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The intraneuronal ionic composition is an important determinant of brain functioning.

There is growing evidence that aberrant homeostasis of the intracellular concentration of

Cl− ([Cl−]i) evokes, in addition to that of Na+ and Ca2+, robust impairments of neuronal

excitability and neurotransmission and thereby neurological conditions. More specifically,

understanding the mechanisms underlying regulation of [Cl−]i is crucial for deciphering

the variability in GABAergic and glycinergic signaling of neurons, in both health and

disease. The homeostatic level of [Cl−]i is determined by various regulatory mechanisms,

including those mediated by plasma membrane Cl− channels and transporters. This

review focuses on the latest advances in identification, regulation and characterization

of Cl− channels and transporters that modulate neuronal excitability and cell volume.

By putting special emphasis on neurons of the olivocerebellar system, we establish that

Cl− channels and transporters play an indispensable role in determining their [Cl−]i and

thereby their function in sensorimotor coordination.

Keywords: chloride homeostasis, chloride transporters and channels, GABAergic inhibition, olivocerebellar

system, cerebellar motor learning

CHLORIDE REGULATION IN BRAIN CELLS

Chloride (Cl−) is the most abundant transportable anion in all cells of the body and it
performs fundamental biological functions in all tissues. The intracellular concentration of
chloride ([Cl−]i) is regulated and maintained by a delicate functional balance between the
operations of plasma membrane Cl− channels and those of transporters, as well as those of
local impermeant anions (Rivera et al., 1999; Glykys et al., 2014). In the central nervous
system, Cl− channels and transporters play key roles in neuronal growth and development,
neurotransmitter uptake, intracellular pH modulation, cell volume regulation and, perhaps
most importantly, setting [Cl−]i either above or below its equilibrium potential (Sangan
et al., 2002; Deidda et al., 2014; Ruffin et al., 2014; Jentsch, 2016; Glykys et al., 2017). In
addition, [Cl−]i plays a crucial role in moderating neuronal excitability by determining the
postsynaptic responses to the neurotransmitters GABA and glycine (Ben-Ari et al., 2007;
Branchereau et al., 2016; Doyon et al., 2016). One of the most studied roles of [Cl−]i in
neurons is its modulatory function in postsynaptic responses evoked by activation of ligand-
gated Cl− channels, such as GABAA receptors (GABAARs) (Bormann et al., 1987). The
direction of the Cl− flow depends on the difference between the reversal potential of Cl− (ECl)
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and the resting membrane potential (RMP) (Figure 1B). If ECl is
negative compared to the RMP of the neuron, Cl− flows inside
the neuron. GABAARs in these types of cells mediate inward
(hyperpolarizing) Cl− currents, which in turn lead to inhibition
of the postsynaptic neuronal activity (Figure 1Ba). In contrast,
if ECl becomes more positive compared to the RMP, outward
(depolarizing) Cl− flow through GABAARs leads to excitation
of the postsynaptic neuron (Figure 1Bc). Therefore, the activities
of Cl− channels and transporters that regulate [Cl−]i are critical
for determining the polarity of the impact of GABAARs on the
neuronal membrane potential.

Mutations or deletions of Cl− channels and transporters in the
brain have been linked to genetic disorders, such as particular
forms of neonatal seizures and epilepsy, ataxia, hyperekplexia
(startle disease), and autism spectrum disorders (Cohen et al.,
2002; Vermeer et al., 2010; Pizzarelli and Cherubini, 2011; Deidda
et al., 2014). In addition, impaired Cl− homeostasis has been
associated with pathology of the brain following acute injuries,
such as hypoxic-ischemic encephalopathy, brain edema, and
post-traumatic seizures (Galeffi et al., 2004; Jin et al., 2005;
Pond et al., 2006; Papp et al., 2008). Therefore, targeting Cl−

channels/transporters has been investigated as a therapeutic tool
for re-balancing neuronal [Cl−]i and rescuing the consequential
neurological symptoms. One example of such a Cl− based
intervention is dampening the elevation of [Cl−]i following
traumatic brain injury (TBI), so as to prevent further neuronal
swelling, excitatory GABA signaling, and seizure susceptibility
(Annegers et al., 1998; Hung and Chen, 2012). Developing
drugs that specifically target Cl− channels or transporters
may thereby not only ameliorate the short-term pathological
processes induced by TBI, but also the long-term behavioral
consequences (Rungta et al., 2015; Ben-Ari, 2017).

Chloride channels and transporters may become activated
in response to membrane potential changes (such as ClC-
channels), intracellular Ca2+ signaling (such as anoctamin-
channels), and changes in intracellular pH (SLC4 and SLC26).
In addition, Cl− is transported across the membrane by
cation-chloride co-transporters (CCCs), like the Na+-K+-Cl−

cotransporter (NKCC1), and K+-Cl− cotransporters (KCCs).
Investigating the impact of such a rich set of widely expressed
ion channels/transporters on neuronal functioning is a complex
matter, not in the least because of the heterogeneity of the
neuronal populations and the diverse functional interactions of
Cl− channels/transporters with each other and other ion carriers.

To allow an in-depth review of the functionality of neuronal
Cl− channels and transporters, we focus here on their impact
on the olivocerebellar system. This interconnected brain network
has been investigated in detail over the past decades and
the extensive anatomical, electrophysiological, and behavioral
datasets provide a remarkably detailed view of the properties
of olivocerebellar circuitry, rendering it a suitable model for
studying the consequences of abnormalities in Cl− homeostasis
at the cellular and network level. In order to set the stage,
we will first provide a synopsis on the anatomical blueprint
of the olivocerebellar system and highlight several hotspots
where Cl− homeostasis has been shown to be crucial for proper
functioning. Thereafter we will discuss in detail several families

of Cl− channels and transporters and provide a concise view
of the status quo in experimental studies. Hereby we hope to
guide future translational investigations that aim to improve
therapeutic strategies of Cl− based treatments.

SIGNIFICANCE OF CHLORIDE IN THE
OLIVOCEREBELLAR NETWORK

The olivocerebellar system consists of three key regions:
cerebellar cortex (CX), cerebellar nuclei (CN), and inferior olive
(IO). A large part of the neuronal interactions in this network
depends on GABAergic signaling (Figure 1A; Andersson et al.,
1988; Angaut and Sotelo, 1989; De Zeeuw et al., 1989, 1998;
Fredette and Mugnaini, 1991). The output of the cerebellar
cortex is exclusivelymediated by GABAergic Purkinje cells (PCs).
Several of the PC’s downstream target neurons in the CN are
also GABAergic who in turn inhibit neurons in the IO and
cerebellar cortex (Lefler et al., 2014; Ankri et al., 2015). Another
source of inhibition in the cerebellar cortex is the molecular layer
interneurons (MLIs), which are not only activated by synaptic
excitation from granule cells, but also by non-synaptic glutamate-
spillover from IO axons, i.e., climbing fibers (CFs). MLIs synapse
on either the somatic or dendritic membrane of PCs and
thereby control PC action potential firing patterns (Figure 1A;
Szapiro and Barbour, 2007). Aberrant GABAergic signaling at
any of these synapses has been shown to evoke abnormalities in
acquisition, correction, and timing of movements and thereby
disrupt motor behavior (Bengtsson and Hesslow, 2006; Wulff
et al., 2009; Seja et al., 2012; Rahmati et al., 2016). To the same
extent, impairments of PC activity have been recently linked to
autistic traits and other non-motor behaviors (Tsai et al., 2012;
Peter et al., 2016).

It is particularly well-documented that the MLI to PC input
determines the regularity and frequency of PC action potential
firing (Häusser and Clark, 1997; Wulff et al., 2009) and that
the MLI-mediated inhibition depends on the [Cl−]i of PCs
(Seja et al., 2012; Rahmati et al., 2016). Therefore, malfunction
or deletion of GABAergic inhibitory input from MLIs to PCs
leads to altered temporal firing patterns of PCs and causes
various behavioral phenotypes in animal models (Wisden et al.,
2009; Wulff et al., 2009; Seja et al., 2012; Rahmati et al., 2016).
Likewise, in the olivary neurons the [Cl−]i modulates their
excitability and thereby the excitation of PCs, CNs, and MLIs
as mediated by their CFs (Szapiro and Barbour, 2007; Zhang
et al., 2017). Altered neuronal excitability in IO evokes long-
term changes in the activity of cerebellar neurons and the
spatiotemporal firing pattern of the olivocerebellar network (De
Zeeuw et al., 2011). The impact of [Cl−]i on GABAergic signaling
in the olivocerebellar circuitry is also remarkable for its role
in controlling the electrical coupling among olivary neurons. It
has been proposed that activation of the GABAergic input from
the CN to the IO leads to a reduction of coupling, whereas
blocking this input increases IO coupling (De Zeeuw et al., 2011;
De Gruijl et al., 2014; Lefler et al., 2014). Thus, various cellular
components of the olivocerebellar system appear highly sensitive
to [Cl−]i disruptions by mutations in plasma membrane Cl−
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FIGURE 1 | GABAergic signaling in olivo-cerebellar circuit. (A) Schematic representation of a sagittal section of the mouse olivo-cerebellar system (left). Inferior olivary

neurons (shown in blue) project to the cerebellar cortex (gray) and excite Purkinje cells (brown), as well as the deeply located cerebellar nuclei (CN) neurons (pink). A

particular subset of CN neurons projects back to the inferior olive (IO), forming the olivo-cortico-nuclear loop. The right panel demonstrates the anatomical circuit of

the cerebellar cortical neurons and their connectivity with CN and the IO. ML, molecular layer; PCL, Purkinje cell layer; GCL, granule cell layer; PC, Purkinje cell; GrC,

granule cell; SC, stellate cell; BC, basket cell; GoC, Golgi cell; PF, parallel fiber; CF, climbing fiber; MF, mossy fiber; CN, cerebellar nuclei; IO, inferior olive. (B) The level

of intracellular chloride concentration ([Cl−]i) dictates the polarity of the current through GABAA receptors (GABAARs). If [Cl
−]i is low, the reversal potential of Cl− (ECl)

becomes negative compared to the resting membrane potential (RMP). In this condition GABAARs mediate an inward Cl− current that results in hyperpolarization of

the cell membrane (a). In contrast, high [Cl−]i results in a positive shift of ECl and leads to an outward Cl− current through GABAAR and depolarization of the cell

membrane that potentially induces action potential firing (c). In conditions where ECl shifts to values similar to RMP, there will be no net Cl− current through

GABAARs (b).

transporters and channels. Below we review the studies that
investigated the effects of mutations and functional deletions of
some of these proteins on [Cl−]i, which in many cases altered
neuronal excitability, action potential firing patterns and motor
coordination.

1. VOLTAGE-GATED CL− CHANNELS (CLC
FAMILY)

ClC isoforms exhibit unique cellular expression patterns, with
certain members (ClC-1 and ClC-2) primarily detected in

plasma membrane, whereas some other members (ClC-3 to
ClC-7) predominantly distributed in intracellular organelles and
vesicles. Functional studies indicate that plasma membrane-
bound ClCs operate in Cl− channel mode and play a role in
stabilizing membrane potential and/or Cl− concentration across
the membrane, while the intracellular organelles’ ClCs function
as electrogenic Cl−/H+ exchangers and facilitate endosomal and
vesicular acidification (Jentsch et al., 2002; Jentsch, 2008, 2015; Bi
et al., 2013). Many ClCs have not been studied in great detail for
their function in the brain, but rather in other organs, including
kidney where their malfunctions or deletions have been linked
to various diseases in human (see Table 1 for further references
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TABLE 1 | ClC family of voltage-gated Cl− channels.

ClCs Expression Function Human disease KO mouse Pharmacology References

ClC-1 Skeletal muscle,

smooth muscle, heart,

brain?

Stabilizing membrane

potential in muscle

Myotonia congenita Myotonia congenita,

altered neuronal

excitability

Inhibitors: Zn2+ and Cd2+,

9-AC, DPC, and niflumic

acid

Lorenzetto et al., 2009;

Chen et al., 2013;

Imbrici et al., 2015

ClC-2 Broad (brain, heart,

muscle, kidney,...)

Transepithelial transport,

cell volume control,

neuronal excitability

Cardiovascular disease,

epilepsy?

Leukoencephalopathy,

degeneration of retina

and testis, altered

neuronal excitability

Inhibitors: Zn2+ and Cd2+,

DIDS, SITS

Smith et al., 1995;

Clayton et al., 1998;

Rinke et al., 2010;

Ratté and Prescott,

2011

ClC-3 Broad (brain, heart,

muscle, kidney,...)

Vesicular and endosomal

acidification

? Hippocampal neuronal

degeneration,

degeneration of retina

Kawasaki et al., 1994;

Borsani et al., 1995

ClC-5 Kidney, intestine Endosomal acidification Dent’s disease Defects in renal

endocytosis,

proteinuria,

hyperphosphaturia

Günther et al., 1998;

Schwake et al., 2001;

Vandewalle et al., 2001

ClC-6 Brain Endosomal acidification ? Lysosomal storage

disease Brandt and Jentsch,

1995; Poët et al., 2006

ClC-7 Broad (brain, bone,

kidney,...)

Lysosomal Cl−

regulation, acidification of

osteoclast, resorption

lacunae

Osteopetrosis, neuronal

ceroid lipofuscinosis, retinal

degeneration, lysosomal

storage disease

Lysosomal storage

disease, retinal

degeneration,

osteopetrosis

Brandt and Jentsch,

1995; Kornak et al.,

2001; Kasper et al.,

2005

ClC-Kb Kidney, inner ear Transepithelial transport,

salt reabsorption

Bartter syndrome type III Salt loss, deafness Inhibited by

phenylbenzofuran

carboxylic acids

Kobayashi et al., 2002;

Jeck et al., 2004; Frey

et al., 2006

and information regarding the members of the ClC-family).
Below, we focus on the roles of ClC-1, ClC-2, and ClC-3 in the
olivocerebellar system.

ClC-1
ClC-1, which is a plasma membrane-bound chloride channel
encoded by the CLCN-1 gene, is particularly known for its high
Cl− conductance, its expression in skeletal muscles, and its
genetic mutations causing myotonia congenita (Jentsch, 2008).
Recent studies have also identified mRNA and protein expression
of ClC-1 in neuronal tissue, including pyramidal and dentate
granule cells of the hippocampus, brain stem nuclei, thalamic
nuclei, frontal neocortex, as well as cerebellar PCs (Chen et al.,
2013; Imbrici et al., 2015). The presence of polymorphic alleles
in CLCN-1 gene in patients with idiopathic epilepsy underscores
an important role for this Cl− channel in neurological diseases
(Chen et al., 2013). Although the precise pathophysiological
mechanisms of ClC-1 channel mutations in epilepsy remain
unknown, overexpression of ClC-1 in the inhibitory PCs has been
found to hyperpolarize their resting membrane potential and
reduce their excitability (Lorenzetto et al., 2009), which in turn
may well lead to disinhibition of the CN and thereby influence
epileptogenesis (Kros et al., 2015). Given that overexpression
of ClC-1 even enhances inwardly rectifying Cl− currents
during depolarization in Xenopus oocytes, the impact on the
membrane potential observed in PCs may also hold for other
neurons (Steinmeyer and Klocke, 1991; Jentsch et al., 2002).
One more unique impact of ClC-1 overexpression appears to
be on synapse elimination. PCs overexpressing ClC-1 show a

delayed elimination of their supernumerary CF inputs during
development (Crepel et al., 1976; Hashimoto and Kano, 2005;
Hashimoto et al., 2011); in normal wild type animals this process
is finalized by the end of the third postnatal week, whereas in
ClC-overexpressing transgenic mice it lasts at least 3 months
(Lorenzetto et al., 2009). Thus, these studies provide supportive
evidence for a contribution of voltage-gated Cl− channels to
the maturation of neuronal networks and neuronal excitability,
and suggest that their function is critical to prevent neurological
disorders such as epilepsy (Imbrici et al., 2015).

ClC-2
ClC-2, which is a plasma membrane-bound chloride channel
encoded by the CLCN-2 gene, is broadly expressed in the body
with a wide range of functions, including regulation of cell
volume and extracellular pH. In the brain, ClC-2 is expressed
in different types of neurons, including pyramidal cells of the
hippocampus and PCs of the cerebellum (Smith et al., 1995;
Clayton et al., 1998), as well as in glia cells, like Bergmann
glia in the cerebellar cortex (Sík et al., 2000; Blanz et al., 2007;
Planells-Cases and Jentsch, 2009). In olivocerebellar system,
ClC-2 knockout mice show the typical progressive spongiform
vacuolation of their white matter tracts, which in the rest of
the brain is manifested as leuko-encephalopathy (Blanz et al.,
2007). Although no study has yet specifically examined the cell
physiological role of ClC-2 in cerebellar neurons, several studies
have evaluated its function in mediating the inwardly rectifying
Cl− current in hippocampal pyramidal cells (Weinreich and
Jentsch, 2001; Rinke et al., 2010). Under conditions of high
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[Cl−]i, i.e., those found in dorsal root ganglion cells and
hippocampal neurons of rats with temporal lobe epilepsy, ClC-
2 channels have been shown to extrude Cl− (Staley et al., 1996;
Ge et al., 2011). Endogenously, neuronal ClC-2 is open at resting
membrane potentials and it does not inactivate or close at a
given time upon activation (Staley et al., 1996). Thereby, it
also has a profound effect on the membrane resistance, action
potential threshold, and neuronal excitability (Madison et al.,
1986; Rinke et al., 2010; Ratté and Prescott, 2011). However, ClC-
2 knockout mice do not show lowered seizure susceptibility levels
in their temporal lobe compared to their wild type littermates
(Rinke et al., 2010). One possible explanation may be that the
hyperexcitability of part of their neurons was balanced out
by increased excitability of their local inhibitory interneurons
(Rinke et al., 2010). Similar compensatory mechanisms may also
occur in the olivocerebellar network, as ClC-2 KO mice do not
show obvious abnormalities in movement performance (Blanz
et al., 2007). Alternatively, it is also plausible that up and/or
downregulation of other Cl− channels (for instance ClC-1) can
compensate for deletion of ClC-2.

ClC-3
ClC-3, which is a Cl−/H+ exchanger encoded by the CLCN-
3 gene, is broadly expressed in many tissues, including brain,
kidney, skeletal muscles, heart, and liver (Kawasaki et al., 1994;
Borsani et al., 1995; Jentsch et al., 2002). It shows ubiquitous
expression throughout the brain with some of the highest levels of
expression in hippocampus and cerebellum (2004 Allen Institute
for Brain Science; Allen Human Brain Atlas. Available from:
mouse.brain-map.org). With regard to the cellular distribution of
ClC-3, the existing literature points to predominant expression
in endosomal compartments and synaptic vesicles where it
contributes to acidification by mediating the exchange of Cl−

against protons (Stobrawa et al., 2001). However, its expression
in plasma membrane has been the subject of conflicting reports
(Li et al., 2000; Jentsch et al., 2002). Recent studies by Nelson
and colleagues showed that ClC-3 is expressed in the plasma
membrane of postsynaptic hippocampal neurons, where it is
functionally linked to NMDA receptors and activated by CaMKII
(Wang et al., 2006; Farmer et al., 2013). In addition, ClC-
3 may participate in controlling Ca2+ influx and plasticity in
hippocampal neurons (Farmer et al., 2013). ClC-3 knock-out
mice show postnatal degeneration of the retina and hippocampus
(Stobrawa et al., 2001). In the cerebellum, expression is high in
PCs (2004 Allen Institute for Brain Science; Allen Human Brain
Atlas. Available from: mouse.brain-map.org). According to the
studies by Farmer and colleagues, it is tempting to hypothesize
that ClC-3 may also play a role in controlling plasticity at the PF
to PC synapse by reducing Ca2+ influx. However, it has not been
established yet whether ClC-3 is also expressed in the plasma
membrane of PCs.

2. CA2+-ACTIVATED CL− CHANNELS
(ANOCTAMINS)

The intracellular Ca2+ concentration ([Ca2+]i) plays a vital
role in cellular signal transduction pathways, neurotransmitter

release, as well as cellular excitability (Fakler and Adelman,
2008; Greer and Greenberg, 2008). Voltage-gated Ca2+ channels,
which open upon membrane depolarization, form the main
source of Ca2+ influx, but intracellular Ca2+-stores also
contribute to elevating [Ca2+]i. The increase of [Ca2+]i is
the prime activator for Ca2+-activated ion channels, including
the large- (KCa, BK) and small-conductance (KCa, SK) Ca2+-
activated K+ channels. BK and SK channels are well-known for
their predominant effects on the repolarization of the membrane
following an action potential, influencing intrinsic excitability
and shaping the postsynaptic currents, such as those of dendritic
Ca2+ spikes (Fakler and Adelman, 2008). In addition to the KCa

channels, several in vitro electrophysiological studies have shown
the existence of a range of Ca2+-activated Cl− currents (ClCa),
which can, depending on the [Cl−]i, depolarize or repolarize
the membrane potential. One of the main families of Ca2+-
activated Cl− channels is the TMEM16 family (also referred
to as anoctamins), which contains 10 members (Ano1-10),
most of which are present in many different cell types in the
body. In addition to their ion channel activity, anoctamins have
been implicated in a wide range of physiological tasks, such as
phospholipid scrambling or regulation of specific K+ channels
(Suzuki et al., 2010; Huang et al., 2013a,b; Picollo et al., 2015).
As a consequence, anoctamins have been attributed to various
functionalities, such as smooth muscle contraction, olfactory and
sensory signal transduction, and neuronal excitability (Picollo
et al., 2015). Not surprisingly, the clinical implications of
impaired TMEM16 activity is equally diverse in that patients
with mutated anoctamins are associated with cancer (Duvvuri
et al., 2012; Liu et al., 2012; Ubby et al., 2013; Guan et al., 2016),
muscular dystrophy (Griffin et al., 2016), Scott syndrome (Suzuki
et al., 2010), and autosomal recessive cerebellar ataxia (Vermeer
et al., 2010).

In line with their de- or repolarizing impact on the membrane
potential, opening of anoctamins leads to Cl− efflux or influx
depending on the gradient of Cl− across the cell membrane. For
instance, in olfactory and dorsal root ganglion (DRG) neurons
with high [Cl−]i, Cl

− efflux through anoctamins amplifies the
sensory signal transduction by depolarizing the cell (Stephan
et al., 2009; Cho et al., 2012). In contrast, in hippocampal
pyramidal cells and IO neurons, which typically have relatively
low [Cl−]i, anoctamins cause hyperpolarization by mediating
Cl− influx (Huang et al., 2012; Zhang et al., 2017). It should be
noted that not all anoctamins have yet been characterized as a
ClCa channel. So far Ano1, Ano2, and Ano6 have been shown
to gate Cl− dependent on Ca2+-activation, albeit with variable
affinities for Ca2+. For example, Ano1 exhibits a higher affinity
for Ca2+ and a longer de-activation time than Ano2, while Ano6
appears to have a very low affinity for Ca2+ (Pifferi et al., 2009;
Stephan et al., 2009; Grubb et al., 2013).

Anoctamins start gating Cl− fluxes upon a rise in [Ca2+]i
evoked by the opening of voltage-gated Ca2+ channels and
release from internal Ca2+-stores. Both Ano1 and Ano2 have
been shown to interact with Ca2+ driven calmodulin complexes
(Verkman and Galietta, 2009; Jung et al., 2013; Vocke et al.,
2013). Additional layers of complexity are added by the
observations that Ano1 does not have to be activated by a
postsynaptic Ca2+ influx per se, but can also be activated locally
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TABLE 2 | TMEM16 (Anoctamin) family.

AnoctaminsExpression Function Human disease KO mouse Pharmacology References

TMEM16A

(Ano1)

Epithelial tissue, smooth

muscle, interstitial cells of

Cajal, dorsal root ganglion

neurons

ClCa channel, involved

in fluid secretion,

muscle contraction,

gastrointestinal

contractility, pain

processing

Tumor growth, cystic

fibrosis, asthma

Low blood pressure Inhibitors: CaCCinh-A01,

CaCCinh-B01, Niflumic

acid (NFA), and NPPB,

agonists: INS37217

Chen et al., 2007; Yang

et al., 2008; Huang et al.,

2009; Stöhr et al., 2009;

Namkung et al., 2011; Jin

et al., 2013; Neureither

et al., 2017

TMEM16B

(Ano2)

Brain (hippocampal and

thalamocortical neurons,

olfactory bulb, inferior olive,

Purkinje cells), retina,

muscle

ClCa channel, involved

in neuronal excitability,

olfactory and sensory

signal transduction and

smooth muscle

contraction

? Impaired motor

behavior, partial

reduction of electrical

response to odorants,

normal olfaction

Inhibitors: CaCCinh-A01,

CaCCinh-B01, Niflumic

acid (NFA) agonists:

INS37217

Stöhr et al., 2009; Billig

et al., 2011; Huang et al.,

2012; Dauner et al., 2013;

Zhang et al., 2015, 2017;

Ha et al., 2016

TMEM16C

(Ano3)

Brain (dorsal root ganglion

cells), blood vessels, lung

Phospholipid

scrambling, KNa
channel regulator

Craniocervical dystonia,

tremor, asthma

Impaired endoplasmic

reticulum-dependent

Ca2+ signaling

Charlesworth et al., 2012;

Huang et al., 2013a; Suzuki

et al., 2013; Miltgen et al.,

2016

TMEM16E

(Ano5)

Muscle, bone, sperm Phospholipid

scrambling

Muscular dystrophy,

gnathodiaphyseal

dysplasia

Katoh, 2004; Tsutsumi et al.,

2004; Gyobu et al., 2016

TMEM16F

(Ano6)

Blood vessels, endosomes,

brain?

Phospholipid

scrambling, blood

coagulation, SCANCa

channel, ClCa channel,

involved in membrane

excitability

Scott syndrome Lysosomal storage

disease

Suzuki et al., 2010, 2013;

Yang et al., 2012; Grubb

et al., 2013; Shimizu et al.,

2013; Yu et al., 2015

TMEM16J

(Ano9)

Epithelial cells, colonic

tissue

Phospholipid

scrambling

Colorectal carcinoma
Suzuki et al., 2013; Li et al.,

2015

TMEM16K

(Ano10)

Epithelial cells, cerebellum? Intracellular protein

involved in intracellular

Ca2+ signaling,

essential for apoptosis

Autosomal recessive

cerebellar ataxia

Vermeer et al., 2010;

Renaud et al., 2014;

Chamard et al., 2016;

Mišković et al., 2016;

Wanitchakool et al., 2017

by interacting with Ca2+ dependent G protein-coupled receptor
signaling and compartmentalized Ca2+ (Jin et al., 2013; Courjaret
and Machaca, 2014). Not surprisingly, also this affinity for the
modulation by compartmentalized Ca2+ signals from internal
stores is likely differentially modulated between anoctamin
family members. The diverse functionalities, together with the
differentially distributed expression among cell types (Table 2),
reveal a picture where it seems likely that anoctamin members
are expressed as a function of cell-specific Ca2+ dynamics.

Neurons are characterized by continuously changing local
[Ca2+]i. Therefore, it is important to understand how these
changes in intracellular milieu influence the responses of
anoctamins. In hippocampal neurons, TMEM16B (Ano2) has
been shown to affect action potential generation through a
Ca2+ induced suppression of excitatory postsynaptic potentials
in dendrites, which in turn lowers probability of action potential
generation (Huang et al., 2012). In support of these data, a recent
study performed in thalamic neurons demonstrated that Ano2
contributes to spike-frequency adaptation in thalamic neurons
(Ha et al., 2016). In this study, knockdown of Ano2 reduces
inter-spike interval lengths, resulting in a higher firing rate. The
authors conclude that in the thalamus the main function of

Ano2 is to drive hyperpolarizing currents as a consequence of
depolarization induced [Ca2+]i increase. The difference between
SK KCa and Ano2 ClCa mediated hyperpolarization in thalamic
cells was hypothesized to be due to different decay time kinetics
between these channels, in that Ano2 has a longer decay
time duration and thus stronger influence on spike-frequency
adaptation. In addition, a behavioral relevance for the Ano2
mediated spike-frequency adaptation was revealed in thalamic
neurons, as the mice that have Ano2 knockdown in the thalamus
experience an increase in pain responses. From these data, the
authors proposed that the Ano2-driven modulation of spike
frequency adaptation may provide thalamic cells with the ability
to suppress excessive thalamo-cortical transmission, which tunes
the network sensitivity to sensory inputs that reach the thalamic
complex.

In contrast to the previously discussed increase of excitability
in thalamic neurons, a recent study on the role of Ano2 in
IO cells reported that functional deletion of Ano2-channels
resulted in decreased excitability of IO neurons (Zhang et al.,
2017). In light of the typical IO activity pattern, which is
dominated by oscillatory fluctuations of membrane potentials
partially driven by Ca2+-currents, the impact of Ano2-mutations
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can be substantial. The so-called high threshold spikes are formed
when high threshold Ca2+ channels are activated that allow for a
large after-depolarization potential (ADP) upon which additional
spikes (spikelets) can be detected (Llinás and Yarom, 1981a,b).
In a study by Zhang et al. (2017) this ADP was shown to be
prolonged in mouse mutants lacking Ano2. In addition, the IO
cells showed prolonged AHP duration, which coincided with less
spiking upon current injection. They hypothesized that the loss
of the hyperpolarizing ClCa current in the Ano2 deficient mice
leads to prolonged activation of KCa SK channels and therefore
to prolonged AHP duration, which in turn reduces the likelihood
for action potential firing. The authors conclude that the role for
Ano2 in IO cells seems to primarily function as a repolarizing
current of the voltage gated Ca2+ currents and as such determines
the ADP length to a rather large degree.

Other mechanisms by which anoctamins could potentially
regulate neuronal excitability in the cerebellar system has been
touched upon by recent studies in PCs, where ClCa channels
were found to be involved in depolarization-induced depression
of inhibition (Satoh et al., 2013; Zhang et al., 2015). Here,
the authors reported Ano2-induced reduction of GABAergic
transmission through an increase of postsynaptic [Cl−]i that
reduces the driving force for Cl− influx. As the IO is an integrated
part of the olivo-cerebellar circuit, which has been shown to be
critical for motor coordination and learning, Zhang et al. (2017)
hypothesized that a less excitable IO due to the absence of Ano2
would lead to less input to PCs and as a consequence impaired
motor learning. Zhang et al. (2017) investigated the behavioral
consequences of Ano2 absence and found that Ano2 knockout
mice had significant deficits in their motor learning performance
during classical eyeblink conditioning, a cerebellar dependent
task where a conditioned stimulus (light/sound) predicts the
arrival of an unconditioned stimulus (air puff). However, the
idea that a cerebellar related dysfunction in behavior can solely
be due to IO expression of Ano2 has recently been put to
question (Neureither et al., 2017). In this study, Neureither
et al. (2017) proposed the previously mentioned depolarization-
induced depression of inhibition in PCs to be the main cause
for the motor deficits found in their Ano2 knockout model. In
this respect, it is important to emphasize that even though the
Ano2 protein is abundantly expressed in the IO, there is also
evidence for its expression in other brain areas involved in motor
function, including the thalamus (Table 2). Further research will
have to be conducted to determine whether the dysfunctional
cerebellar related motor behaviors described in these studies can
be reproduced in the conditional removal of Ano2 in the IO
and/or PCs.

3. PH-SENSITIVE CL− CHANNELS AND
TRANSPORTERS

Acid-base regulation is a homeostatic mechanism, which is
crucial for cell survival and function in all tissues. All vertebrates
generate significant amount of acid via metabolism. To buffer
the metabolic acid load, increasing the concentration of systemic
bicarbonate (HCO−

3 ) aids the cell’s capacity to extrude acid (H
+).

The transmembrane transport mechanisms for pH regulation
include Cl−/HCO−

3 exchangers, Na+/H+ exchangers, and
Na+/HCO−

3 cotransporters. These transporters are expressed
in all cell types, including neurons and glia and are localized
at the plasma membrane and membranes of the intracellular
organelles (Alka and Casey, 2014). Studies on hippocampal
neurons have reported an association between intracellular pH
changes with neuronal excitability, in a way that a rise in the
intracellular pH leads to increased neuronal excitability, while
a fall in pH has the opposite effect (Balestrino and Somjen,
1988; Tombaugh and Somjen, 1996). It has been suggested that
pH-induced neuronal activity may be related to the activation
of NMDA receptors, which are highly pH sensitive and show
increased open probability at alkaline pH (Tang et al., 1990;
Traynelis and Cull-Candy, 1990; Majumdar and Bevensee, 2010).
Here, we emphasize the expression, localization, and functional
significance of Cl−/HCO−

3 exchangers of the SLC4 and SLC26
families, which are involved in regulation of both intracellular pH
and [Cl−]i.

3.1. SLC4 Family
One of the well-known families of HCO−

3 transporters is the
SLC4 family of Cl−/HCO−

3 exchangers, which is widely expressed
in the body. This family contains 10 members (SLC4A1-5
and A7-11), with some mediating Na+-independent Cl−/HCO−

3
exchange (Anion Exchanger 1-3 or AE1-AE3) and some isoforms
facilitating Na+-dependent Cl−/HCO−

3 exchange (NCBE and
NDCBE). AE transporters mediate HCO−

3 extrusion while
transporting Cl− inside the cell. In contrast, NCBE and NDCBE
transport HCO−

3 inside and Cl− outside of the cell (Figure 2).
The Cl−/HCO−

3 exchangers have been shown to be important
for baseline intracellular pH regulation, as well as facilitation of
recovery after pH modifications (Hentschke et al., 2006; Jacobs
et al., 2008). Three members of the SLC4 family are expressed
in the olivocerebellar system, including SLC4A3 (AE3), SLC4A8
(NDCBE), and SLC4A10 (NCBE) (Chen et al., 2008; Burette et al.,
2012). Here we review the literature on AE3 and NCBE, which
have been studied for their functional roles.

SLC4A3 (AE3)

AE3 is an anion exchanger expressed in a wide variety of cells,
which include for example particular types of excitable cells in
the retina, heart, and brain (Alka and Casey, 2014). Similar to
NKCC1, AE3 is considered as one of the main Cl− accumulators
in neurons by mediating the electroneutral exchange of one
Cl− while extruding one HCO−

3 (Figure 2). In mammals, there
are two variants of the SLC4A3 gene product: bAE3, which is
abundant in the brain and retina, and cAE3, which is highly
expressed in the cardiac tissue (Hentschke et al., 2006; Romero
et al., 2013). bAE3 protein has been found in the hippocampus,
cerebral cortex, cerebellum, and brainstem (Romero et al., 2013).
In hippocampal pyramidal cells elevated pH levels activate
bAE3, which leads to HCO−

3 extrusion, a function essential for
recovery of intracellular alkalosis (Hentschke et al., 2006). There
are reports on single nucleotide polymorphisms that occur in
SLC4A3 gene and are predicted to impact the protein sequence
of bAE3 at the extracellular loop and that may promote a higher
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FIGURE 2 | Diagram of chloride channels and transporters that are expressed in the olivocerebellar neurons. The intracellular Cl− concentration in all neurons,

including the neurons of cerebellum and inferior olive, is maintained by activation of various transmembrane anion channels and transporters. These anion

transporters/channels also interact with H+ exchangers/channels, such as NHE1 and H+-ATPase, and thereby are involved in intracellular pH regulation. Cell

membrane depolarization, through voltage-gated Na+ channels (VGSCs), activates several Cl− channels/transporters, such as SLC26A11 (KBAT), to repolarize the

cell by mediating inward Cl− currents. In addition, depolarizations activate voltage-gated Ca2+ channels (VGCCs) and the resulting rise in intracellular Ca2+ levels,

which may be aided by internal Ca2+ stores, may lead to activation of Ca2+ sensitive Cl− channels, such as anoctamin-2 (Ano2). Transmembrane movements of Cl−

together with cations such as K+ and Na+ also control cell volume through transport of water molecules. Channels and transporters which belong to the same family

of proteins are shown with a similar color.

sensitivity to idiopathic generalized epilepsy (Sander et al., 2002).
While AE3 knockout mice appeared to be normal, they were
affected by a lower seizure threshold and higher mortality rates
after exposure to bicuculline, pentylenetetrazole, or pilocarpine
(Hentschke et al., 2006). It is hypothesized that the increased
seizure susceptibility of AE3 knockout mice is due to increased
[HCO−

3 ]i in hippocampal pyramidal neurons (Hentschke et al.,
2006). Given that GABAARs are also permeable to HCO−

3 , it
may be that the observed phenotype of AE3 knockout mice, i.e.,
reduced GABAergic inhibition, is due to an increased [HCO−

3 ]i
(Hentschke et al., 2006). However, a lack of AE3 exchanger
should also result in decreased [Cl−]i and enhanced GABAergic
inhibition. To identify the cellular mechanisms underlying the

involvement of AE3 in neuronal excitability in future studies,
one may have to combine Cl− and pH measurements in neurons
lacking AE3, as well as perform RNA-seq and DNAmicroarray to
study the possibility of genetic compensations.

SLC4A10 (NCBE)

NCBE functions as a Na+-dependent Cl−/HCO−

3 exchanger. It is
expressed in the olfactory bulb, cerebral cortex, brain stem, spinal
cord, and cerebellum (Jacobs et al., 2008). In the cerebellum,
it is densely expressed in PCs (Liu et al., 2011; Romero et al.,
2013). Similar to SLC4A8 (NDCBE), NCBE may mediate the
inward transport of Na+ and HCO−

3 in exchange for intracellular
Cl− (Figure 2). Various studies have proposed that modest
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levels of intracellular acidification can lead to termination of
seizure-related activities (Chesler and Kaila, 1992; Zhan et al.,
1998; Tong and Chesler, 1999; Jacobs et al., 2008). Using a
global NCBE knockout mouse, Jacobs and colleagues found a
significant increase in seizure threshold, supporting the impact
of reduced HCO−

3 uptake and prolonged intracellular acidosis on
seizure generating processes (Jacobs et al., 2008). NCBE knockout
mice showed normal locomotor activity, as well as motor and
spatial learning (Jacobs et al., 2008). MRI analysis of knockout
mice indicated a significant reduction in the volume of brain
ventricles compared to littermate controls. One of the reasons for
collapsed ventricles could be an increase in intracranial pressure
due to water accumulation in the brain parenchyma (Jacobs
et al., 2008). However, NCBE knockout mice did not show any
other anatomical signs of increased intracranial pressure (Jacobs
et al., 2008). Jacob and colleagues concluded that NCBE can be
considered as a new target for treatment of epilepsy.

How the [Cl−]i and the pH regulation by Cl−/HCO−

3
transporters interact in the olivocerebellar system remains
to be investigated. However, studies on other channels and
transporters sensitive to pH levels (e.g., Acid-Sensing Ion
Channels or ASICs) have indicated a modulatory role for pH
in neurotransmission and neuronal plasticity via influencing the
activity of ionotropic and metabotropic glutamate receptors in
both cerebellar and extracerebellar neurons (Allen and Attwell,
2002; Jovov et al., 2003). Tissue distributions and functions
of SLC4 isoforms with Cl−/HCO−

3 activity are summarized in
Table 3.

3.2. SLC26 Family
The SLC26 family of anion exchangers consists of 10 members
(SLC26A1-A11). Each SLC26 isoform has different modes of
ion transport activities, including the exchange of Cl− for
various other molecules (bicarbonate, hydroxyl, sulfate, formate,
iodide, or oxalate) and the formation of Cl− channels (Rahmati
et al., 2013; Soleimani, 2013). Mutations in human SLC26
genes can cause several autosomal recessive diseases, such as
chondrodysplasias (by mutations in A2), chloride diarrhea (A3),

and deafness and enlargement of the vestibular aqueduct in the
Pendred syndrome (A4) (Hästbacka et al., 1994; Everett et al.,
1997). Several mouse models of SLC26-family members have
confirmed the wide range of tissue specific deficits (Table 4).
Although studies have demonstrated the important roles of
SLC26 family in different tissues, there are only few reports
describing their expression patterns and functions in the brain.
Here, we review the most recent findings for SLC26A7 and
SLC26A11, which have been studied by utilizing knock-out
mouse models.

SLC26A7

SLC26A7 functions as a Cl− channel, which is regulated
by intracellular pH (Kim et al., 2005). It can also operate
as Cl−/HCO−

3 exchanger, which plays a role in cell volume
regulation during hypertonicity (Petrovic et al., 2003, 2004;
Soleimani, 2013). SLC26A7-null mice show deficits in acid
secretion in both kidney and stomach (Soleimani, 2013). In
the brain, SLC26A7 is expressed in several regions including
hippocampus and cerebellum, with the highest expression level
in cerebellar PCs (Rahmati, 2015). In PCs SLC26A7 is densely
expressed in both soma and dendrites. At the subcellular
level, it is expressed both in cell membrane and intracellular
compartments, but the function of SLC26A7 in cerebellar
neurons remains to be elucidated. The locomotor activity of
global SLC26A7 knockout mice is altered (smaller step size)
compared to their wild type controls (Rahmati, 2015). One
potential cause for this behavioral abnormality could be that the
lack of SLC26A7 disrupts [Cl−]i and/or intracellular pH, which
in principle could disrupt cerebellar activity patterns. Future
experiments should address this hypothetical cascade.

SLC26A11 (KBAT)

SLC26A11, also referred to as the “kidney brain anion
transporter” (KBAT) due to its high expression levels in the
kidney and brain, has been identified to operate as a Cl−/HCO−

3

exchanger, Cl−/SO2−
4 exchanger, or Cl− channel (Xu et al., 2011;

Rahmati et al., 2013; Soleimani, 2013). KBAT is expressed in

TABLE 3 | SLC4 family of anion transporters.

SLC4 Expression Function Human disease KO mouse Pharmacology References

SLC4A1

(AE1)

Erythrocytes, kidney,

heart, colon

Cl−/HCO−

3 exchanger Hemolytic anemia,

distal renal tubular

acidosis

Inhibitor: DIDS Bruce et al., 1997; Jarolim et al.,

1998; Karet et al., 1998; Shayakul

and Alper, 2004; Stehberger

et al., 2007; Romero et al., 2013

SLC4A2

(AE2)

Most epithelial cells Cl−/HCO−

3 exchanger Osteopetrosis Inhibitor: DIDS Gawenis et al., 2004; Romero

et al., 2013

SLC4A3

(AE3)

Brain, kidney, GI tract,

smooth muscle and

heart

Cl−/HCO−

3 exchanger Epilepsy, blindness Lower seizure threshold Inhibitor: DIDS Sander et al., 2002; Hentschke

et al., 2006; Romero et al., 2013;

Ruffin et al., 2014

SLC4A8

(NDCBE)

Brain, kidney, testes

and ovary

Na+–dependent

Cl−/HCO−

3 exchanger,

acid extruder

? Inhibitor: DIDS Chen et al., 2008; Burette et al.,

2012

SLC4A10

(NCBE)

Brain pH regulation (acid

extrusion)

? Higher seizure threshold,

volume reduction of brain

ventricles

Inhibitor: DIDS Chen et al., 2008; Jacobs et al.,

2008; Liu et al., 2011; Romero

et al., 2013
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TABLE 4 | SLC26 family of anion transporters.

SLC26 Expression Function Human disease KO mouse Pharmacology References

SLC26A1

(SAT1)

Kidney, GI tract, liver,

lung

SO2−
4 /Ox2− exchanger,

SO2−
4 /HCO−

3 exchanger

Oxalate urolithiasis,

nephrocalcinosis,

urinary sulfate wasting,

hepatotoxicity

Xie et al., 2002; Soleimani and

Xu, 2006; Soleimani, 2013

SLC26A2

(DTDST)

Kidney, GI tract,

chondrocytes

Cl− /SO2−
4 transporter,

SO2−
4 /Ox2− exchanger

Diastrophic dysplasia Diastrophic dysplasia
Hästbacka et al., 1994;

Soleimani and Xu, 2006

Soleimani, 2013

SLC26A3

(DRA)

GI tract, epididymis,

enterocytes

Cl−/HCO−

3 exchanger Congenital chloride

diarrhea

Congenital chloride

diarrhea

Höglund et al., 1996; Soleimani,

2013

SLC26A4

(pendrin)

Kidney, inner ear,

thyrocytes, lung

Cl−/HCO−

3 exchanger Pendred syndrome Deafness, enlargement

of the vestibular

aqueduct

Reardon and Trembath, 1996;

Everett et al., 1997; Kopp,

2000; Soleimani, 2013

SLC26A5

(prestin)

Cochlear hair cells Cl−/HCO−

3 exchanger Deafness Deafness
Liberman et al., 2002; Liu et al.,

2003; Cheatham et al., 2004;

Alper and Sharma, 2013

SLC26A6

(PAT1)

GI tract, kidney,

cardiac myocytes

Cl−/HCO−

3 exchanger,

Cl−/Ox2− exchanger,

Cl−/formate exchanger

? Soleimani, 2001; Mount and

Romero, 2004; Alper et al.,

2006; Aronson, 2006

SLC26A7 Brain, kidney, GI

tract, lung

Cl−/HCO−

3 exchanger,

Cl− channel

? Locomotor impairment,

gastric

hypochlorhydria, distal

renal tubular acidosis

Inhibitor: DIDS Kim et al., 2005; Xu et al., 2006;

Soleimani, 2013; Rahmati, 2015

SLC26A8 Male germ cells,

kidney

Cl−/Ox2− exchanger,

Cl−/SO2−
4 exchanger

? Male infertility Touré et al., 2001; Lohi et al.,

2002; Soleimani and Xu, 2006

SLC26A9 Stomach, lung,

lower levels in kidney

Cl−/HCO−

3 exchanger,

Cl− channel, Na+/Cl−

cotransporter

? Hypertension Xu et al., 2005; Amlal et al.,

2013; Soleimani, 2013

SLC26A11

(KBAT)

Brain, kidney, GI

tract

Cl− channel, Cl−/HCO−

3
exchanger, volume

control, pH regulation

? Locomotor impairment Inhibitor: GlyH-101,

CFTRinh, DIDS

(partial inhibition)

Vincourt et al., 2003; Rahmati

et al., 2013, 2016; Rungta

et al., 2015

different parts of the brain with various intensities, including
cerebral cortex, hippocampus, olfactory bulb, and cerebellum.
Cerebellar PCs show prominent expression of KBAT (Rahmati
et al., 2013). At the subcellular level, KBAT was identified both
in the cytoplasm and at the plasma membrane of PCs. Studies on
HEK293 cells showed that KBAT can operate as a Cl− channel
that functionally interacts with H+-ATPase. Transfection of cells
with KBAT stimulated acid transport via H+-ATPase and the
cells with KBAT expression showed a more robust recovery from
intracellular acidosis relative to mock transfected cells (Rahmati
et al., 2013).

Studies on hippocampal and cortical pyramidal cells have
reported the direct involvement of KBAT in cell death after
cytotoxic edema (Rungta et al., 2015). Cytotoxic edema is one
of the hallmark features of TBI and starts with an excessive
Na+ entry that depolarizes the membrane (Rungta et al.,
2015). These processes activate the Cl− influx through KBAT
channels, which in turn causes cell swelling and cell death
(Rungta et al., 2015). Inhibition of KBAT by utilizing siRNA-
mediated knockdown of KBAT significantly prevents Cl− influx
and cell death after cytotoxic edema (Rungta et al., 2015).
Rungta and colleagues showed that in their mouse model
of TBI the recovery mechanism after increased cell volume
was independent of NKCC1 and KCC2 activity as 100µM

bumetanide did not significantly affect the volume of swollen
neurons.

In the cerebellum, recent data support the role of KBAT
in intracellular Cl− accumulation. Selective deletion of KBAT
from PCs causes a significant reduction in [Cl−]i and a more
negative ECl. At the behavioral level, lack of KBAT in PCs
causes deficits in locomotor activity (Rahmati et al., 2016).
Considering the role of KBAT in neuronal Cl− transport,
as well as its involvement in cell swelling after cytotoxic
edema, KBAT may provide a novel target for designing
new therapeutic strategies for neurological conditions such
as TBI.

4. CATION-CHLORIDE
CO-TRANSPORTERS (SLC12 FAMILY)

The SLC12 family has been studied in greater detail compared
to other Cl− transporters. It is known as the cation-chloride
cotransporter gene family (CCC), which contains 9 members
(SLC12A1- SLC12A9). SLC12 isoforms (except A8 and A9)
transport Cl−, together with Na+ and/or K+ in an electroneutral
manner (Hebert et al., 2004). In neurons studies have mostly
focused on the roles of SLC12A2 (NKCC1) and SLC12A5 (KCC2)
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TABLE 5 | SLC12 family of cation-chloride cotransporters.

SLC12 Expression Function Human disease KO mouse Pharmacology References

SLC12A1

(NKCC2)

Kidney, gastrointestinal

tract, pancreatic β-cells,

induced in hypothalamo-

neurohypophyseal

system (HNS) by osmotic

stress

Na+/K+/Cl− cotransporter

involved in salt

reabsorption

Bartter’s syndrome type I Sever hypotension,

hypokalemia, hypercalcinuria,

metabolic alkalosis

Inhibitors:

bumetanide

(10µM), furosemide

Rocha and Kokko, 1973;

Simon et al., 1996; Xue et al.,

2009; Alshahrani and Di

Fulvio, 2012b; Castrop and

Schießl, 2014; Konopacka

et al., 2015

SLC12A2

(NKCC1)

Broad Na+/K+/Cl− cotransporter

involved in regulation of

[Cl− ]i and cell volume,

regulation of EGABA in

neurons

Dehydration, vomiting,

dilated cardiomyopathy,

respiratory weakness,

pancreatic insufficiency,

missense mutation in a

group of patients with

schizophrenia,

seizure-like episodes

Impaired sensory perception,

deafness, infertility,

hypotension, reduction of

saliva production, normal

intestinal absorption,

enhanced insulin secretion

and improved glucose

tolerance

Inhibitors:

bumetanide

(10µM), furosemide

Cherubini et al., 1991; Ben-Ari

et al., 1997; Delpire et al.,

1999, 2016; Dixon et al.,

1999; Evans et al., 2000;

Grubb et al., 2000; Pace

et al., 2000; Sung et al., 2000;

Alshahrani and Di Fulvio,

2012a; Flores et al., 2016;

Merner et al., 2016

SLC12A3

(NCC)

Kidney, peripheral blood

mononuclear cells, colon,

spleen, placenta, small

intestine, prostate

Na+/Cl− cotransporter

involved in salt

reabsorption

Gitelman syndrome Hypotension, hypokalemia,

hypercalcinuria,

hypomagnesemia

Inhibitor: thiazide Costanzo, 1985; Ellison et al.,

1987; Chang et al., 1996;

Abuladze et al., 1998; Arroyo

et al., 2013

SLC12A4

(KCC1)

Broad K+/Cl− cotransporter,

involved in cell volume

regulation

? No phenotype is reported Inhibitor: furosemide Kanaka et al., 2001; Mikawa

et al., 2002; Arroyo et al.,

2013

SLC12A5

(KCC2)

Brain, pancreatic β-cells,

adrenal chromaffin cells,

cancer cells

K+/Cl− cotransporter,

involved in regulation of

[Cl− ]i, neuronal excitability

and cell volume,

modulation of insulin

secretion

Epilepsy, tumor

invasion/metastasis

Complete KO: death

conditional KO: increased

[Cl− ]i, positive shift of EGABA,

neuronal hyperexcitability,

impaired motor performance,

and motor learning

Inhibitors:

bumetanide

(100µM),

furosemide,

VU0463271, VU

0240551, ML077

activator: CLP257

Williams et al., 1999; Ben-Ari,

2002; Song et al., 2002; Xie

et al., 2003; Wei et al., 2011;

Seja et al., 2012; Arroyo et al.,

2013; Lavertu et al., 2013; Yu

et al., 2014; Kahle et al., 2016;

Kursan et al., 2017; Liu et al.,

2017; Moore et al., 2017

SLC12A6

(KCC3)

Broad K+/Cl− cotransporter,

involved in cell volume

regulation

Andermann syndrome

(ACCPN), epilepsy?

Hypertension, progressive

neurodegeneration, reduced

seizure threshold, deafness

Inhibitor: furosemide Pearson et al., 2001; Hebert

et al., 2004; Seja et al., 2012

in regulation of inhibition through GABAAR activity (Takayama
and Inoue, 2007; Seja et al., 2012; Kawakita et al., 2013). Earlier
studies reported differential expression patterns for NKCC1 and
KCC2 during development with higher NKCC1 expressions in
immature brain and increased KCC2 levels in the adult brain
(Plotkin et al., 1997; Lu et al., 1999; Rivera et al., 1999; Stein et al.,
2004; Dzhala et al., 2005). According to these studies, the protein
expression ratio of NKCC1 to KCC2 can explain the differences in
[Cl−]i and GABAergic signaling during development. However,
recent findings suggest that NKCC1 and KCC2 cannot always
explain the levels of [Cl−]i (Glykys et al., 2014, 2017; Sedmak
et al., 2016), because their activities as ion transporters are
controlled by post-translational modifications, such as protein
phosphorylation (Rinehart et al., 2009; Friedel et al., 2015).

SLC12 isoforms in the brain are also involved in cell
volume regulation. Transport of Cl− and cations through some
CCCs is accompanied by the movement of water which can
lead to neuronal swelling or shrinkage, unless other volume-
regulated Cl− transporters and channels are activated (MacAulay
et al., 2004; Zeuthen, 2010; Jourdain et al., 2011; Glykys
et al., 2017). Mutations in genes encoding for CCC isoforms
result in various brain pathologies, like seizures, cerebral
edema, neurodevelopmental deficits, and neuropathic pain.
Pharmacological inhibitors of CCC functioning, like bumetanide
and furosemide, which are well-known as loop diuretics, inhibit
the CCCs both in vitro and in vivo (Dzhala et al., 2005, 2008).
In low concentrations (2-10µM) bumetanide specifically inhibits

NKCC1 and exerts antiepileptic effects in human neonates (Kahle
et al., 2009). In the cerebellum, four members of SLC12 family are
expressed; these include SLC12A2 (NKCC1), SLC12A4 (KCC1),
SLC12A5 (KCC2), and SLC12A6 (KCC3) (Kanaka et al., 2001;
Mikawa et al., 2002). Here, we review the literature on NKCC1,
KCC2, and KCC3, which all have been studied in the brain
in more detail (see Table 5 for neuronal and non-neuronal
expression of SLC12 family).

SLC12A2 (NKCC1)
NKCC1, which is an electroneutral Na+-K+-2Cl− cotransporter,
is one of the main Cl− accumulator in neurons (Brumback
and Staley, 2008). Genetically modified animal models lacking
NKCC1 show severe phenotypes, including: deafness due to inner
ear dysfunction, deficits of spermatocyte production that lead to
complete infertility, hypotension, reduction in saliva production,
and sensory perception impairment due to abnormal responses of
the dorsal root ganglion neurons to GABA release (Delpire et al.,
1999; Dixon et al., 1999; Evans et al., 2000; Pace et al., 2000; Sung
et al., 2000). Studies have shown that NKCC1 is heavily expressed
in brain cells, including cerebellar neurons and glia. These studies
reported that the expression of NKCC1 gradually decreases in
cerebellar neurons except for granule cells (GrCs), which show
robust expression in both neonatal and adult stages of the
brain (Hübner et al., 2001; Kanaka et al., 2001; Li et al., 2002;
Mikawa et al., 2002). It has been suggested that strong expression
of NKCC1 in mature GrCs causes higher [Cl−]i compared to
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other cerebellar neurons (Seja et al., 2012). NKCC1 is also
repeatedly reported to be involved in cell volume control (Russell,
2000; Friedrich et al., 2006). Lowering [Cl−]i and cell shrinkage
stimulate NKCC1 ion transport activity, which is associated with
increased levels of NKCC1 protein phosphorylation (Haas, 1994;
Lytle, 1997).

SLC12A5 (KCC2)
KCC2 plays a crucial role in regulating cell volume as well as
neuronal excitability (Payne et al., 2003; Kahle et al., 2015).
Under normal physiological conditions the electrochemical
balance dictates K+-efflux, which supports exchange of one K+

with one Cl− by KCC2 and leads to the reduction of [Cl−]i
(Figure 2). Although KCC2-mediated ion transport occurs in
normal isotonic conditions, cell swelling causes a 20-fold increase
in its activity (Song et al., 2002). In the cerebellum, KCC2 is
expressed in PCs, GrCs, MLIs, and CN (Haas, 1994; Williams
et al., 1999; Mikawa et al., 2002). At the subcellular level,
KCC2 is detected at the plasma membrane and it is localized
at both cell body and dendrites of PCs (Seja et al., 2012).
Gramicidin-perforated patch-clamp recordings of PCs from PC-
specific KCC2 knockout mice revealed that KCC2 is the major
Cl− extruder of PCs (Seja et al., 2012). Studies on PC-specific
and GrC-specific knockouts of KCC2 indicated that their [Cl−]i
was doubled in both PCs and GrCs. This significant increase
in [Cl−]i almost eliminated GABA-induced hyperpolarization
in PCs without affecting their resting membrane potential.
In GrCs, which have been shown to have a more positive
EGABA compared to RMP in normal physiological conditions
(Seja et al., 2012), elevated [Cl−]i caused higher excitability by
depolarizing the resting membrane potential by ∼15mV (Seja
et al., 2012). Utilizing cerebellar specific behavioral tests, such
as compensatory eye movements, Seja et al. (2012) showed that
KCC2 deletion in PCs resulted in impairments in baseline motor
performance, as well as motor learning. GrC-specific KCC2
knockout mice did not show prominent deficits in their baseline
motor performance, while they were significantly impaired in
motor learning (for details see Seja et al., 2012).

SLC12A6 (KCC3)
KCC3 is a widespread K+-Cl− cotransporter, which particularly
shows significant expression in brain and spinal cord (Pearson
et al., 2001). In the cerebellum, KCC3 is expressed in cerebellar
PCs (Pearson et al., 2001; Boettger et al., 2003). Conventional
KCC3 knockout mice revealed important roles at cellular and
behavioral levels. Deletion of KCC3 increased the [Cl−]i in PCs
and resulted in severe motor abnormalities. The knockout mice
also showed hypertension, progressive neurodegeneration and
deafness, as well as reduced seizure threshold (Boettger et al.,
2003). However, later studies on PC-specific KCC3-KO mutant
mice could not detect any difference with control mice neither
at the cellular nor behavioral level (Seja et al., 2012). It has been
proposed that KCC3 mostly functions as a volume regulator in
mature neurons, while in immature neurons it may participate
in modulation of [Cl−]i and network development (Seja et al.,
2012).

5. LIGAND-GATED CL− CHANNELS

Hyperpolarizing inhibition was discovered in 1951 by John C.
Eccles and his colleagues (Brock et al., 1951). Their work on
identification of ionic mechanisms underlying the generation
of inhibitory postsynaptic potentials (IPSPs) and the activity of
ligand-gated Cl− channels questioned the “passive distribution
dogma” of Cl−. Ever since, researchers have been investigating
the underlying mechanisms of [Cl−]i regulation and neuronal
inhibition in various parts of the brain (Table 6).

5.1. GABA-Activated Cl− Channels
Gamma-aminobutyric acid (GABA) is the main inhibitory
neurotransmitter in the brain and plays vital roles in the
development, migration, and assembly of neurons to create
functional networks (Mcbain and Fisahn, 2001; Whittington
and Traub, 2003; Farrant and Kaila, 2007). In the CNS, GABA
receptors appear as ionotropic GABAA receptors (GABAARs)
and metabotropic GABAB receptors; the latter do not directly
gate anions and therefore are not considered in this review.

TABLE 6 | Ligand-gated chloride channels.

Channel Expression Function Human disease KO mouse Pharmacology References

GABAAR Nervous

system

Inhibitory synaptic

transmission in the brain,

neuronal excitability and

development

Epilepsy, movement

disorders, cognitive

disorders, autism, anxiety

disorders, schizophrenia,

sleep disorders, mood

disorders

Epilepsy, movement

disorders, impaired

motor learning and

cognition

Agonists: benzodiazepines,

barbiturates, zolpidem,

muscimol antagonists:

bicuculline, picrotoxin, Cu2+

(blocks tonic inhibition)

Kaila, 1994; Möhler, 2006;

Wisden et al., 2009;

Gonzalez-Burgos et al.,

2011; Braat and Kooy, 2015

GlyR Nervous

system

Inhibitory synaptic

transmission in the

central nervous system,

neuronal excitability and

development

Startle disease, autism Natural occurring

mutation: startle

disease

Agonists: Taurine, α-L-alanine,

L-serine, low concentration of

Zn2+, antagonists: strychnine,

high concentration of Zn2+

Curtis et al., 1968; Werman

et al., 1968; Lynch, 2004;

Burgos et al., 2016; Ito,

2016

SLC1A4

(EAAT4)

Nervous

system

Glutamate/Na+/Cl−

transport, involved in

neuronal excitability and

development

Neurodegenerative

disorders, stroke

Down-regulation of

EAAT4 leads to PC

hyperexcitability

Agonists: TBOA,

L-α-aminoadipate, T3MG, Zn2+

(selective blocker of Cl−

conductance)

(Fairman et al., 1995; Nagao

et al., 1997; Fairman and

Amara, 1999)
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GABAARs are anion selective channels that are gated upon
binding of GABA, permeable to Cl− and HCO−

3 and mediate
a fast postsynaptic current. Due to GABAARs’ five times
higher permeability to Cl− than HCO−

3 and four times higher
concentration of extracellular Cl− compared to HCO−

3 , [Cl
−]i

is considered to be the main determinant of the direction of
current through GABAARs (Staley, 2011). In other words, [Cl−]i
dictates the GABAergic reversal potential (EGABA). However,
the permeability to HCO−

3 functions as a depolarizing current
through GABAARs. Therefore, the EGABA differs from ECl to
more positive values (Kaila and Voipio, 1987).

GABAA receptors are pentameric proteins composed of
different subunits (Carlson et al., 1998). It is known that in
human there are six α subunits, three β subunits, three γ subunits,
three ρ subunits, and one ε, δ, θ, and π subunit (Sigel and
Steinmann, 2012). This reflects the large diversity of subunit
assembly, which is further increased by alternative splicing.
The subunit composition, which is shown to be important for
the kinetics and pharmacological properties of the receptor,
changes during development (Succol et al., 2012). Whereas
immature GABAergic synapses contain high expression levels of
the α3 subunit, the adult isoform of GABAA receptor mainly
contains α1, β2, and γ2 subunits (Ortinski et al., 2004). In
the adult cerebellum, whole-cell recordings of spontaneous
inhibitory postsynaptic currents (sIPSCs) in PCs and GrCs
revealed differences between the shapes and decay times of the
recorded currents. Purkinje cells typically express a combination
of α1-, β2, or β3- and γ2-subunits, which mediates sIPSCs with a
single fast exponential decay time constant, whereas GrCs, which
specifically express the α6 subunit, show sIPSCs with the sum of
fast and slow exponential curves, indicating that GrCs express
both fast- and slow-mediated receptor compositions (Wisden,
1995). The variation in the expression of subunits does not
only differ depending on the cell type, but also on subcellular
location (e.g., soma vs. dendrites) (Wisden, 1995). To estimate
the impact of local GABAARs on the membrane potential and
[Cl−]i, one should consider the location together with the
composition of subunits, which also determines the conductance
level of the GABAARs (Porter et al., 1992; Angelotti and
Macdonald, 1993). Studies on HEK293 cells showed that α1β2γ2-
containing GABAARs, which is the composition expressed in
mature cerebellar PCs, have the highest conductance of 30 pS
(Verdoorn et al., 1990).

Throughout the olivocerebellar system all cell-types appear to
express GABAARs where they not only gate phasic inhibition,
which is fast and lasts for milliseconds, but also gate tonic
inhibition. The former type of synaptic inhibition is gated
by synaptic GABAARs and the latter mostly by extrasynaptic
GABAARs (Wisden, 1995; Farrant and Nusser, 2005; Sigel and
Steinmann, 2012). The targeting of GABAARs to synaptic or
extrasynaptic compartments is determined by the presence of
specific subunits (Pirker et al., 2000). For instance, the γ2 subunit
is primarily expressed at synaptic sites, whereas the δ subunit is
mostly present at extrasynaptic locations (Schweizer et al., 2003;
Brickley and Mody, 2012; Brickley et al., 2013). In addition to
phasic and tonic inhibition, spillover inhibition also occurs in
cerebellar cortex, a phenomenon that is moderated by GABA

spilling out of the synaptic cleft. For example, high affinity
GABAARs expressed on GrCs can sense low concentrations
of GABA spilling out of their synapses with GoCs (Rossi and
Hamann, 1998). The impact of GABA spillover in cerebellar
cortex has also been demonstrated at excitatory terminals
within the cerebellar glomerulus (Mitchell and Silver, 2000).
In olivocerebellar system, some of the subunits of GABAARs
show ubiquitous expression, whereas others represent a restricted
expression pattern, such as the α6 subunit, which is only
expressed in cerebellar granule cells (Carlson et al., 1998; Sieghart
and Sperk, 2002). Inferior olive neurons abundantly express α2,
α4, and γ1-subunits, while α1, α3, β2, β3, and γ2 are detected at
lower levels (Laurie et al., 1992). Expression of the α3 subunit
appears to be restricted to the soma of olivary neurons and
mediate a slow postsynaptic response to GABA (Bengtsson and
Hesslow, 2006).

GABAARs are involved in various brain disorders, including
epilepsy, movement disabilities, cognitive disorders, anxiety
disorders, mood disorders, schizophrenia, autism, and sleep
disorders (Gonzalez-Burgos et al., 2011). Various synaptic
connections in the olivocerebellar network are GABAergic and
through the inhibition of postsynaptic neurons can not only
dampen action potential firing, but also drive timed action
potential firing in groups of neurons with strong pace-making
activity, such as PCs and CNs and thereby promote synchronous
activity (Wulff et al., 2009; Hoebeek et al., 2010; Buzsáki and
Wang, 2012; Person and Raman, 2012). In addition, the direct
projection from the cerebellum to the IO is GABAergic, which is
crucial for modulating activity patterns in the olivo-cerebellar-
olivary loop (Bengtsson and Hesslow, 2006). Several studies
have utilized the Cre-loxP system to create mouse models with
specific deletion of GABAergic synapses in subsets of cells.
For instance, deletion of the γ2 subunit in PCs (PC-γ2 KO)
leads to disruption of the receptor targeting to the postsynaptic
membrane and selective removal of synaptic GABAARs from
PCs (Wulff et al., 2009). These studies have shown that deletion
of GABAergic input to PCs by removing GABAARs alters the
temporal pattern of PC activity by affecting the regularity of
both spontaneous and parallel fiber-evoked simple spike firing.
In vivo extracellular recordings of PCs from PC-γ2 mice also
showed higher simple spike firing regularity in the flocculus
during compensatory eye movement and spontaneous behavior
(Wulff et al., 2009), indicating that GABAergic inputs fromMLIs
to PCs may form the main source of irregularity in PC firing
pattern (Häusser and Clark, 1997). Compensatory eye movement
experiments on PC-γ2 mice revealed severe motor learning
deficits and supported the importance of GABAergic signaling
and feed-forward inhibition in cerebellar learning (Wulff et al.,
2009). Surprisingly, PC-γ2 did not show ataxia, but only mild gait
abnormalities (Veloz et al., 2015). In order to understand whether
genetic compensatory mechanisms were involved in saving these
mice from strong baseline motor deficits, Wisden and colleagues
published a study in 2009 where they manipulated GABAARs by
intraperitoneal injection of zolpidem (Wisden et al., 2009). To
specifically study theMLI-PC synapse, they developed genetically
modified mouse models, which were selectively sensitive to rapid
manipulation of GABAAR modulator zolpidem only at MLI-PC
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synapse (PC-γ2-swap mice). PC-γ2-swap mice showed severe
motor abnormalities, highlighting the crucial role of MLI-PC
synapse-mediated inhibition in motor control (Wisden et al.,
2009). Studies have also examined the importance of GABAergic
input to GrCs by eliminating Golgi cells; this manipulation
caused overexcitation of GrCs and resulted in sever ataxia
(Watanabe et al., 1998).

In the IO GABAARs modulate the strength of the inhibitory
response to the afferent input from CN. Apart from classical
hyperpolarizing effects, the CN-IO GABAergic synapses are
suggested to be important for regulation of neuronal coupling in
the olive (De Zeeuw et al., 2011). Thereby GABA-mediated inputs
to the IO are not only affecting the excitability of olivary neurons,
but also the local oscillations (Bazzigaluppi et al., 2012; De Gruijl
et al., 2012). Both these mechanisms have profound effects on
cerebellar PC and CN firing by means of CF innervation (De
Zeeuw et al., 2011). For instance, it is shown that CFs regulate
the synaptic plasticity at the level of PF-PC, as well as MLI-PC
synapses by inducing long-term depression (LTD) and rebound
potentiation (RP), respectively (Kano et al., 1992). Therefore, the
activity level of olivary neurons can induce long-term changes at
different cerebellar synapses (Kano et al., 1992; Gao et al., 2012;
Ito, 2012; Hirano and Kawaguchi, 2014).

5.2. Glycine-Activated Cl− Channels
The glycine receptors (GlyRs) function as ligand-gated Cl−

channels. Similar to GABAARs, GlyRs mediate excitatory or
inhibitory responses by promoting the efflux or influx of Cl−,
respectively (Curtis et al., 1968; Werman et al., 1968)—the
polarity is determined by the membrane potential and ECl. GlyRs
are found throughout the central nervous system, with noticeable
densities in the spinal cord, cerebellum, hippocampus, amygdala,
hypothalamus, substantia nigra, cochlear nuclei, superior olivary
complex, and trapezoid body (Zarbin et al., 1981; Flint et al.,
1998; Ye et al., 1999; Mccool and Botting, 2000; Chattipakorn
and McMahon, 2002; Gaiarsa et al., 2002; Mangin et al., 2002;
Ye, 2007; Planells-Cases and Jentsch, 2009). GlyRs undergo
developmental changes in their subunit composition. They
mostly contain the α2 subunit at early stages of development,
whereas the adult receptor contains 2α1/3β subunits (Becker
et al., 1988; Lynch, 2004; Grudzinska et al., 2005). These subunits
have different localizations and expression intensities. In the
cerebellar cortex, GlyRs are labeled on the dendrites of Golgi
cells where they receive inhibitory input from Lugaro cells
(Dumoulin et al., 2001). In the CN, there is a small group
of glycinergic, or mixed glycinergic/GABAergic interneurons,
which locally innervate principal CN neurons (Chan-Palay, 1977;
Zeeuw and Berrebi, 1995). Studies by Husson and colleagues
identified predominant expression of GlyRs on principal output
CN neurons, where they receive inhibitory inputs from local
CN interneurons (Husson et al., 2014). They showed that at
these synapses GlyRs mediate Cl− currents and participate
in inhibition of CN principal neurons, alike the GABAergic
input from PCs. In addition, there is a subgroup of glycinergic
projection neurons in the CN that adjusts the impact of
glutamatergic inputs and facilitates vestibulocerebellar function
(Bagnall et al., 2009).

Mutations in GlyRs have been identified in humans and
cause autosomal dominant and recessive hyperekplexia or startle
disease, which is characterized by pronounced and exaggerated
responses to tactile or acoustic stimuli and hypertonia (Shiang
et al., 1993). Natural occurring murine startle disease has
been reported and shows similar phenotypes, such as reduced
glycine sensitivity or reduced membrane expression of GlyRs.
The specific impact of GlyRs in cerebellar activity has not
been studied in detail yet. Most GlyRs seem to operate only
during a limited developmental window and may contribute to
the establishment of synaptic connections. In the developing
cerebellum, in vitro whole-cell patch-clamp recordings of
PCs from rats on postnatal days 3–10 (P3-P10) revealed
a significant increase in frequencies of both excitatory and
inhibitory postsynaptic currents (EPSCs and IPSCs) upon
application of 100µM glycine (Kawa, 2003; Ye, 2007). These
glycine-evoked synaptic events were abolished by application
of strychnine (1µM), a specific blocker of the GlyRs (Kawa,
2003). Thus, ionotropic GlyRs may be transiently expressed
in the developing cerebellum and play important roles in
maturation and organization of cerebellar circuits (Kawa, 2003;
Ye, 2007).

5.3. Glutamate-Activated Cl− Channel
(EAAT4)
Excitatory amino acid transporters (EAATs) are known to play
a crucial role in terminating glutamatergic transmission by
uptake of glutamate from the synaptic cleft. This function
is necessary to prevent glutamate receptor overstimulation
(Robinson and Dowd, 1996; Dehnes et al., 1998). In addition,
EAATs can function as glutamate-activated, Na+ dependent
Cl− channels (Fairman et al., 1995; Wadiche et al., 1995;
Nagao et al., 1997). They belong to the solute carrier family
1 (SLC1), which contains five members: (EAAT1-EAAT5).
EAAT4 is highly expressed in the cerebellum with an uneven
parasagittal zonal distribution, which is very similar to that
of Zebrin II (aldolase C) (Brochu et al., 1990; Dehnes et al.,
1998). In situ hybridization, immunohistological studies and
electron microscopy have revealed that EAAT4 is a postsynaptic
transporter with predominant expression on PC spines where
they receive inputs from PFs and CFs (Takahashi et al.,
1996; Nagao et al., 1997; Otis et al., 1997). Other studies
have reported the extrasynaptic expression of EAAT4 on PC
spines, where it restricts glutamate spillover to neighboring
synapses (Tanaka et al., 1997). Electrophysiological studies of
PCs indicate that after glutamate release and high frequency
action potential firing, EAAT4 increases its Cl− transport, which
may serve as an extra force for limiting excessive PC firing
(Dehnes et al., 1998). Given the preponderance of EAAT4 in
the zebrin-positive zones, which probably all require a low
baseline firing frequency of simple spikes so as to allow ample
enhancement during motor learning (Zhou et al., 2014), this
prevention fits in perfectly with ongoing hypotheses on the
roles of zonally distributed forms of long-term postsynaptic
potentiation and depression (De Zeeuw and Ten Brinke,
2015).
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CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

While the roles of Cl− channels and transporters are established
and proven to be vital in various organs of the body, their
impact on neuronal activity requires further investigations.
Neurons express a rich set of plasma membrane Cl− channels
and transporters, which belong to various protein families and
have different modes of activation. The roles and regulations of
many of these transporters and channels in the brain remain
to be elucidated. As we have discussed here, Cl− transporting
proteins show distinct expression patterns in the brain and
are activated through different intra- and extracellular signaling
pathways to establish and maintain the [Cl−]i. Investigating
how Cl− channels and transporters function and how they
interact to set the [Cl−]i will help develop new strategies
for treatment of various neurological conditions linked to
aberrant Cl− homeostasis. The recent advances in fluorescent
Cl− indicators have considerably helped with understanding
the variability in [Cl−]i and GABAergic signaling in different
brain regions. Utilizing these Cl− indicators, the impact of Cl−

transporting proteins and other Cl− regulatory mechanisms
on [Cl−]i can be simultaneously visualized for hundreds of
cells. However, the interpretation of the physiological and
pathophysiological modifications in [Cl−]i is not easy, because
the intracellular Cl− dynamics are tightly intermingled with
multiple cellular mechanisms, such as pH modifications and

membrane potential regulation. Therefore, Cl− dynamics need
to be investigated by combining Cl− measurements with pH
imaging and electrophysiological recordings. In addition, the
significance of deletions or mutations of Cl− transporters and
channels on regulating [Cl−]i and neuronal activity needs to
be analyzed while taking developmental compensations into
account. Recent advances of genetic sequencing techniques
such as RNA sequencing analysis have now made it possible
to take a further step in investigating the impacts of genetic
compensations. Together, these approaches will ultimately shed
light on the complex interactions of various ionic channels
and transporters and their up and/or down regulations during
development and adulthood. In this manuscript, we reviewed
the main Cl− channels and transporters currently known
for the olivocerebellar system, which is implicated in various
movement disorders and probably also in neurological diseases
like epilepsy.
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