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L type calcium channels (LTCCs) are prevalent in different systems and hold immense
importance for maintaining/performing selective functions. In the nervous system,
CaV1.2 and CaV1.3 are emerging as critical modulators of neuronal functions. Although
the general role of these calcium channels in modulating synaptic plasticity and
memory has been explored, their role in olfactory learning is not well understood. In
this review article we first discuss the role of LTCCs in olfactory learning especially
focusing on early odor preference learning in neonate rodents, presenting evidence
that while NMDARs initiate stimulus-specific learning, LTCCs promote protein-synthesis
dependent long-term memory (LTM). Norepinephrine (NE) release from the locus
coeruleus (LC) is essential for early olfactory learning, thus noradrenergic modulation
of LTCC function and its implication in olfactory learning is discussed here. We then
address the differential roles of LTCCs in adult learning and learning in aged animals.
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INTRODUCTION

L-type calcium channels (LTCCs), characterized by their long-lasting activity and sensitivity to
dihydropyridine, are members of the high voltage gated calcium channel family. Like other calcium
channels of this type, they are composed of multiple subunits including α1, the pore-forming
subunit containing the voltage sensor, which dictates the nomenclature of the channel subtype.
Between CaV1.1–1.4, CaV1.2 and CaV1.3 are most commonly found in the nervous system. CaV1.3
has a lower activation voltage compared to CaV1.2 (Hofmann et al., 2014). LTCCs function to
facilitate coupling, mainly excitation-contraction, excitation-secretion and excitation-transcription;
the latter being crucial for neuronal function and memory formation including olfactory memory
(Jerome et al., 2012; Berger and Bartsch, 2014; Ghosh et al., 2017).

In this review article, we present evidence of the functional roles of LTCCs in synaptic plasticity
and learning, focusing on olfactory learning as a model system. The role of norepinephrine (NE)
via β-adrenoceptors (βARs) in modulating LTCCs and early odor preference learning are detailed.
Finally, the differential roles of LTCCs in learning during development and aging are discussed.

LTCCS IN SYNAPTIC PLASTICITY AND LEARNING

LTCC dependent calcium entry induces varied downstream molecular cascades, the functions
of which are vital to understanding the importance of the channels. The C-terminal of the
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LTCC contains micro-clusters of AKAP, PKA, calcineurin
and calmodulin in its vicinity. Following channel opening and
calcium entry, unique combinations of these enzymes can be
activated (Christel and Lee, 2012). Subsequent downstream
events include calcium-dependent inactivation, calcium-
dependent facilitation, calcium-dependent outward potassium
current activation (Veng et al., 2003; Gamelli et al., 2011), release
of calcium from internal stores, initiating MAPK signaling
cascades, CREB phosphorylation and gene transcription
(Deisseroth et al., 1998; Dolmetsch et al., 2001).

Under several circumstances, LTCCs have been shown to be
important for long term potentiation (LTP) of synaptic activity.
LTP induction in perforant- dentate gyrus synapses is inhibited
by chronic administration of an LTCC antagonist (Lashgari
et al., 2006). Also, inability to induce LTP in the hippocampal
CA1 region of tenascin-C deficient mice is attributable to
impaired LTCC function (Morellini et al., 2017). Specifically in
olfactory plasticity, blocking LTCCs prevents LTP induction in
main olfactory bulb (MOB) slices (Zhang et al., 2010). Naturally,
alongside their role in LTP, LTCCs have been deemed essential
in numerous forms of learning and memory.

The role of LTCCs in learning and memory has been
investigated in many contexts including hippocampus-
dependent spatial memory (Ingram et al., 1994; Batuecas
et al., 1998; Quevedo et al., 1998), amygdala-dependent fear
memory (Bauer et al., 2002; Cain et al., 2002; Suzuki et al., 2004;
Davis and Bauer, 2012), prefrontal cortex-dependent working
memory (Heng et al., 2011) and others (for review see Berger
and Bartsch, 2014). In varied circumstances, administration of
LTCC agonists have been shown to improve memory (Jerome
et al., 2012) while antagonists can either disrupt memory (Bauer
et al., 2002; Cain et al., 2002; Suzuki et al., 2004; Lashgari et al.,
2006; Davis and Bauer, 2012), or enhance it depending on the
experimental paradigm (Levy et al., 1991; Quevedo et al., 1998;
Quartermain et al., 2001). Additionally, CaV1.2 and CaV1.3
knock out mice have poorer learning abilities (Moosmang
et al., 2005; Marschallinger et al., 2015). The importance of
LTCCs in protein synthesis-dependent long term memory is
well established (Davis and Bauer, 2012; Da Silva et al., 2013).
Although most attention has been given to CaV1.2 for mediating
learning (Moosmang et al., 2005; White et al., 2008), CaV1.3 has
important roles as well (Marschallinger et al., 2015; Kim et al.,
2017).

LTCC IN OLFACTORY LEARNING

Early Odor Preference Learning Model in
Rodents
Our laboratory and others have exploited early odor preference
learning in neonatal rodents as a model system to understand
mechanisms underlying learning and memory, including the
role of LTCCs. In this model, the rodent pup is stroked with a
paintbrush to mimic a maternal cue while being simultaneously
exposed to an odor, leading to an associative memory for
that odor which lasts 24 h with one-trial learning (Yuan
et al., 2014). Learning occurs within a critical developmental

period, between 10 and 12 postnatal days (P10–12), beyond
which this association is no longer formed (Sullivan et al.,
2000a). NE release from the locus coeruleus (LC) stimulated
by the paintbrush stroking provides the unconditioned stimulus
(UCS) for this paradigm. Early odor preference learning
can also be induced without stroking by directly activating
beta-adrenoceptor (βAR) using isoproterenol in the presence of
an odor (Sullivan et al., 2000b; Harley et al., 2006; Ghosh et al.,
2015).

Another advantage of this model is that it can be manipulated
to produce memories of varying lengths, permitting the
dissection of both long-term (LTM) and short-term memory
(STM). Blocking PKA or protein synthesis produces a STM
for 3 h which is not sustainable at 24 h (Grimes et al., 2012).
On the other hand, multi-trial, spaced training leads to odor
preference memory beyond 24 h (Fontaine et al., 2013), as do the
manipulations that either prevent cAMP breakdown (McLean
et al., 2005) or block protein phosphatase 2B (Christie-Fougere
et al., 2009).

Proper functioning of both the MOB and the anterior
piriform cortex (aPC) are critical for this early olfactory
preference learning to occur (Sullivan et al., 2000b; Morrison
et al., 2013). Although the role of LTCCs in olfactory memory
has generally been less explored, it has been shown that LTCCs
provide facilitation of this associative learning in both the MOB
and the aPC.

Differential Roles of NMDA Receptors
(NMDARs) and LTCCs in Olfactory
Learning
LTP andmany forms of learning, including early odor preference
learning, are initiated by calcium-dependent signaling cascades.
It follows that much research has focused on the role of
calcium-permeable NMDARs and LTCCs in the context of
learning and LTP. While both channels permit learning, their
differential contributions to memory formation has been largely
overlooked.

Using calcium imaging in aPC slices, Mukherjee and Yuan
(2016) demonstrated that LTCC activation is subsequent to
NMDAR activation. Behaviorally, it was shown that LTCCs
are required for early odor preference LTM but STM can still
occur without LTCC activation. LTCC blockade by nimodipine
infusion to the aPC prevented LTM but spared STM, while
blocking NMDARs with APV prevented both STM and LTM.
However, forced activation of LTCCs with BayK 8644 in
the presence of APV reversed the loss of both types of
memory. This indicates that LTCCs are crucially involved
in mediating olfactory LTM in early life and that they can
provide the necessary calcium normally supplied by NMDARs
to facilitate STM as well. LTM requires PKA-activated CREB
signaling as it is both protein synthesis and transcription
dependent (Yuan et al., 2003; McLean et al., 2005; Grimes
et al., 2011). Owing to their location in the somatic membrane
and at the base of the apical dendrite (Mukherjee and
Yuan, 2016), LTCCs could be a fit candidate to bridge
synaptic excitation and provide necessary calcium to the

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 December 2017 | Volume 11 | Article 394

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Ghosh et al. Noradrenergic Modulation of LTCC: Olfactory-Learning

FIGURE 1 | Noradrenergic modulation of L type calcium channels (LTCCs).
Exposure to odorant(s) releases glutamate from presynaptic terminals.
Together with norepinephrine (NE) release onto the principal cell induced by
stroking, postsynaptic NMDA receptors are activated. Subsequent activation
of LTCCs allows calcium influx which binds to calmodulin and its kinases (e.g.,
CaMKIV) and promotes phosphorylation of CREB in the nucleus, leading to
transcription and protein synthesis. On the other hand, NE can bind to β

adrenoceptors (βARs), which in turn, activates PKA via second messenger
cAMP, leading to phosphorylation of LTCCs and further augmentation of
calcium influx through them.

soma, activating kinases which subsequently phosphorylate
CREB to initiate transcription in the nucleus and ultimately
protein synthesis. Activation of LTCCs following NMDAR
activation in the aPC is consistent with this hypothesis (see
Figure 1).

Calcium-dependent AMPAR insertion is critical for the
formation of both short and long olfactory preference memories,
and in line with behavioral results, blocking NMDARs with
APV in the aPC prevented the increase in synaptic expression
of AMPARs required for STM (Mukherjee and Yuan, 2016).
The increase in synaptic expression of AMPARs was rescued
when APV was co-infused with BayK 8644, suggesting that
the calcium influx from LTCCs alone is sufficient to mediate
AMPAR trafficking to the synapse. Although able to induce STM,
behaviorally co-infusion of BayK 8644 and APV compromised
stimulus specificity of the learning. Animals showed preference
to the conditioned odor (peppermint) against a control odor
(vanillin), however, failed to form preference to peppermint
against a similar odor mixture (peppermint + vanillin).
This suggests that stimulation of LTCCs in the absence of
NMDAR activation results in the trafficking of AMPARs into
a broader range of synapses and thereby a loss of stimulus
specificity occurs for two similar odors (Mukherjee and Yuan,
2016).

LTCC Modulation by NE during Olfactory
Learning
NE is an important neuromodulator that can engage α1, α2,
or βARs and initiate Gq, Gi, or Gs-mediated downstream

cascades, respectively. The differential effects of NE through
these G-protein coupled ARs has been established to be critical
for several olfactory learning paradigms (Sullivan et al., 2000b;
Doucette et al., 2007; Lethbridge et al., 2012; Shakhawat et al.,
2012, 2015; Morrison et al., 2013). As NE is released from the
LC of pups in response to stroking, serving as the UCS in
early odor preference learning, the effect of NE on modulating
LTCC function in olfactory memory context is studied in this
paradigm.

In the MOB blocking LTCCs by nimodipine infusion
prevents early odor preference LTM. However, activation of
LTCCs through BayK 8644 is not sufficient to rescue APV
induced LTM loss; βAR activation is also required to rescue
LTM (Jerome et al., 2012). LTCCs are present on both
glutamatergic MCs and GABAergic periglomerular cells (PGCs)
of the MOB (Jerome et al., 2012) and it has been shown
that activation of PGC LTCCs triggers GABA release (Murphy
et al., 2005). It could be that βAR activation suppresses PGCs
(Yuan, 2009) and counteracts LTCC activation on PGCs,
leading to MC excitation and ideal calcium influx through MC
LTCCs. Additionally, as shown in the aPC (see Figure 1), NE
can upregulate LTCC-mediated calcium influx in pyramidal
neurons through βAR-mediated PKA-dependent pathways and
thereby promote learning (Ghosh et al., 2017). Accordingly,
PKA-mediated direct upregulation of MC LTCC activity could
underlie early odor preference learning in the MOB. These
findings suggest that LTCC activity serves as an important
postsynaptic correlate of NE’s facilitating action on olfactory
memory. In line with these reports, NE-mediated LTP has
been found to be dependent on LTCC activity (Zhang et al.,
2010).

The effect of βAR activity on LTCC function and the
role of PKA in exerting that effect have been explored in
neurons. βAR activation inhibits calcium-dependent inactivation
of high voltage gated calcium channels including LTCCs and
this mechanism likely involves PKA and A-Kinase anchor
protein (AKAP; Rankovic et al., 2011). Additionally, a highly
localized β2AR-PKA dependent increase in LTCC activation
and subsequent calcium influx is observed in spines of
CA1 pyramidal neurons (Hoogland and Saggau, 2004). A recent
report highlights the unique importance of serine 1928 of
CaV1.2 in relation to PKA-mediated phosphorylation (Qian
et al., 2017). Phosphorylation of serine 1928 is required in
hippocampal neurons for LTCC activity augmentation by PKA.
A long term potentiating effect in response to prolonged theta
stimulation required an increase in CaV1.2 activity following
modification of serine 1928 by the β2AR-cAMP-PKA pathway,
but not β1AR. Interestingly, β1 and β2 may have opposing
actions on LTCCs as reported in adrenal chromaffin cells
where β1-mediated enhancement of LTCC function is dependent
upon Gs and PKA but β2-mediated decrease in LTCC function
involves Gi proteins (Cesetti et al., 2003). Such diversification in
molecular targets and mechanisms may be relevant for LTCCs
in neurons of the olfactory system too. In aPC pyramidal
neurons, a βAR agonist isoproterenol exerts augmentation of
LTCC activity in P7–10 mouse pups, but not in older pups
beyond 2 weeks of age. This effect is PKA-dependent and
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crucial for early odor preference learning (Ghosh et al., 2017).
However, whether this effect is mediated by β1 or β2 is
still undetermined. It will be important to understand how
different βARs contribute throughout the lifespan and whether
or not a dichotomy lies in their effect to form olfactory
memory.

ROLES OF LTCC IN ADULT LEARNING
AND AGING

The most recent work by Ghosh et al. (2017) explored the
developmental changes of LTCCs in aPC pyramidal neurons
by comparing whole-cell calcium current recordings before and
after the critical period for early odor preference learning. The
proportion of LTCC-mediated calcium influx with respect to
the whole-cell calcium current decreases beyond the critical
period, up to the weaning age. Blockade of LTCCs by nifedipine
infusion in the aPC prevents early odor preference learning
during the critical period. Therefore LTCCs are situated as
a key factor for early life odor preference learning in rodent
pups.

Although early life developmental changes in the aPC
were followed by a decreased proportion of LTCC-mediated
current in older pups (Ghosh et al., 2017), in adult life,
LTCC-mediated calcium current increases with age. This
apparent contradiction could be explained by relatively higher
expression of non-LTCCs in P14–20 pups. While this idea
remains to be tested, differential calcium channel expression
in early and later postnatal life cannot be ruled out. An
enhancement of LTCC function and postsynaptic PKA signaling
has been reported in prefrontal cortex from P25 through
P80, likely to be associated with improved working memory
and decision making during early adulthood development
(Heng et al., 2011), highlighting the age-dependent balance of
LTCC-mediated current. However, a large body of evidence
exists supporting the idea of increased calcium influx being
correlated to advanced aging (Khachaturian, 1987; Landfield,
1987) and causal to the impairment of memory. LTCCs hold
an important position in this calcium hypothesis of aging.
Increased calcium influx through the LTCC has been reported in
aged CA1 pyramidal neurons, contributing to cognitive decline
and memory deficits (Moyer and Disterhoft, 1994; Thibault
and Landfield, 1996). It has been proposed that instead of a
global increase in the number of LTCCs, increased expression
and density on the cell membrane might underlie the increase
in age dependent LTCC calcium entry (Núñez-Santana et al.,
2014).

If LTCC is crucial for protein synthesis dependent long
term memory and LTCC current increases in aged animals,
why is there a deficit in learning abilities rather than an
enhancement of it? Reports suggest that a reduction in
neuronal intrinsic excitability may explain this fallacy. Calcium
dependent outward potassium current gives rise to an after
hyperpolarization (AHP) current and its slow component has
LTCC dependance, especially on CaV1.3 (Veng et al., 2003).
Both AHP magnitude and its dependance on LTCC increase
with age in CA1 neurons, making them less likely to generate

trains of action potentials, thus leading to a decrease in intrinsic
excitability and possibly a decreased ability for the animal to
learn (Power et al., 2002; Oh et al., 2016). Olfactory learning
related changes in NE-modulation of AHPs have been proposed
to keep the post-learning hyperexcitability of the network in
balance (Brosh et al., 2006). Whether this change is dependent
upon LTCCs remains an open question. Also in senile subjects
a higher tendency to form LTD increases with enhanced
LTCC function (Norris et al., 1998). Together these findings
suggest that an optimum level of LTCC function is required
to keep the balance between facilitation and impairment of
learning.

Although it seems clear that NE and LTCCs are important
players in olfactory learning and memory, several questions
remain unanswered. Do different ARs modulate LTCCs
uniquely in the olfactory system? Does LTCC activity change
accordingly with age? Is LTCC-dependent AHP an important
player in olfactory learning? If so, how does NE modulate
LTCC-dependent AHP? Does the age dependent dichotomy in
β-adrenergic modulation of LTCC function in early life play a
similar role in senescent plasticity as well? Future studies should
be directed towards these questions to bring about a clearer
understanding of the diverse roles provided by the crucial players
in learning and memory.

CONCLUSION

In the olfactory system, a concerted effort by NE, NMDARs
and LTCCs in both the MOB (Jerome et al., 2012) and aPC
(Mukherjee and Yuan, 2016; Ghosh et al., 2017) can produce
the phenomenon of early odor preference learning, a memory
which lasts only until approximately P10–12, corresponding to
a sensitive developmental period in rodents. LTCCs may aid
in the formation of LTM by promoting nuclear transcription,
protein synthesis and sustained AMPAR synaptic expression
in the aPC (Mukherjee and Yuan, 2016). In the same type of
neurons, the proportion of LTCC-mediated calcium decreases
following the sensitive period compared to older pups up to the
weaning age. Of great interest, LTCCs lose the βAR-mediated
PKA modulation beyond the critical period (Ghosh et al., 2017).
This might be one of the key mechanisms to explain why rodent
pups lose their ability to form olfactory association with maternal
cues past the critical period. The unique roles of LTCCs in the
early developmental period, adulthood and aging animals appear
distinct and require further investigations.
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