in the PNS.
In transgenic mice that constitutively express ATF3, there is
an increase in axonal regeneration of DRG peripheral branches
after injury (Seijffers et al., 2007). However, constitutively
expression of ATF3 does not overcome myelin inhibition on
neurite outgrowth of DRG in culture or enhance central axon
regeneration in the spinal cord after dorsal column injury in
vivo (Seijffers et al., 2007). These findings demonstrate that
genes involved in axonal regrowth in the PNS are not necessary
important for axon regeneration in the CNS. Nevertheless, it
remains to be tested whether manipulations of c-Jun and ATF3
are effective in promoting axon growth in different CNS neuronal
types after injury. Moreover, whether there is a crosstalk between
c-Jun, ATF-3 and others transcription factors like ATF-2, which
is relevant to axon regeneration remains to be determined.

SOX11 is an example of transcription factor required for PNS
axon growth whose forced expression promotes regeneration
in the CNS. SOX11 is highly expressed in the embryonic
CNS and PNS, but it is downregulated at later developmental
stages (Hargrave et al., 1997; Tanabe et al., 2003; Dy et al.,
2008; Penzo-Méndez, 2010). However, its expression in rapidly
upregulated in DRG neurons following peripheral axotomy,
and its deletion decreases PNS neurite growth (Tanabe et al.,
2003; Lin et al., 2011). Recently, Wang and colleagues showed
that overexpression of SOX11 in CSNs is sufficient to promote
CST compensatory sprouting and axon regeneration after spinal
cord injury. The effect of SOX11 forced expression on axon
regeneration was observed, although at lesser extent, even when
delivered 2 months after injury, indicating that SOX11 is able
to promote axon regrowth in both acute and chronic injury
paradigms. Despite of that, the normal recovery of forelimb
dexterity that occurs after cervical spinal cord injury was
impaired in SOX11-treated animals on both injury paradigms
(Wang et al., 2015). These data suggest that regenerating
axons induced by SOX11 overexpression may not establish
functional synapses, or they form synapses with wrong targets,
which could prevent functional recovery. Considering the roles
of SOX11 in the developing cerebral cortex as an upstream
regulator of FEZF2, which is required for the specification of
corticospinal neuron identity and connectivity (Shim et al.,
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2012; Muralidharan et al., 2017), and as a negative controller
of dendritic morphogenesis (Hoshiba et al., 2016), it is possible
that sustained expression of SOX11 in adult neurons leads to
conflicting effects on axonal regeneration. According to this
notion, overexpression of SOX11 in RGCs promotes robust
axon regeneration in a subset of RGCs after optic nerve
lesion, but also induces cell death in another subtype of RGC
(Norsworthy et al., 2017). Future studies should help elucidating
whether different levels of SOX11 expression are responsible
for those conflicting effects in RGCs. Similarly, it remains to
be tested whether a time-controlled expression of SOX11 could
lead to robust axon regeneration while avoiding undesired
effects.

ASCL1 is a proneural basic helix-loop-helix (bHLH)
transcriptional factor involved in cell fate determination and
differentiation (Vasconcelos and Castro, 2014). It has been
recently shown that ASCL1 is required to axon regeneration of
RGCs after optic nerve crush in adult zebrafish. Furthermore,
overexpression of ASCL1 in brainstem neurons of rats promotes
noradrenergic axon regeneration after spinal cord injury
and improves hindlimb movement recovery (Williams et al.,
2015). These findings suggest that overexpression of proneural
genes in adult neurons after injury could be an interesting
strategy to promote axon regeneration in the mammalian CNS.
According to this notion, ASCL1 expression upregulates the
expression of several genes involved in axonogenesis and axon
guidance during neuronal differentiation (Castro et al., 2011;
Raposo et al., 2015). Moreover, ASCL1 induces the expression
of other transcription factors involved in axon regeneration,
such as SOX11 (Masserdotti et al., 2015). Last but not least,
binding of ASCL1 to DNA increases chromatin accessibility
at regulatory regions of its target genes (Raposo et al., 2015),
what could be an interesting mechanism to overcome epigenetic
barriers to the expression of pro-regenerative genes after CNS
injury.

A recent elegant study points to c-Myc as a pivotal
transcription factor controlling axon regeneration and survival
of RGC after optic nerve injury. The transcription factor c-
Myc is a oncogene known to control cell cycle progression,
proliferation, growth, adhesion, differentiation, apoptosis, and
metabolism (Meyer and Penn, 2008). In adult mice, c-Myc is
highly expressed in RGC and it is downregulated after optic nerve
crush (Belin et al., 2015). Overexpression of c-Myc promotes
RGC survival and axon regeneration after optic nerve crush.
As an additional highlight of this study, the authors showed,
using a tamoxifen-inducible c-Myc transgenic mouse line, that
transient overexpression of c-Myc prior to optic nerve injury
promotes both robust neuronal survival and axon regeneration of
RGCs. Moreover, c-Myc expression even after injury significantly
increases RGC survival and axon regeneration, suggesting that
c-Myc can rescue these injured neurons from apoptotic death
and promote their axon regeneration (Belin et al., 2015).
Although, the authors showed very robust effects of neuronal
survival and axon regeneration, additional long-term studies
are necessary in order to translate this strategy to the clinics
because c-Myc is a well know transcription factor involved in
tumorigenesis.

Rho/ROCK

Although, the main focus of this review is not extracellular
inhibitory molecules that block axon regeneration, here we will
briefly discuss some studies that manipulate the Rho/ROCK
pathway, which is an important intracellular signaling pathway
activated by different extracellular inhibitory factors (Shamah
et al., 2001; Dontchev and Letourneau, 2003; Lin et al., 2007).
Many of these inhibitory components bind to receptors in the
axonal membrane and lead to activation of Ras homologous
member A (RhoA) resulting in growth cone collapse and axonal
retraction (Jalink et al., 1994; Wahl et al., 2000; Gu et al.,
2013). The Rho-associated coiled-coil-containing protein kinase
(ROCK) has been identified as a main downstream target of
RhoA (Ishizaki et al., 1997), which is responsible for propagating
this signal to the cytoskeleton, modulating neurite growth and
axon regeneration (Moreau-Fauvarque et al., 2003; Mueller
et al., 2005). Several studies have used genetic manipulation
techniques to modulate this pathway to promote axonal
regrowth. Expression of a dominant negative mutant of ROCK
promotes neurite outgrowth of DRG neurons cultured on myelin
substrate. In addition, expression of this dominant negative
mutant in rubrospinal neurons enhances axon regeneration of
rubrospinal tract (RST) axons after cervical spinal cord injury.
Importantly, this was accompanied by recovery of forelimb and
hindlimb functions (Wu et al., 2009). Focusing on the same
neuronal type, we have shown that post-injury knockdown of
ROCK2, using a shRNA against it, promotes rubrospinal neuron
survival and prevents atrophy after spinal cord hemisection
(Challagundla et al., 2015). Moreover, knockdown of ROCK2
enhances RST axonal sprouting proximal to the lesion. However,
in this study ROCK2 downregulation did not increase axon
regeneration distal to the lesion and only promotes minimal
recovery in hindlimb motor behavior (Challagundla et al.,
2015). In the visual system, knockdown of ROCK2 enhances
neurite outgrowth of RGCs cultured on inhibitory substrates.
Furthermore, knockdown of ROCK2 induces substantial axonal
regeneration, increases survival of RGCs and attenuates axonal
degeneration of proximal axons after optic nerve injury assessed
by in vivo live imaging (Koch et al., 2014a). In addition to ROCK,
downregulation of RhoA has beneficial effects on neuronal
survival and regeneration. Knockdown of RhoA promotes
neurite outgrowth of RGC neurons cultured on inhibitory
substrate as well as neurite regeneration of primary midbrain
neurons after scratch lesion. Besides that, downregulation of
RhoA significantly enhances axonal regeneration and survival of
RGCs after optic nerve lesion (Koch et al., 2014b). Taken together,
these findings imply that the Rho/ROCK pathway may be an
interesting molecular target for the treatment of traumatic CNS
injury.

Considering the broad roles of RhoA/ROCK pathway in the
control of cell proliferation, specification, survival and migration
(Cappello, 2013; Duquette and Lamarche-Vane, 2014), it is
possible that direct downregulation of RhoA or ROCK may
lead to undesired effects. However, new approaches to interfere
with specific effects of that pathway on axonal growth could be
designed in the future. According to this notion, it has been
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FIGURE 2 | Functional protein networks involved in axon regeneration. Schematic representation of interactions among proteins manipulated to stimulate CNS axon

regeneration and discussed in this work. Nodes show the proteins described throughout the work. Observe that most proteins show some direct or indirect

interaction, except the transcription factors SOX11, ASCL1, and members of the KLF family (KLF1, 7, 12, 13, 14, 15, 16, and 19). Edges represent protein-protein

associations, as follows: Known interactions—Light blue (from curated databases) and purple (experimentally determined); Predicted interactions—dark green (gene

neighborhood), red (gene fusions), and dark blue (gene co-occurrence); Others—light green (text-mining), black (co-expression), and cyan (protein homology).

Observe that most proteins coded by genes manipulated in previous work show some degree of association. The total number of edges is 104, whereas the

expected number of edges for a random set of proteins of similar size is 24, indicating that the proteins are at least partially biologically connected, as a group.

shown that the ubiquitin E3 ligase Smad Ubiquitin Regulatory
Factor 1 (Smurf1) is phosphorylated at Threonin 306 by PKA
after BDNF treatment of hippocampal and cerebral cortex
neurons. This phosphorylated form of Smurf1 then reduces
degradation of polarity protein Par6 and increases degradation
of growth-inhibiting RhoA, leading to neuronal polarity and
axon initiation (Cheng et al., 2011). These observations suggest
that site-specific phosphorylation of ubiquitin E3 ligases could
be a useful mechanism for establishing specific spatiotemporal
patterns of RhoA/ROCK (and other proteins) expression that are
required for axonal growth without interfering with other cell
functions.

COMBINATORIAL STRATEGIES

Genetic manipulations of single targets genes promote some
degree of axon regrowth in different types of neurons (Table 1;

Figure 1). Still, functional recovery has been limited, indicating
that combinatorial approaches may be necessary to induce
robust axon regeneration, synapse formation and myelination,
all required for efficient propagation of neuronal signals and
functional recovery. Interestingly, most genes manipulated in
experimental protocols aiming at boosting axonal regeneration
show some degree of interaction (Figure 2) and are involved
in the positive regulation of macromolecules biosynthesis (GO:
0010557). The transcription factors ASCL1 and SOX11 are
exceptions to this rule, suggesting that these proteins may elicit
axonal regeneration through a distinct mechanism.

The crosstalk among proteins involved in axon regeneration
may help to explain the additional beneficial effects of
combinatorial genetic manipulations on axon regeneration and
neuronal survival. Indeed, co-deletion of PTEN and SOCS3, has
produced one of themost robust effects on axon regrowth to date.
While single deletion of either PTEN or SOCS3 induces axon

Frontiers in Cellular Neuroscience | www.frontiersin.org 10 August 2017 | Volume 11 | Article 231

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Ribas and Costa Gene Manipulation to Promote Axon Regeneration

regeneration of the optic nerve up to 2–3 mm distal to the lesion,
co-deletion of PTEN and SOCS3 results in more than ten-fold
increase in the number of regenerating axons at 2mm distal to
the lesion compared with deletion of either gene alone (Sun et al.,
2011). Moreover, in the double mutants, a substantial number of
regenerating axons reached the optic chiasm and several could
grow even further, reaching the optic-tract brain entry zone, the
hypothalamus and the suprachiasmatic nuclei area. In addition
to axon regeneration, co-deletion of PTEN and SOCS3 also
significantly enhances RGC survival compared to single deletion
(Sun et al., 2011). In the spinal cord, deletion of SOCS3 promotes
sprouting of uninjured CST axons after unilateral pyramidotomy,
an effect that can be further enhanced by co-deletion of PTEN,
resulting in significant recovery of skilled locomotion (Jin
et al., 2015). These findings suggest that PTEN/mTOR and
SOCS3/JAK/STAT3 pathways act synergistically to promote axon
regeneration, sprouting and neuronal survival and point to these
pathways as potential targets for combinedmanipulation in order
to promote functional recovery. However, as mentioned before,
both pathways are involved in tumorigenesis, thus long-term
studies are necessary to prove the safety of PTEN and SOCS3
co-deletion.

Combinatorial modulation of SOCS3 and KLF family member
of transcription factors have also promoted additional effects on
axon regeneration. Qin and colleagues showed that conditional
deletion of SOCS3 promotes axon regeneration after optic nerve
lesion, which is further enhanced by co-deletion of KLF4.
While in this study the authors observed beneficial effects
of double-deletion on axon regeneration, RGC survival was
not improved (Qin et al., 2013). However, in KLF4-deleted
animals, intravitreal injection of CNTF, a well know cytokine
that activates the JAK/STAT3 pathway, dramatic enhances axon
regrowth and, interestingly, results in a significant increase in
the survival of injured RGCs. Moreover, the authors showed that
KLF4 physically interacts with STAT3 and suppresses STAT3-
dependent gene expression (Qin et al., 2013). Therefore, these
findings indicate a crosstalk between KLF4 and STAT3 that
could be manipulated in a synergistic fashion to promote axon
regrowth and neuronal survival.

In the same direction, Belin and colleagues observed that
simultaneous overexpression of c-Myc and deletion of PTEN
further increase axon regrowth and RGC survival compared with
either strategy alone. The combination of PTEN and SOCS3
deletion with overexpression of CNTF and c-Myc promotes
robust regeneration of injured optic nerve axons, with a five-fold
increase in the number of regenerating axons at the proximal
end of the optic chiasm, compared with co-deletion of PTEN
and SOCS3 and overexpression of CNTF only (Belin et al.,
2015). Despite the impressive regenerating effect obtained by this
combinatorial approach, one important issue raised in this study
was that regenerating axons also projected ectopically into the
contralateral optic nerve, suggesting possible guidance problems.
Using the visual system, Pernet and colleagues have shown that
ROCK is an important protein involved in the control of axonal
growth direction. Overexpression of STAT3 in RGC promotes
axonal regeneration in the injured optic nerve. However,
analysis of whole-mounted optic nerves in three dimensions

showed that the regenerating axons displayed irregular courses,
suggesting axonal misguidance. Pharmacological inhibition
of ROCK reduced the misguidance issues of regenerating
axons and improved long-distance axon regeneration of RGCs
overexpressing STAT3 (Pernet et al., 2013), suggesting that
correcting direction problems is an important step toward robust
axon regeneration and pointing to ROCK as a pivotal target. It
will be interesting to test in the future whether the manipulation
of ROCK could improve the directional issues observed in
the study by Belin and co-workers. Nevertheless, these work
manipulated proteins involved in tumorigenesis, namely PTEN,
SOCS3, and c-Myc, which again raises important concerns
regarding the potential long-term effects of this manipulation.

Recently, combination of neuronal electrical stimulation
and expression of proteins that promote axon regrowth has
emerged as an alternative to boost regeneration. Enhancement
of RGCs electrical activity using chemogenetic tools promotes
axon regeneration after optic nerve lesion (Lim et al., 2016).
Combination of increased RGC activity, by high-contrast visual
stimulation, with genetic activation of the mTOR pathway
promotes extensive axon regeneration (Lim et al., 2016).
Moreover, triple combination of high-contrast visual stimulation,
mTOR activation, and removal of the visual input from the
intact eye (i.e., forcing the use of lesioned eye) leads to the
regrowth of RGC axons along the entire optic pathway (Lim
et al., 2016). In this combinatorial strategy, regenerating axons
avoided incorrect targets and projected to their normal target
nuclei partially rescuing visual behavior (Lim et al., 2016). These
impressive findings show the importance of mTOR activation
and, more interesting, the importance of neuronal activity to
promote long distance axon regeneration and reconnection with
the correct targets. Nonetheless, the number of axons that find
their correct target is insufficient to promote complete recovery,
indicating that additional advances are still necessary.

In addition to long-distance regeneration and reconnection
to proper targets, re-myelination is also an import step to
promote functional recovery. Manipulation of PTEN and SOCS3
expression robustly promotes axon regrowth and formation
of functional synapses in the superior colliculus, but fails to
produce significant recovery of visual function. This failure can
be partly explained by the lack of myelination in regenerated
axons, which exhibit poor electrical conductance. Accordingly,
application of voltage-gated potassium channel blockers
restores conduction and promotes recovery of behavioral
functions (Bei et al., 2016). Thus, proper myelination of
regenerating axons is a crucial step to improve nerve conduction
to ultimately achieve functional recovery after injuries to
the CNS.

PERSPECTIVES

In the last decade, many efforts have been made to uncover
the signaling pathways and networks involved in axon growth
in the injured CNS. The use of different strategies to modulate
gene expression, such as transgenic animals and viral vectors,
provided useful tools to analyze the role of specific proteins
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TABLE 2 | First 20 functional enrichments in the network shown in Figure 2 using Biological Process Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) Pathways.

#Pathway ID Pathway description Observed

gene count

False

discovery rate

Matching proteins in your network (labels)

BIOLOGICAL PROCESS GENE ONTOLOGY (GO)

GO.0010557 Positive regulation of macromolecule biosynthetic process 20 9.39e-13 Akt1,Ascl1,Atf3,Bdnf,Fos,Klf1,Klf12,Klf13,Klf14,Klf15,

Klf4,Klf5,Klf7,Klf9,Mtor, Myc,

Pten,Rhoa,Sox11,Stat1

GO.0010628 Positive regulation of gene expression 20 9.39e-13 Akt1,Ascl1,Atf3,Bdnf,Fos,Klf1,Klf12,Klf13,Klf14,Klf15,

Klf4,Klf5,Klf7,Klf9,Mtor,Myc,Pten,Rhoa,Sox11,Stat1

GO.0045893 Positive regulation of transcription, DNA-templated 19 9.39e-13 Akt1,Ascl1,Atf3,Bdnf,Fos,Klf1,Klf12,Klf13,Klf14,Klf15,

Klf4,Klf5,Klf7,Klf9,Mtor,Myc,Pten,Sox11,Stat1

GO.0031328 Positive regulation of cellular biosynthetic process 20 9.56e-13 Akt1,Ascl1,Atf3,Bdnf,Fos,Klf1,Klf12,Klf13,Klf14,Klf15,

Klf4,Klf5,Klf7,Klf9,Mtor,Myc,Pten,Rhoa,Sox11,Stat1

GO.0045595 Regulation of cell differentiation 19 9.56e-13 Akt1,Ascl1,Bdnf,Cntf,Creb1,Fos,Klf13,Klf4,Klf5,Mtor,

Myc,Pten,Rhoa,Rock1,Rock2,Socs2,Socs3,Sox11,Stat1

GO.0051173 Positive regulation of nitrogen compound metabolic

process

20 9.56e-13 Akt1,Ascl1,Atf3,Bdnf,Fos,Klf1,Klf12,Klf13,Klf14,Klf15,

Klf4,Klf5,Klf7,Klf9,Mtor,Myc,Pten,Rhoa,Sox11,Stat1

GO.0006355 Regulation of transcription, DNA-templated 23 2.09e-12 Akt1,Ascl1,Atf3,Bdnf,Fos,Klf1,Klf12,Klf13,Klf14,Klf15,

Klf16,Klf4,Klf5,Klf6,Klf7,Klf9,Mtor,Myc,Pten,Rhoa,Sox11,

Stat1,Stat2

GO.0031325 Positive regulation of cellular metabolic process 22 8.17e-12 Akt1,Ascl1,Atf3,Bdnf,Cntf,Fos,Klf1,Klf12,Klf13,Klf14,Klf15,

Klf4,Klf5,Klf7,Klf9,Mtor,Myc,Pten,Rhoa,Sox11,Stat1,Stat2

GO.0007166 Cell surface receptor signaling pathway 18 9.16e-12 Akt1,Ascl1,Bdnf,Cntf,Cntfr,Creb1,Fos,Jun,Klf4,Klf6,Myc,

Rhoa,Rock2,Socs1,Socs2,Socs3,Stat1,Stat2

GO.0006351 Transcription, DNA-templated 20 1.03e-11 Ascl1,Atf3,Creb1,Fos,Jun,Klf1,Klf12,Klf13,Klf14,Klf15,

Klf16,Klf4,Klf5,Klf6,Klf7,Klf9,Myc,Sox11,Stat1,Stat2

GO.0010243 Response to organonitrogen compound 14 1.03e-11 Akt1,Ascl1,Creb1,Fos,Jun,Klf15,Klf4,Mtor,Myc,Pten,Rhoa,

Socs2,Socs3,Stat1

GO.0018130 Heterocycle biosynthetic process 21 1.03e-11 Ascl1,Atf3,Creb1,Fos,Jun,Klf1,Klf12,Klf13,Klf14,Klf15,

Klf16,Klf4,Klf5,Klf6,Klf7,Klf9,Mtor,Myc,Sox11,Stat1,Stat2

GO.0044271 Cellular nitrogen compound biosynthetic process 22 1.03e-11 Akt1,Ascl1,Atf3,Creb1,Fos,Jun,Klf1,Klf12,Klf13,Klf14,

Klf15,Klf16,Klf4,Klf5,Klf6,Klf7,Klf9,Mtor,Myc,Sox11,Stat1,

Stat2

GO.0048519 Negative regulation of biological process 25 1.03e-11 Ascl1,Atf3,Bdnf,Cntf,Cntfr,Creb1,Jun,Klf12,Klf13,Klf14,

Klf15,Klf16,Klf4,Klf5,Klf9,Mtor,Myc,Pten,Rhoa,Rock1,

Rock2,Socs1,Socs2,Socs3,Stat1

GO.0048522 Positive regulation of cellular process 25 1.96e-11 Ascl1,Atf3,Bdnf,Cntf,Cntfr,Fos,Klf1,Klf12,Klf13,Klf14,Klf15,

Klf4,Klf5,Klf7,Klf9,Myc,Pten,Rhoa,Rock1,Rock2,Socs2,

Socs3,Sox11,Stat1,Stat2

GO.0048523 Negative regulation of cellular process 24 2.03e-11 Ascl1,Atf3,Bdnf,Cntf,Cntfr,Creb1,Jun,Klf12,Klf13,Klf14,

Klf15,Klf16,Klf4,Klf5,Klf9,Mtor,Myc,Pten,Rhoa,Rock1,

Socs1,Socs2,Socs3,Stat1

GO.1901362 Organic cyclic compound biosynthetic process 21 2.04e-11 Ascl1,Atf3,Creb1,Fos,Jun,Klf1,Klf12,Klf13,Klf14,Klf15,

Klf16,Klf4,Klf5,Klf6,Klf7,Klf9,Mtor,Myc,Sox11,Stat1,Stat2

GO.2000026 Regulation of multicellular organismal development 18 2.09e-11 Akt1,Ascl1,Bdnf,Cntf,Creb1,Fos,Jun,Klf13,Klf4,Mtor,Myc,

Pten,Rhoa,Rock1,Rock2,Socs2,Sox11,Stat1

GO.0010604 Positive regulation of macromolecule metabolic process 21 2.21e-11 Akt1,Ascl1,Atf3,Bdnf,Cntf,Fos,Klf1,Klf12,Klf13,Klf14,Klf15,

Klf4,Klf5,Klf7,Klf9,Mtor,Myc,Pten,Rhoa,Sox11,Stat1

GO.0030154 Cell differentiation 22 1.23e-10 Akt1,Atf3,Bdnf,Cntf,Creb1,Fos,Jun,Klf1,Klf15,Klf4,Klf5,

Klf7,Mtor,Myc,Pten,Rhoa,Rock1,Rock2,Socs1,Socs2,

Socs3,Stat1

KYOTO ENCYCLOPEDIA OF GENES AND GENOMES (KEGG) PATHWAYS

4380 Osteoclast differentiation 8 1.5e-09 Akt1,Creb1,Fos,Jun,Socs1,Socs3,Stat1,Stat2

4630 JAK-STAT signaling pathway 8 2.65e-09 Akt1,Cntf,Cntfr,Myc,Socs1,Socs3,Stat1,Stat2

5161 Hepatitis B 8 2.65e-09 Akt1,Creb1,Fos,Jun,Myc,Pten,Stat1,Stat2

5200 Pathways in cancer 8 7.84e-07 Akt1,Fos,Jun,Mtor,Myc,Pten,Rhoa,Stat1

5210 Colorectal cancer 5 1.52e-06 Akt1,Fos,Jun,Myc,Rhoa

(Continued)
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TABLE 2 | Continued

#Pathway ID Pathway description Observed

gene count

False

discovery rate

Matching proteins in your network (labels)

5206 MicroRNAs in cancer 6 1.79e-06 Mtor,Myc,Pten,Rhoa,Rock1,Socs1

4917 Prolactin signaling pathway 5 2.47e-06 Akt1,Fos,Socs1,Socs3,Stat1

4062 Chemokine signaling pathway 6 5.66e-06 Akt1,Rhoa,Rock1,Rock2,Stat1,Stat2

4510 Focal adhesion 6 1.15e-05 Akt1,Jun,Pten,Rhoa,Rock1,Rock2

4668 TNF signaling pathway 5 1.15e-05 Akt1,Creb1,Fos,Jun,Socs3

5205 Proteoglycans in cancer 6 1.44e-05 Akt1,Mtor,Myc,Rhoa,Rock1,Rock2

5166 HTLV-I infection 6 4.01e-05 Akt1,Atf3,Creb1,Fos,Jun,Myc

4921 Oxytocin signaling pathway 5 5.14e-05 Fos,Jun,Rhoa,Rock1,Rock2

4022 cGMP-PKG signaling pathway 5 6.83e-05 Akt1,Creb1,Rhoa,Rock1,Rock2

5164 Influenza A 5 6.83e-05 Akt1,Jun,Socs3,Stat1,Stat2

5132 Salmonella infection 4 7.69e-05 Fos,Jun,Rock1,Rock2

4012 ErbB signaling pathway 4 9.74e-05 Akt1,Jun,Mtor,Myc

5215 Prostate cancer 4 0.000111 Akt1,Creb1,Mtor,Pten

5168 Herpes simplex infection 5 0.000114 Fos,Jun,Socs3,Stat1,Stat2

4915 Estrogen signaling pathway 4 0.00013 Akt1,Creb1,Fos,Jun

in a variety of events during neuronal regeneration. Moreover,
the possibility of temporal control of gene expression, using
the CreERT/Tamoxifen system, can allow the evaluation of
the role of specific molecules at different time-points after
CNS injury. Finally, the use of AAV-mediated transduction
to manipulate target genes in adult neurons after CNS injury
and stimulate axon regeneration represents a fundamental step
toward the translation of these techniques into clinic. Because
of all advantages, including the ability to efficiently target
various cell types in the CNS, the excellent safety profile and
low immunogenicity that allows for long-term expression of
the transgene after a single administration, recombinant AAV
vectors are the most suited vector for gene manipulation in the
CNS, which include the delivery of therapeutic genes or the Cre
into transgenic animals to either overexpress or delete specific
genes. Moreover, we believe that AAV are currently the most
favored vectors for gene therapy in the injured CNS.

Optic nerve lesion and spinal cord injury are the most used
experimental models employed to investigate the role of specific
genes in axon regeneration in the CNS. The optic nerve lesion has
many experimental advantages that facilitate the use of genetic
tools and evaluation of the effects. On the other hand, spinal
cord injury is more important clinically. Although, both models
have advantages and disadvantages, both are very useful models
to employ genetic techniques and identify genes involved in the
control of axon regrowth.

Yet, although several groups identified many potential
candidates to promote axon regrowth, our current understanding
of the biological processes driving axon regeneration is still
relatively limited, demonstrating that additional studies are
necessary for a more accurate view of the mechanisms and
synergistic effects of molecules controlling axon growth. Up
to date, most molecular pathways tested in the adult CNS are
involved in general processes of macromolecule biosynthesis
and cell differentiation (Table 2). However, these processes are
not specific for neurons and are often associated with cancer

(Table 2). Thus, the identification of molecular mechanisms
specific for axon growth, if theymay exist, will likely contribute to
the design of more efficient and safer strategies to promote CNS
repair.

We believe that a more comprehensive knowledge about the
molecular control of axon elongation, axon guidance, synaptic
formation, and myelination in the developing CNS may further
contribute to this goal. As discussed in previous sections, the
developmental decline in the capacity for axon growth in the CNS
is associated with numerous changes in gene expression, pointing
to the developing CNS as an interesting model to identify
new targets involved in axon growth, in particular molecules
controlling gene expression programs, i.e., transcription factors.
Genetic manipulation of transcription factors that act as master
key regulators of axon elongation during development might
represent a valuable strategy for promoting axon regeneration in
adults.

In addition to the identification of new targets, modifications
of previous strategies to avoid undesired side effects should also
be considered. For example, genetic tools designed to temporally
control the expression of selected transcription factors, such as
SOX11, may allow the stimulation of axon growth and by-pass
the undesired effect of cell death. Similar approaches may be
considered to the combination of PTEN, SOCS3, and c-Myc,
which leads to a robust axon growth but are also associated
with tumor formation. Therefore, long-term studies employing
temporal control of gene expression are necessary to establish
the efficiency and safety of such strategies to promote axon
regeneration.

Last but not least, blocking axonal degeneration improves the
ability of axons to regenerate past a lesion site (Ribas et al., 2017),
demonstrating that axonal stabilization could be an interesting
strategy to facilitate axon regeneration. Moreover, in addition
to promote robust axon regeneration, other events, such as
axon guidance to correct targets, establishment of functional
synapses, and remyelination, are also important to successfully
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restore neuronal function. This is still a long road that will
require many additional advances in our understanding of how
different intrinsic and extrinsic signals interact to generate a
precisely wired CNS. In sum, we advocate that the identification
of key molecular players for axon growth and guidance during
development, as well as a systematic analysis of their effects in the
adult CNS after injury, will contribute to the design of successful
therapeutic interventions aiming at the repair of the injured
CNS in conditions of neurodegenerative diseases or physical
trauma.
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