AUTHOR=Li Jing , Chen Shuangxi , Zhao Zhikai , Luo Yunhao , Hou Yuhui , Li Heng , He Liumin , Zhou Libing , Wu Wutian TITLE=Effect of VEGF on Inflammatory Regulation, Neural Survival, and Functional Improvement in Rats following a Complete Spinal Cord Transection JOURNAL=Frontiers in Cellular Neuroscience VOLUME=Volume 11 - 2017 YEAR=2017 URL=https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2017.00381 DOI=10.3389/fncel.2017.00381 ISSN=1662-5102 ABSTRACT=
After complete transection of the thoracic spinal segment, neonatal rats exhibit spontaneous locomotor recovery of hindlimbs, but this recovery is not found in adult rats after similar injury. The potential mechanism related to the difference in recovery of neonatal and adult rats remains unknown. In this study, 342 animals were analyzed. The vascular endothelial growth factor (VEGF) level in spinal segments below injury sites was significantly higher in postnatal day 1 rats (P1) compared with 28-day-old adult rats (P28) following a complete T9 transection. VEGF administration in P28 rats with T9 transection significantly improved the functional recovery; by contrast, treatment with VEGF receptor inhibitors in P1 rats with T9 transection slowed down the spontaneous functional recovery. Results showed more neurons reduced in the lumbar spinal cord and worse local neural network reorganization below injury sites in P28 rats than those in P1 rats. Transynaptic tracing with pseudorabies virus and double immunofluorescence analysis indicated that VEGF treatment in P28 rats alleviated the reduced number of neurons and improved their network reorganization. VEGF inhibition in neonates resulted in high neuronal death rate and deteriorated network reorganization. In