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Neuregulin receptor degradation protein-1 (Nrdp1) is an E3 ubiquitin ligase that targets
proteins for degradation and regulates cell growth, apoptosis and oxidative stress in
various cell types. We have previously shown that Nrdp1 is implicated in ischemic
cardiomyocyte death. In this study, we investigated the change of Nrdp1 expression
in ischemic neurons and its role in ischemic neuronal injury. Primary rat cerebral cortical
neurons and pheochromocytoma (PC12) cells were infected with adenoviral constructs
expressing Nrdp1 gene or its siRNA before exposing to oxygen-glucose deprivation
(OGD) treatment. Our data showed that Nrdp1 was upregulated in ischemic brain tissue
3 h after middle cerebral artery occlusion (MCAQO) and in OGD-treated neurons. Of note,
Nrdp1 overexpression by Ad-Nrdp1 enhanced OGD-induced neuron apoptosis, while
knockdown of Nrdp1 with siRNA attenuated this effect, implicating a role of Nrdp1 in
ischemic neuron injury. Moreover, Nrdp1 upregulation is accompanied by increased
protein ubiquitylation and decreased protein levels of ubiquitin-specific protease 8
(USP8) in OGD-treated neurons, which led to a suppressed interaction between
USP8 and HIF-1a and subsequently a reduction in HIF-1a protein accumulation in
neurons under OGD conditions. In conclusion, our data support an important role
of Nrdp1 upregulation in ischemic neuronal death, and suppressing the interaction
between USP8 and HIF-1a and consequently the hypoxic adaptive response of neurons
may account for this detrimental effect.

Keywords: ischemic stroke, neuronal injury, Nrdp1, apoptosis, HIF-1«, USP8

Abbreviations: BBB, blood brain barrier; DMEM, dulbecco’s modified eagle medium; FBS, fetal bovine serum;
GFP, green fluorescent protein; HIF-1a, hypoxia inducible factor-1a; LDH, lactate dehydrogenase; LPS, lipopolysaccharide;
MCAO, middle cerebral artery occlusion; NGF, nerve growth factor; OGD, oxygen-glucose deprivation; PLL, poly-I-lysine;
TTC, 2,3,5-triphenyltetrazolium chloride; UPS, ubiquitin-proteasome system; USPS8, ubiquitin-specific protease 8.

Frontiers in Cellular Neuroscience | www.frontiersin.org 1

September 2017 | Volume 11 | Article 293


http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
https://doi.org/10.3389/fncel.2017.00293
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2017.00293&domain=pdf&date_stamp=2017-09-20
http://journal.frontiersin.org/article/10.3389/fncel.2017.00293/abstract
http://journal.frontiersin.org/article/10.3389/fncel.2017.00293/abstract
http://journal.frontiersin.org/article/10.3389/fncel.2017.00293/abstract
http://journal.frontiersin.org/article/10.3389/fncel.2017.00293/abstract
http://journal.frontiersin.org/article/10.3389/fncel.2017.00293/abstract
http://loop.frontiersin.org/people/373329/overview
http://loop.frontiersin.org/people/373320/overview
http://loop.frontiersin.org/people/373317/overview
http://loop.frontiersin.org/people/373344/overview
http://loop.frontiersin.org/people/417070/overview
http://loop.frontiersin.org/people/355861/overview
https://creativecommons.org/licenses/by/4.0/
mailto:xinchunjin@gmail.com
mailto:wlliu@szu.edu.cn
https://doi.org/10.3389/fncel.2017.00293
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive

Zhang et al.

Nrdp1 Mediates Ischemic Neuronal Injury

INTRODUCTION

Cerebral ischemia initiates a cascade of cytotoxic molecules
responsible for the death of neural cells as well as the damage
of the blood brain barrier (BBB) at the injury site (Doyle
et al,, 2008). In more than one decade, ischemia-associated
neuronal injury has been a topic of intensive investigation, which
leads to the identification of several mechanisms accounting
for cerebral ischemia injury, such as apoptosis, oxidative
damage, inflammatory injury, mitochondrial dysfunction and
dysregulated protein degradation (Caldeira et al., 2014; Kalogeris
et al., 2014; Palencia et al., 2015). The ubiquitin-proteasome
system (UPS) is the major intracellular machinery for protein
degradation, which is responsible for maintaining cellular
homeostasis by regulating several important processes such
as cell death, cell division, cell signal transduction, cell cycle
progression and transmembrane transport (Wagner et al,
2011). Emerging evidence has suggested a role of suppressed
proteasome activity in contributing to neuronal death in
ischemic brain injury. However, little is known about the
UPS components whose activities are suppressed under brain
ischemia conditions (Caldeira et al., 2014).

Neuregulin receptor degradation protein-1 (Nrdpl, also
known as FLRF or RNF41), is a ring finger E3 ubiquitin
ligase and primarily expressed in the brain, heart, prostate
and skeletal muscle (Diamonti et al., 2002). Several studies
have demonstrated an important role of Nrdpl in regulating
cell growth, apoptosis, oxidative stress and inflammation,
in which Nrdpl promotes the ubiquitination of ubiquitin-
specific protease 8 (USP8), ErbB3, ErbB4, BRUCE/Apollon,
MyD88 and Parkin (Qiu et al, 2004; Yen et al, 2006; Yu
and Zhou, 2008; Wang et al.,, 2009; De Ceuninck et al., 2013;
Sun et al, 2017). In a previous study, we have shown that
Nrdpl is implicated in ischemic cardiomyocyte death, in which
overexpression of Nrdpl augmented ischemia-reperfusion
(I/R)-induced cardiomyocyte apoptosis while inhibition of
endogenous Nrdpl could protect cardiomyocytes against I/R
injury (Zhang et al., 2011b). In the brain, Nrdpl is found to be
involved in suppressing brain tumor formation and promoting
lipopolysaccharide (LPS)-induced neuroinflammation via its
pro-apoptotic action (Shen et al., 2015; Shi et al., 2015; Wu et al,,
2016). It is well known that neuronal apoptosis is a major event in
ischemic stroke, however, the role of Nrdp1 in ischemic neuronal
death has not yet been investigated. Our preliminary data shows
that cerebral ischemia induces Nrdpl mRNA expression in
ischemic cerebral cortex in a rat model of middle cerebral
artery occlusion (MCAO). However, the exact role of Nrdp1 in
ischemia-induced neuronal damage remains to be determined.

USP8 is a substrate of Nrdpl, and interestingly, it is also
a de-ubiquitination enzyme (Wu et al,, 2004; De Ceuninck
et al., 2013). This de-ubiquitination activity has made USP8 a
stabilizing molecule for HIF-1a protein, in which USP8 prevents
HIF-1a from pVHL-mediated degradation (Troilo et al., 2014).
It is well known that HIF-1a plays a vital role in attenuating
brain tissue damage through promoting adaptive response
during ischemic stroke (Helton et al., 2005; Baranova et al,
2007; Fan et al.,, 2009; Singh et al.,, 2012; Zhang et al., 2014;

Yang Y. et al, 2017). These data raise an important hypothesis
that ischemia-induced Nrdpl upregulation may contribute
to ischemic neuronal injury via downregulating USP8 (via
degradation) and thus destabilizing HIF-1a in ischemic neurons.

In the present study, we tested this hypothesis in
cultured primary cerebral cortical neurons and PCI2 cells
(pheochromocytoma of the rat adrenal medulla) using an
in vitro ischemic model of oxygen-glucose deprivation (OGD).
We chose relative short OGD durations as the ischemic stimulus
in this study because we have been focusing on early ischemic
BBB damage that occurs within the first 4.5 h after ischemia
onset (i.e., the therapeutic time window of tPA thrombolysis for
ischemic stroke; Hacke et al., 2008; Jin et al., 2012; Liu et al., 2012,
2016), and in these studies, we observed substantial neuronal
death in the ischemic brain within several hours after stroke onset
(Jin et al., 2012; Liu et al., 2012). Our data showed that OGD
treatment significantly increased Nrdpl expression in neuronal
cells, and knockdown or overexpression of Nrdpl augmented
or attenuated OGD-induced neuronal death, respectively.
Moreover, Nrdpl upregulation was accompanied by increased
ubiquitinization of USP8 and its degradation, and this change
was associated with decreased HIF-1a levels in ischemic neurons.

MATERIALS AND METHODS
Rat Model of MCAO

The Laboratory Animal Care and Use Committee of Shenzhen
University approved all animal related experimental protocols.
Male Sprague-Dawley rats (purchased from the Experimental
Animal Center Southern Medical University, Guangzhou,
Guangdong, China) weighing 300 g to 400 g were anesthetized
with isoflurane (4% for induction, 1.75% for maintenance)
in N,O:0, (70%:30%) during surgical procedures and the
body temperature was maintained through a heated pad. A
4-0 silicone-coated monofilament nylon suture was introduced
into the right intra-carotid artery to occlude the opening
of the MCA as we previously described (Liu et al., 2009).
MCAO was lasted for 3 h, and the animals were then deeply
anesthetized with isoflurane and euthanized by decapitation.
Successful MCAO was confirmed by 2,3,5-triphenyltetrazolium
chloride (TTC, Sigma-Aldrich, St. Louis, MI, USA) staining of
the 2-mm-thick brain coronal section 6 mm away from the
tip of the front lobe as we previously described (Liu et al.,
2008).

Primary Culture of Rat Cerebral Cortical

Neurons

Rat primary cortical neurons were cultured using a method
as we described previously (Liu et al., 2007). Briefly, cerebral
cortices were removed from the embryos of Sprague-Dawley
pregnant rats at 15-18 days gestation (Shouthern Medical
University Experimental Animal Center). After removing
the meninges, the cortical tissue was minced and incubated
with 0.05% trypsin for 30 min at 37°C with gentle trituration.
After digestion, the neurons were achieved and suspended
in neurobasal medium containing 2% B27 supplement
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and 0.5 mM L-Glutamine. Before seeding, culture vessels
including 96-well plates, 1.2 cm glass slides or 6 cm dishes
were coated with poly-L-lysine (PLL; 50 pg/mL, Sigma-
Aldrich) at room temperature overnight. Neurons were
maintained at 37°C in a humidified 5% CO, incubator
and half of the culture medium was changed every 3 days.
The neurons were subjected to experiments 8 days after
seeding.

PC12 Cells Culture

PC12 cells, a rat PC12 cell line, were obtained from the
Cell Resource Center of the Institute of Basic Medical
Sciences, Peking Union Medical College/Chinese Academy of
Medical Sciences (Beijing, China). PC12 cells were grown as
a monolayer in dulbecco’s modified eagle medium (DMEM)
supplemented with 10% horse serum and 5% fetal bovine
serum (FBS), 100 U/ml penicillin and 100 pg/ml streptomycin
at 37°C in a humidified incubator gassed with 5% CO, and
95% room air. For neuronal differentiation, PC12 cells were
seeded in PLL pre-coated plates and allowed to adhere for
24 h. Following adherence, the culture medium was replaced
with nerve growth factor (NGF, 50 ng/ml; New England
Biolabs, MA, USA) containing medium. The NGF-containing
medium was replaced every other day. Seven days after
the supplement of NGF, the NGF-induced differentiation
of PC12 cells were determined using immunofluorescence
staining with antibodies against the neuron-specific marker
microtubule associated protein 2 (MAP2; Supplementary
Figure S1).

Adenoviral Constructs and Transfection
Recombinant adenoviral constructs, including Ad-control
(control construct), Ad-Nrdpl (overexpressing Nrdpl), Ad-si-
control (expressing non-targeting control siRNA) and Ad-si-
Nrdpl (expressing Nrdpl siRNA) were generated as described
previously (Zhang et al., 2011a). Eight days after plating, cells
were infected with Ad-control, Ad-Nrdpl, Ad-si-control or
Ad-si-Nrdp1 for 24 h before OGD treatment.

OGD Treatment

To mimic ischemic condition in vitro, primary neurons or
PC12 cells were exposed to OGD as described previously (Liu
et al., 2012). In brief, neurons or PC12 cells were subjected to
OGD by replacing the normal growth medium with glucose free
medium (DMEM without glucose) pre-equilibrated with 95%
N, and 5% CO,. The cells were then incubated in a humidified
airtight chamber (Biospherix Ltd., Lacona, NY, USA) for 1 h,
3 h, or 6 h. Control cultures were incubated with normal DMEM
medium without FBS at 37°C in 5% CO,/95% air. OGD was
terminated by removing cells from the hypoxic chamber and the
cells were collected separately for further measurement.

Lactate Dehydrogenase (LDH) Release
Assay

After OGD treatment, cell cytotoxicity was determined by
the release of lactate dehydrogenase (LDH), a cytoplasmic
enzyme released from cells. LDH release into the culture

medium was detected using a CytoTox 96®Non-Radioactive
Cytotoxicity Assay Kit (Promega Corporation. Madison, WI,
USA). Briefly, 50 pl of each sample medium (ie., pure
culture medium for measuring background LDH release,
culture media collected from control or OGD-treated cells
for measuring experimental LDH release and lysis buffer-
treated cells for measuring maximum LDH release) was
collected to assay LDH release. The samples were incubated
with reduced form of nicotinamide adenine dinucleotide and
pyruvate for 30 min at room temperature and the reaction
was terminated by adding Stop Solution. LDH release was
assessed by measuring the absorbance of supernatants at
490 nm. Cell death rate was calculated as follows: cell death
rate = (experimental LDH release-background LDH release)
/(maximum LDH release-background LDH release) x 100%.
The results were presented as fold increase of the control
cells.

Real-Time RT-PCR

Total RNA was isolated from neurons using Trizol reagents
(Invitrogen Life Technologies, Carlsbad, CA, USA). RNA
samples (2 pg) were reverse-transcribed to generate first-strand
cDNA. After reverse transcription using TagMan® Reverse
Transcription Kits (Applied Biosystems), reverse-transcribed
products were amplified with the 7900HT real-time PCR System
(Applied Biosystems) using SYBR® Green PCR Master Mix
(Applied Biosystems, Foster City, CA, USA) under the following
conditions: 30 s at 95°C, followed by a total of 40 cycles of two
temperature cycles (15 s at 95°C and 1 min at 60°C). Primer
sequences were as follows: rat Nrdp1 forward: 5'-ATGGGGTAT
GATGTAACCCGG-3' and reverse: 5-GATGCAGGCGTTGCA
GAAG-3'; Rat GAPDH served as endogenous control, and the
primers were forward: 5-CAATGTGTCCGTCGTGGATCT-3';
reverse: 5'-GTCCTCAGTGTAGCCCAAGATG-3'. The Ct value
was calculated by the comparative A AC; method using the SDS
Enterprise Database software (Applied Biosystems).

Determination of Cell Apoptosis Rate
Apoptosis was analyzed by TUNEL assay using Click-iT® Plus
TUNEL Assay (Life Technologies, Inc., Carlsbad, CA, USA)
according to manufacturer’s instruction. Briefly, at the end of
the indicated treatments, primary rat cerebral cortical neurons
grown on coverslips were incubated with TdT reaction mixture
for 2 h at 37°C, followed by 30-min incubation with the
Alexa Fluor® 594 dye. Then, the cells were counterstained
with DAPI (Sigma-Aldrich) for 20 min and observed under a
fluorescence microscope (Leica, Germany). The TUNEL-positive
nuclei of six non-overlapping fields per coverslip were counted
by a researcher blinded to treatment, and these counts were
converted to percentages by comparing the TUNEL-positive
counts to the total number of cell nuclei as determined by DAPI
counterstaining, that is TUNEL-positive ratio = (number of red
nuclei/number of blue nuclei) x 100%.

Western Blot Analysis
Protein samples were prepared from cultured neurons or
PC12 cells using extraction buffer as described previously
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(Liu et al., 2012). The protein samples were electrophoresed on
SDS-PAGE gels and transferred to a nitrocellulose membrane.
After blocking with 5% non-fat milk for 1 h at room temperature,
the membranes were incubated with the indicated primary
antibodies overnight and then with horseradish peroxidase-
conjugated secondary antibody for 1 h. The blots were
developed using a chemiluminescent system, and the bands were
scanned, and densitometry analysis was performed with Gel-pro
4.5 Analyzer (Media Cybernetics, Silver Spring, MD, USA).
The primary antibodies were anti-cleaved-PARP, anti-PARP,
anti-Bcl-2, anti-Bax, anti-USP8 and anti-f-actin. Anti-Nrdpl
and anti-HIF-1lo antibodies were purchased from BETHYL
Laboratories and Novus Biologicals, respectively, and the rest
primary antibodies were purchased from Santa Cruz Biotech.
Relative protein levels were quantified after normalization to the
loading control B-actin.

Co-Immumoprecipitation

After the indicated treatments, PC12 cells were lysed in
RIPA buffer and centrifuged at 12,000x g for 10 min at
4°C. The supernatant were incubated overnight at 4°C with
4 pg of anti-USP8 (Santa Cruz Biotech, Chicago, IL, USA),
followed by precipitation with 50 pl of Dynabeads protein A
(Pierce Biotechnology, Rockford, IL, USA) for 10 min at room
temperature. The protein A were then washed extensively with
binding buffer, resuspended in SDS-PAGE buffer, and boiled
for 5 min. Samples of 30 pg total cell lysate were used as an
input control. The precipitated complexes were separated on
SDS-PAGE gels, and transferred to nitrocellulose membranes,
and immunoblotted with anti-Nrdpl (BETHYL Laboratories,
Montgomery, TX, USA), K48-linkage-specific anti-ubiquitin
antibody (Abcam, Cambridge, MA, USA) or anti-HIF-la
antibody (Novus Biological, Littleton, CO, USA) to detect the
presence of these proteins in the complex. Normal rabbit IgG
(Santa Cruz Biotech) was used as a loading control.

Statistical Analysis

All data were expressed as means £ SEM. Differences between
groups were evaluated by either an unpaired Student’s ¢ test or
one-way ANOVA followed by Tukey’s post hoc test as indicated
in the Figure Legends. P < 0.05 was regarded as statistically
significant.

RESULTS

Nrdp1 Is Upregulated in Ischemic Cerebral
Cortex in a Rat Model of Middle Cerebral

Artery Occlusion

Nrdpl is found to be widely expressed in the brain and is
implicated in ischemic damage to the heart (Zhang et al., 2011b).
To determine whether Nrdpl plays a role in ischemic brain
injury, we examined the change of Nrdpl expression in the
cerebral cortex isolated from the rats that were subjected to
3-h MCAO without reperfusion. Nrdpl mRNA expression was
analyzed in isolated hemispheric cortex by real time RT-PCR
and found that 3-h MCAO induced a significant increase
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FIGURE 1 | Middle cerebral artery occlusion (MCAQ) induces neuregulin
receptor degradation protein-1 (Nrdp1) upregulation in cerebral cortex. Rats
were subjected to 3-h MCAQ before isolating hemispheric cerebral cortex.
The mRNA and protein levels of Nrdp1 in cerebral cortex from nonischemic
(Non-I) and ischemic (I) hemispheric tissue were analyzed by real-time RT-PCR
and western blot. (A) Real-time RT-PCR analysis showed that Nrdp1 mRNA
expression was significantly increased in ischemic hemispheric cortex.

*P < 0.05 vs. Non-I, ANOVA; n = 6. (B) Western blot analysis revealed
increased levels of Nrdp1 protein in ischemic hemispheric cortex. Upper
panel: representative immunoblots of Nrdp1 and the loading control g-actin;
bottom panel: quantitative data of protein band intensity after normalization to
B-actin. *P < 0.05 vs. Non-I, ANOVA; n = 6.

(~1-fold) of Nrdpl mRNA expression in ischemic hemispheric
cortex compared to non-ischemic cortical tissue (Figure 1A,
P < 0.05). Consistent with its mRNA change, Nrdpl protein
levels were also significantly increased in ischemic cerebral
cortex (Figure 1B). These results demonstrate that Nrdpl is
upregulated in the ischemic brain cortex. To further demonstrate
a role of Nrdpl1 in ischemic neuron injury and the underlying
mechanisms involved, we chose the widely used in vitro model of
ischemia (i.e., OGD) for the rest of this study.

OGD Induces Nrdp1 Expression in
Cerebral Cortical Neurons and PC12 Cells

To determine the functional role of cerebral Nrdpl in response
to OGD treatment, we examined the expression of Nrdpl in
OGD-treated primary rat cerebral cortical neurons. The cells
were exposed to OGD for 1, 3, or 6 h before analyzing
Nrdpl mRNA and protein levels. Real time RT-PCR analysis
showed that Nrdpl mRNA expression was increased in cerebral
cortical neurons after exposing to OGD for 1 h and was
further increased at 6-h OGD, while no significant difference
was seen between 1-h OGD and 3-h OGD (Figure 2A).
Western blot analysis showed that Nrdpl protein levels were
significantly increased in cerebral cortical neurons after exposing
to OGD for 3 h and 6 h, but not for 1 h (Figure 2B). To
further verify the above findings, we assayed the expression of
Nrdpl in PC12 cells exposed to the same OGD treatment as
above. Real time RT-PCR analysis showed that Nrdpl mRNA
expression was increased in PCI12 cells after exposing to
OGD for 3-h and 6-h OGD, but not for 1 h (Figure 2C).
Western blot analysis showed that Nrdpl protein levels were
significantly increased in PCI2 cells after exposing to OGD
for 6 h, but not for 1 h and 3 h (Figure 2D). These data
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FIGURE 2 | Oxygen-glucose deprivation (OGD) induces Nrdp1 upregulation in
primary rat cerebral cortical neurons and PC12 cells. Cells were subjected to
OGD treatment or normoxia (Control, Con) for 1, 3, or 6 h before analyzing
Nrdp1 mRNA and protein expression using real-time RT-PCR and western
blot. (A) Real time RT-PCR analysis showed that Nrdp1 mRNA expression
was significantly increased in primary rat cerebral cortical neurons at 1 h after
OGD treatment and was further increased when OGD was prolonged to 6 h.
*P < 0.05 vs. Con, ANOVA; n = 4. (B) Western blot analysis showed that
Nrdp1 protein levels were increased in 3-h OGD- and 6-h OGD-treated
primary rat cerebral cortical neurons, but not in 1-h OGD-treated cells. Upper
panel: representative immunoblots of Nrdp1 and the loading control B-actin;
bottom panel: quantitative data of protein band intensity after normalization to
B-actin. *P < 0.05 vs. Con, ANOVA; n = 4. (C) Real time RT-PCR analysis
showed that Nrdp1 mRNA expression was significantly increased in

PC12 cells at 3 h and 6 h after OGD treatment, but not 1 h. *P < 0.05 vs.
Con, ANOVA; n = 4. (D) Western blot analysis showed that Nrdp1 protein
levels were increased in 6-h OGD-treated PC12 cells, but not in 1-h OGD- and
3-h OGD-treated cells. Upper panel: representative immunoblots of Nrdp1 and
the loading control g-actin; bottom panel: quantitative data of protein band
intensity after normalization to B-actin. *P < 0.05 vs. Con, ANOVA; n = 4.

demonstrate that OGD induces Nrdpl upregulation in cerebral
cortical neurons as well as PC12 cells in a time-dependent
manner.

Effects of Nrdp1 on OGD-Induced
Apoptosis in Cerebral Cortical Neurons
and PC12 Cells

To investigate whether Nrdpl is implicated in OGD-induced
apoptosis in neurons, we transfected cerebral cortical neurons
with Ad-control, Ad-Nrdpl or Ad-si-Nrdpl. As shown in
Figure 3, the transfection efficiency reached more than 90% at
24 h after transfection (Figure 3A), and western blot analysis
showed that incubating the neurons with Ad-si-Nrdpl and
Ad-Nrdp1 for 48 h significantly reduced (~90% reduction) and
increased (~2-fold increase) Nrdpl protein levels, respectively

(Figures 3B,C). We assessed the effect of Ad-si-Nrdpl and
Ad-Nrdpl on OGD-induced neuronal death by measuring
LDH release (indicating late apoptosis and necrosis) and
TUNEL staining (indicating apoptosis). The data showed that
cell death and apoptosis did not differ across the groups
under basal conditions (Figures 3D,E and Supplementary
Figure S2). However, after OGD treatment, inhibition of
Nrdpl significantly attenuated neuronal death and apoptosis
as compared with the Ad-control, while transfection with the
Ad-Nrdpl greatly enhanced OGD-induced neurons death and
apoptosis (Figures 3D,E and Supplementary Figure S2).

To further verify a role of Nrdpl in OGD-induced
apoptosis in neurons, we assessed the effect of Nrdpl on
several key apoptosis-associated signal proteins including
cleaved-PARP and Bax/Bcl-2. As shown in Figures 3EG, 6-h
OGD induced a significant increase in cleaved PARP levels
(PARP activation) and a greater ratio of Bax/Bcl-2 in cerebral
cortical neurons, and transfection with Ad-si-Nrdpl abolished
these changes. Accordingly, overexpression of Nrdpl augmented
OGD-induced increases in cleaved PARP and Bax/Bcl-2 ratio.
As expected, Ad-si-Nrdpl or Ad-Nrdpl alone did not affect
these apoptosis-associated signal proteins (Figures 3E,G). Taken
together, these results clearly indicate that Nrdpl plays an
important role in ischemia-induced apoptosis in cerebral cortical
neurons.

Effects of Nrdp1 on HIF-1« and
USP8 Expression in Cerebral Cortical
Neurons and PC12 Cells Exposed to OGD

Treatment

HIF-la acts as an intracellular sensor for hypoxia and
promotes the cells to adapt to hypoxic/ischemic conditions
(Zis et al, 2015), thus we hypothesized that Nrdpl might
interact with or suppress HIF-la to promote neuronal cell
death under OGD conditions. To test this possibility, we
transfected primary cortical neurons and PC12 cells with
Ad-control, Ad-Nrdpl, Ad-si-control or Ad-si-Nrdpl before
exposing to OGD for 6 h. HIF-1a protein levels were analyzed
by western blot. As shown in Figures 4A,B, 6-h OGD
induced a significant increase in the accumulation of HIF-1a
protein in both primary neurons and PCI12 cells transfected
with Ad-si-control, and of note, this increase was further
augmented or attenuated when Nrdpl was knocked down
by Ad-si-Nrdpl or overexpressed by Ad-Nrdpl, respectively
(Figures 4C,D). These data suggest that Nrdpl may act as a
negative regulator for HIF-1a expression in neurons under OGD
conditions.

The fact that Nrdpl’s substrate USP8 can protect HIF-1a
from pVHL-mediated degradation (Troilo et al, 2014)
led us to hypothesize that Nrdpl may act on USP8 to
regulate HIF-la expression under OGD condition. To test
this, we investigated the change of USP8 in OGD-treated
neurons and the impact of Ad-Nrdpl and Ad-si-Nrdpl on
USP8 expression. As shown in Figures 4A,B, 6-h OGD
induced a significant decrease in the level of USP8 proteins
in the cells transfected with Ad-si-control. Importantly,
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FIGURE 3 | Effects of Nrdp1 on OGD-induced apoptosis in primary rat cerebral cortical neurons. (A) The infection efficiency of neurons with Ad-control, Ad-Nrdp1,
Ad-si-control and Ad-si-Nrdp1 was visualized for green fluorescent protein (GFP) 24 h later using fluorescence microscopy (magnification, x400). (B) Western blot
analysis showed that incubation neurons with Ad-si-control and Ad-si-Nrdp1 for 48 h significantly (~90%) reduced Nrdp1 protein levels. Upper panel: representative
immunoblots of Nrdp1 and the loading control B-actin; bottom panel: quantitative data of protein band intensity after normalization to g-actin. *P < 0.05 vs.
Ad-si-control, ANOVA; n = 4. (C) Western blot analysis showed that incubation neurons with Ad-control and Ad-Nrdp1 for 48 h significantly increased Nrdp1 protein
levels. Upper panel: representative immunoblots of Nrdp1 and the loading control g-actin; bottom panel: quantitative data of protein band intensity after normalization
to B-actin. *P < 0.05 vs. Ad-control, ANOVA; n = 4. (D) Neurons were infected by with Ad-control, Ad-Nrdp1 or Ad-si-Nrdp1 and then treated with OGD for 6 h. Cell
death rate was assessed by lactate dehydrogenase (LDH) release. *P < 0.05 vs. Ad-control. #P < 0.05 vs. Ad-control + OGD, ANOVA; n = 4. (E) Apoptosis was
detected using TUNEL assay. Quantitative analysis of TUNEL-positive cells from three independent experiments. *P < 0.05 vs. Ad-control. *P < 0.05 vs. Ad-control
+ OGD, ANOVA; n = 4. (F) Neurons were infected and treated with OGD as in (D). Western blots analysis of expression of cleaved PARP protein (upper panel).
Quantitative analysis of cleaved PARP was shown in the bottom panel. *P < 0.05 vs. Ad-control. #P < 0.05 vs. Ad-control + OGD, ANOVA; n = 4. (G) Western blots
analysis of expression of Bax and Bcl-2 proteins (upper panel). Quantitative analysis of the ratio of Bax/Bcl-2 was shown in the bottom panel. *P < 0.05 vs.
Ad-control. P < 0.05 vs. Ad-control + OGD, ANOVA; n = 4.
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FIGURE 4 | Effects of Nrdp1 expression on hypoxia inducible factor-1a
(HIF-1a) and USP8 in vitro after OGD treatment. (A,B) Primary rat cerebral
cortical neurons and PC12 cells were infected with Ad-si-control or
Ad-si-Nrdp1 and exposed to 6-h OGD respectively. Western blot analysis of
protein levels of HIF-1a and USP8 of ischemic neurons (top panels).
Histograms show relative intensity of HIF-1a and USP8 (bottom panels).

*P < 0.05 vs. Ad-si-control. #P < 0.05 vs. Ad-si-control + OGD; n = 4.
(C,D) Primary rat cerebral cortical neurons and PC12 cells were infected with
Ad-control or Ad-Nrdp1 and exposed to 6-h OGD respectively. Western blot
analysis of protein levels of HIF-1a and USP8 of ischemic neurons (top
panels). Histograms show relative intensity of HIF-1a and USP8 (bottom
panels). *P < 0.05 vs. Ad-control. #P < 0.05 vs. Ad-control + OGD; n = 4.

this reduction was partially reversed when Nrdpl was
knocked down by Ad-si-Nrdpl, and was exacerbated when
Nrdpl was overexpressed by Ad-Nrdpl (Figures 4C,D).
Collectively, these results suggest that Nrdpl may contribute to
OGD-induced neuronal cell death via suppressing HIF-1a and
USP8 expression.

Nrdp1 Promotes Ubiquitin-Mediated
Degradation of USP8 and Decreases its

Interaction with HIF-1«

Lastly, to ambiguously demonstrate the interactions between
Nrdpl and USP8 and between USP8 and HIF-1a in OGD-treated
neurons, we performed co-immunoprecipitation experiments.
Since Nrdpl1 targets USP8 for ubiquitylation, we speculated that
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FIGURE 5 | Nrdp1 accelerates ubiquitin-mediated degradation of USP8 and
decreases its interaction with HIF-1a. (A) The lysates from Ad-GFP/Ad-
Nrdp1 adenovirus PC12 cells were immune-precipitated with anti-USP8
antibody and analyzed by immunoblotted with anti-ubiquitin antibody to
detect ubiquitylated forms of USP8 in vitro. (B) The interactions of USP8 with
HIF-1a were detected with co-immunoprecipitation in PC12 cells under OGD
treatment or (C) after transfected Ad-si-control/Ad-si-Nrdp1/Ad-Nrdp1
adenovirus. PC12 cells lysates were immune-precipitated with anti-USP8
antibody or control IgG, and the immune-precipitates were subjected to
sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotted
with anti-USP8 and anti-HIF-1a antibody.

overexpression of Nrdpl could enhance protein ubiquitylation
and USP8 degradation in PC12 cells. To test this, we pulled down
ubiquitylated species from PC12 cell extracts, and then detected
the levels of protein ubiquitilytion in the presence of proteasome
inhibitor MG132 as well as the protein levels of Nrdp1 and USP8.
As shown in Figure 5A, overexpression of Nrdpl by Ad-Nrdpl
significantly increased the whole levels of protein ubiquitylation
in comparison to Ad-green fluorescent protein (GFP) control,
and this change was accompanied by decreased USP8 protein
levels.

To demonstrate a direct interaction between USP8 and
HIF-la in OGD-treated PC12 cells, we performed
co-immunoprecipitation assays and found that HIF-la
was precipitated by antibody against USP8, but not by
control rabbit IgG (Figure 5B). Moreover, under OGD
conditions, overexpression of Nrdpl by Ad-Nrdpl reduced
co-immunoprecipitation between USP8 and HIF-la, while
knockdown of Nrdp1 by Ad-si-Nrdpl enhanced the interaction
between these two proteins (Figure 5C). These data indicate
that under ischemic conditions, Nrdp1 upregulation may hinder
the stabilization of HIF-1a in neurons via promoting ubiquitin-
mediated degradation of USP8, thus attenuating cellular adaptive
response to hypoxia/ischemia.

DISCUSSION

The E3 ligase Nrdpl has been extensively investigated on
cell growth, apoptosis and inflammation in cancer cells and
other cell types (Qiu et al., 2004; Wang et al, 2009; Ingalla
et al, 2010; Byun et al, 2015). In the present study, we
investigated Nrdpl’s role in ischemic neuronal injury. The
major findings include: (1) Nrdpl is significantly upregulated
in the ischemic brain tissue and in OGD-treated neuronal
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cells; (2) overexpression or knockdown of Nrdpl enhances
or attenuates OGD-induced apoptosis in neurons, respectively,
and these changes are accompanied by the downregulation or
upregulation of Nrdpl’s substrate USP8; and (3) USP8 may
directly interact with HIF-la to prevent its degradation, and
under OGD conditions, Nrdpl may interfere with HIF-la
stabilization via promoting USP8 degradation. These data
suggest that Nrdpl may attenuate neuron’s adaptive response
to hypoxia/ischemia via interfering USP8-mediated HIF-la
stabilization, thus contributing to neuronal death under ischemic
conditions.

Apoptotic neuronal death is a common event accounting for
neuron loss in ischemic stroke (Cao et al.,, 2004; Widiapradja
et al, 2012; Wang et al, 2014). Therefore, the mechanism
of neuronal apoptosis under ischemic conditions has been an
important research focus in the past decades. Deregulation
of the UPS is believed to be an important contributor
to ischemic neuronal injury (Wojcik and Di Napoli, 2004;
Doeppner et al., 2016). The E3 ligase Nrdpl has been recently
shown to mediate neuronal apoptosis through reducing BRUCE
expression in LPS-induced neuroinflammation (Shen et al,
2015). Our previous study has also demonstrated a role of
Nrdpl in promoting cardiac myocyte apoptosis in experimental
I/R (Zhang et al., 2011b). Here our in vivo and in vitro data show
that ischemia induces Nrdpl upregulation in cerebral cortical
neurons. Of note, this change is quite rapid and persistent, as
Nrdpl mRNA expression is increased in neurons at 1 h after
OGD treatment and remains high at the end of 6-h OGD
exposure. Our data that knockdown of Nrdpl with siRNA
reduces OGD-induced cell death/apoptosis and overexpression
of Nrdpl by Ad-Nrdpl increases neuronal death clearly
supports a role of Nrdpl in ischemic neuronal injury.
Moreover, along with Nrdpl knockdown or overexpression is
the inhibition or activation of apoptosis-associated proteins,
including caspase-3, PARP-1, Bax/Bcl-2 ratio, further supporting
a proapoptotic action of Nrdpl in OGD-induced neuron
injury.

Nrdpl is inducible in cells in response to different stimuli,
and its stability largely relies on its substrate USPS8, a
de-ubiquitinating enzyme (Wu et al., 2004). Thus, Nrdpl and
USP8 may restrict each other (De Ceuninck et al., 2013). When
Nrdpl is increased, more USP8 will be degraded by Nrdp1, and
as a return, less USP8 will make Nrdpl unstable, resulting in
less Nrdpl and more USP8 in the cells. Consistently, here our
data also show that under OGD condition, Nrdp1l upregulation
concurrently occurs with USB8 downregulation in neuronal
cells. Moreover, Nrdpl overexpression augments OGD-induced
USP8 downregulation, while knockdown of Nrdpl ameliorates
this effect. Although we did not design experiments to verify
USP8’s effect in stabilizing Nrdpl protein in neurons under
ischemic conditions, our data clearly demonstrate that the
interaction between these two proteins is associated with
OGD-induced neuronal death.

Mounting evidence suggests that HIF-la is an essential
transcriptional regulator of various vital processes in neurons
including the adaptation of cells to hypoxic environments
(Barteczek et al., 2017), cell proliferation (Zhang et al., 2017),

cell apoptosis (Yin J. et al, 2017) and metabolism (Carmeliet
et al,, 1998; Cho et al., 2015). In the brain, HIF-1a has been
reported to act as a pivotal protective regulator in ischemic
brain injury (Fan et al., 2009; Singh et al, 2012; Zhang
et al., 2014). Baranova et al. (2007) found that knockdown of
neuronal HIF-la enhances ischemic brain injury. Activation
of HIF-la-associated signaling cascades, such as EPO pathway
(Liu et al, 2006; Ryou et al, 2012) and VEGF pathway
(Yin W. et al, 2017) in neurons could protect the brain
from I/R damage through increasing microvascular density
and/or restoring local blood flow and oxygen supply. Yang
X. S. et al. (2017) found that HIF-1a involved in necroptosis
contributed to ischemic brain injury induced by OGD and
MCAO. Inhibition of the 20S proteasomal activity can protects
HIF-la from degradation and provides neuroprotection in
cerebral ischemia (Badawi and Shi, 2017). Here we show
that 6-h OGD without re-oxygenation induces HIF-1a protein
accumulation in neuronal cells, and this change is enhanced
or suppressed by overexpression or knockdown of Nrdpl,
respectively. This important observation has evoked us to
further explore the interaction between Nrdpl and HIF-la in
OGD-treated neurons.

USP8 can protect HIF-1a from degradation mediated by
E3 ubiquitin ligase pVHL via de-ubiquitination (Troilo et al.,
2014), which promoted us to hypothesize that USP8 may be
an important bridge molecule that mediates the interaction
between Nrdpl and HIF-la. Indeed, we observed two
simultaneous changes in OGD-treated neurons that support
our hypothesis. First, Nrdpl overexpression leads to increased
protein ubiquitylation and suppressed interaction between
Nrdp1l and USP8 (due to increased USP8 degradation). Second,
USP8 directly interacts with HIF-1la, and this interaction is
increased when Nrdpl is knocked down. The interaction
between USP8 and HIF-la has been previously reported by
Troilo et al. (2014). Our data suggest that under ischemic
conditions, Nrdpl upregulation may lead to an accelerated
degradation of USP8, which in turn attenuates USP8’s capability
to protect HIF-1a against pVHL-mediated degradation, thus
interfering neuronal cells to timely adapt to hypoxic/ischemic
conditions. In addition, our data also suggest that HIF-la is
an important downstream effector molecule in the pathway of
Nrdpl-mediated apoptosis during ischemic neuronal injury.
Future studies are warranted to explore the mechanisms
underlying enhanced Nrdpl expression under ischemic
conditions.

It is worth pointing out one important fact, that is, whether
HIF-1a is protective or detrimental in ischemic stroke depends
on the stroke stage, ischemia severity and ischemia duration
(Yang et al., 2013). For example, there are studies showing that
HIF-1a knockdown protects the brain against ischemic damage
(Helton et al., 2005). However, other studies have reported that
inhibition of HIF-1a and HIF-2a is beneficial to the neurons in
the very acute phase after ischemic stroke (Barteczek et al., 2017).
Under our experimental conditions, HIF-1a may be more likely
a good molecule in promoting neuronal cells to rapidly adapt
hypoxic conditions. However, future experiments are needed to
demonstrate this speculation.
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Taken together, the present study demonstrates that in
response to ischemic stimuli, Nrdp1 is upregulated in neurons
and contributes to ischemic neuronal death, and this effect
may be associated with suppressed adaptive response to
hypoxia/ischemia due to accelerated USP8 degradation and
HIF-la  destabilization. Therapeutic strategies that target
Nrdpl activation may provide neuroprotection against ischemic
brain injury.
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