
GENERAL COMMENTARY

published: 01 May 2018
doi: 10.3389/fncel.2018.00104

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 May 2018 | Volume 12 | Article 104

Edited by:

Eleonora Palma,

Sapienza Università di Roma, Italy

Reviewed by:

Isabel Bermudez,

Oxford Brookes University,

United Kingdom

Michele Zoli,

University of Modena and Reggio

Emilia, Italy

*Correspondence:

Barbara J. Morley

Barbara.Morley@boystown.org

Received: 08 February 2018

Accepted: 03 April 2018

Published: 01 May 2018

Citation:

Morley BJ, Whiteaker P and

Elgoyhen AB (2018) Commentary:

Nicotinic Acetylcholine Receptor α9

and α10 Subunits Are Expressed in

the Brain of Mice.

Front. Cell. Neurosci. 12:104.

doi: 10.3389/fncel.2018.00104

Commentary: Nicotinic Acetylcholine
Receptor α9 and α10 Subunits Are
Expressed in the Brain of Mice

Barbara J. Morley 1*, Paul Whiteaker 2 and Ana B. Elgoyhen 3,4

1 Boys Town National Research Hospital, Omaha, NE, United States, 2Division of Neurobiology, Barrow Neurological Institute,

Phoenix, AZ, United States, 3CONICET, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N.

Torres (INGEBI), Buenos Aires, Argentina, 4 Facultad de Medicinia, Instiuto de Farmaologia, Universidad de Buenos Aires,

Buenos Aires, Argentina

Keywords: Alpha9, alpha10, nicotinic acetylcholine receptors (nAChR), brain, mouse, antibodies,

immunohistochemistry (IHC)

A commentary on

Nicotinic Acetylcholine Receptor α9 and α10 Subunits Are Expressed in the Brain of Mice

by Lykhmus, O., Voytenko, L. P., Lips, K. S., Bergen, I., Krasteva-Christ, G., Vetter, D. E., et al. (2017).
Front. Cell. Neurosci. 11:282. doi: 10.3389/fncel.2017.00282

In a recent paper published in Frontiers in Cellular Neuroscience, Lykhmus et al. (2017) propose
that the α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits are present in the brain and
may be assembled with the α7 subunit. Their conclusions are based on RT-PCR amplification and
antibody labeling. These findings are not supported by a vast accumulation of data reported over
the last 22-plus years. Therefore, if correct, their results could result in re-interpretation of a large
number of solid and reproducible published studies. A careful examination of the data is warranted.

The α9 subunit was first identified in a rat olfactory epithelium cDNA library (Elgoyhen
et al., 1994). In situ hybridization studies localized α9 to rat cochlear (Elgoyhen et al., 1994;
Morley et al., 1998) and vestibular hair cells (Hiel et al., 1996; Simmons and Morley, 2011),
the nasal epithelium, the pars tuberalis of the pituitary (Elgoyhen et al., 1994), and bone
marrow (Luo et al., 1998), but not in rat adult and embryonic brain (Elgoyhen et al., 1994).
It should be noted that in their 1994 publication Elgoyhen and co-workers only showed a
minor subset of their in situ hybridization results, since signal was not detected in embryonic
and adult brain sections. However, it was stated in their manuscript that in situ hybridizations
performed over 20µm coronal sections that were collected every 200µm through the entire
adult brain under different experimental conditions and exposure times, to optimize hybridization
conditions, repeatedly provided no evidence of α9 expression in the central nervous system.
In these brain coronal sections, α9 signal was only observed in the ventral part of the
median eminence, which corresponds to the pars tuberalis of the pituitary (Elgoyhen et al.,
1994). In addition, no α9 cDNA clones were obtained from several rat brain cDNA libraries,
including total brain forebrain, astrocytes, superior colliculus, and hippocampus, by hybridization
screening with a radiolabeled rat α9 DNA fragment (Elgoyhen, unpublished observations). These
libraries have been successfully used over and over to clone neuronal nicotinic cholinergic
receptor subunits and AMPA and kainate glutamate receptor subunits in the Heinemann
laboratory. The absence of α9 in brain by RT-PCR has also been reported in rat (Morley
et al., 1998) and trout (Drescher et al., 2004). Moreover, updated RefSeq data published in
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September, 20171 and in situ hybridization data published in the
Allen Brain Atlas2 confirm these findings. Taken together these
results indicate that the α9 gene is not transcribed in the brain.

Lykhmus et al. acknowledge that their data is inconsistent
with those findings. They report that they amplified α9 and α10
transcripts from brain samples. Although the resulting products
were sequenced, there was no positive control and no Ct-value
reported. Inclusion of a positive control, such as the cochlea,
vestibule, or pituitary, would have provided a reference point.
There was also no negative control, since all brain regions used
in their PCR reactions showed positive results.The investigators
explained their findings by stating that levels of mRNA below
the level detected by RefSeq are often unrelated to protein
levels. Although low levels of transcript can produce measureable
protein levels, such wide discrepancy is rare, and requires further
substantiation. Lack of α9 protein in brain has been reported by
Zuo et al. (1999). In that paper, a GFP reporter α9 transgenic
mouse was generated that had ∼8 times greater abundance of
α9 protein compared to endogenous protein in wild type mice.
Using antibodies against GFP, Zuo et al. (1999) visualized and
localized α9 protein in the same regions where others reported
mRNA using radiolabeled probe in situ hybridization. However,
they found no α9 protein in brain. Moreover, Luebke and Foster
(2002) reported noα9 protein in brain usingWestern blot, but did
find robust α9 protein expression in the positive controls (cochlea
and pituitary). Therefore, contrary to Lykhmus et al., these data
also indicate the lack of α9 protein expression in the brain.

In addition to RT-PCR, the investigators attempted to localize
α9 receptors in tissue slices with biotinylated α-conotoxin PeIA
(α-CtxPeIA) and biotinylated non-commercial antibodies. The
tissue used was fixed by immersion in 4% formaldehyde for 48 h.
The results and interpretation of the data are problematic. The
novel biotinylated α-CtxPeIA derivative was not characterized
or validated. Generously assuming that biotinylation did not
alter the affinity of α-CtxPeIA and that heavy fixation did not
interfere with ligand binding, the ligandwould label receptor sites
other than α9 subunits. In particular, the biotinylated α-CtxPeIA
concentration used by Lykhmus et al. was 25 nM. The IC50
of α-CtxPeIA at α3β2-nAChR is 9.7 nM, 11.1 nM at α6/3β2β3
nAChR (Hone et al., 2012) and 20–30 nM at α9α10 nAChR
(McIntosh et al., 2005; Hone et al., 2012). Despite this, Lykhmus
et al. did not include controls to eliminate the possible labeling of
other nAChR subtypes.

Moreover, the kinetics of relief from α-CtxPeIA blockade of
α9α10 reported by McIntosh et al. (2005) indicates that more
than 50% of block is relieved following 3min of washing and
total recovery of function is seen within 12–15min. In Lykhmus
et al., they reported that sections were washed after application
of biotinylated α-CtxPeIA for 3 × 20min. Since the half-life
for dissociation from α9α10 is <3min, this corresponds to
>20 half-lives. Thus, the wash time exceeded the half-life of
dissociation of specific ligand binding by >20 times. Less than
one part in a million (1:220) of the original binding would
remain. Therefore, the labeling by α-CtxPeIA cannot be specific.

1https://www.ncbi.nlm.nih.gov/gene/231252.
2© 2015 Allen Institute for Brain Science. Allen Brain Atlas API. Available from:
brain-map.org/api/index.htm.

The authors report that the distribution of α-CtxPeIA is very
similar to that of α9 antibody labeling in the CA3 region of the
hippocampus. This fact casts severe doubt on the accuracy of the
immunohistochemical data as well.

New specific antibodies to any nAChR would be
welcome, since application of antibodies specific to receptor
subunits is a powerful methodology. However, antibodies
to nAChRs are notorious for being non-specific when used
in immunohistochemistry on fixed tissues (e.g., Jones and
Wonnacott, 2005; Moser et al., 2007; Garg and Loring, 2017).
In Lykhmus et al., the investigators utilized non-commercial
antibodies produced in rabbit against α7, α9, and the α10 subunit
peptides on sections from brain tissue (fixed by immersion in 4%
formaldehyde for 48 h, as used for the α-CtxPeIA experiments).
It has become standard protocol to remove blood from brain by
perfusion with saline or buffer and to fix the tissue for short time
periods. This increases specificity and sensitivity, and retains
intact morphology, but was omitted by Lykhmus et al. This step
is particularly important because nAChR subunits (including α9
and α10)-expressing immune cells (e.g., Peng et al., 2004; Hao
et al., 2011; Koval et al., 2011; Simard et al., 2013; Jiang et al., 2016;
St-Pierre et al., 2016; Liu et al., 2017) and hematopoietic stem
cells (Zablotni et al., 2015) circulate in the blood found in brain.
The micrographs presented in the paper suggest regions of poor
fixation (see Figure 4F). The antibodies were biotinylated and
this may affect the affinity of some antibodies. The α9 antibody
was used in a dilution 1:50 with 1% BSA as the only blocker and
no antigen absorption control was reported. Moreover, the data
would be more convincing if controls for non-specific labeling
(as just outlined) had been used and if positive controls had been
provided. The discrete expression of α9 and α10 in hair cells in
the cochlea is well-documented, making it highly practical to
determine if the antibodies specifically label receptors on hair
cells. The investigators report some regional distribution of α9,
α10, and α7 subunits in wild type mice. Since this is the first
report of α9 and α10 in brain (all previous studies have shown
no expression) there is no other antibody data with which to
compare their study. However, α7 has been extensively studied
in brain using α-bungarotoxin binding and in situ hybridization.
The micrographs presented by Lykhmus et al. are of small
brain areas. Therefore, it is difficult to compare their data with
previously published studies of either the cellular or regional
distributions of α7 transcription or translation.

An ELISA assay was used to confirm the
immunohistochemical data. The results are difficult to interpret.
The data reported in Figure 1 indicates that the levels of α7 and
α9 are similar, although the authors acknowledge that the α9
and α10-positive cells in their preparations were rare. It is well-
known that α7 is very highly expressed in brain while the density
of α9 is below the level of detection by RefSeq. In Figure 2 it
was reported that they captured nAChR subunits from wild type
mouse brain using a α7 antiibody (α7 1–208) that recognizes the
whole extracellular domain and then quantified subunit protein
expression using antibodies purported to be specific to α3, α4,
α5, α7, α9, and α10. Using this technique, they found that the
quantity of α4 and α7 were equal and both of much greater
magnitude than β2. Moreover, the quantities of α9 and α10 were
reported to be almost as high as β2. These data contradict a large
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body of literature established with several different techniques
that β2 and α4 are the most prevalent subunits in the brain and
are more abundant than α7 (e.g., Marks et al., 2010).

Although they report regional differences in density using
RT-PCR, the data presented (Figure 3) show only slight
quantitative differences among the sampled brain areas. Further,
relative regional expression densities of mouse-brain α7-nAChR
measured by ELISA in Figure 3 do not fit well with
established α-bungarotoxin binding distributions. Please note
that α-bungarotoxin binding sites in the CNS have been
validated to correspond to α7 (and not the α-bungarotoxin
sensitive α9)-nAChR, both by use of nAChR α7 subunit-
null mutant mice as negative controls (Orr-Urtreger et al.,
1997), and by comparison of their distribution to that of an
α-conotoxin derivative (α-CtxArIB[V11L,V16D]) demonstrated
to have extreme selectivity for α7-nAChR (Whiteaker et al.,
2007). The ELISA results, for example, show that hippocampus
expresses a high density of α7 subunits, which does fit well
with present knowledge of how this subtype is distributed based
on autoradiography (Whiteaker et al., 1999). But they show
similar densities in the frontal cortex (which has a modest
density expression of α7-nAChR) and “thalamus and putamen”
(thalamus has a very low α7-nAChR density, caudate/putamen
has an intermediate density) (e.g., in dissected regions of mouse
brain; Whiteaker et al., 1999). While the ELISA and RT-PCR
results reported by Lykhmus et al. may differ marginally from
detailed autoradiography reports because the delineation of
regions is less precise in dissected samples, there appears to be
a low correlation between the levels of expression indicated by
ELISA results (Figure 3A) and the band intensities shown in the
accompanying RT-PCR panel in their own data (Figure 3B).

The Lykhmus et al. data are also not consistent with what
is known from studies of knockin (ki) mice. For example, the
authors show α9- and α10-positive cells in ordered structures
or zones, such as the cerebellum. They suggest that α9- and
α10-containing nAChRs may be involved in regulating motor
coordination. Hypersensitive knockin mice bearing mutations
at the highly conserved Leu 9′ residue present at the channel
pore region have been generated for several nAChRs (Lester
et al., 2003). The replacement of Leu 9′ by a polar amino
acid renders receptors that are hypersensitive to agonists, shift
the activation/desensitization ratio toward activation, exhibit
spontaneous channel openings and decreased desenstitization

rates (Revah et al., 1991; Filatov and White, 1995; Labarca
et al., 1995; Plazas et al., 2005). Homozygous L9′T α7 or L9′S

α4 knockin mice are neonatal lethal (Orr-Urtreger et al., 2000;
Labarca et al., 2001). Neuronal cell death is observed in brain
regions expressing these receptors, most likely due to Ca2+

excitotoxicity and apoptosis. The α9 L9′T hypersensitive mutant
mouse, in contrast, is not neonatal lethal and does not show
an overt nervous system phenotype (Taranda et al., 2009). If
α9 protein was expressed throughout the brain, as described
by Lykhmus et al. and having α9 and α9α10 high calcium
permeability (Elgoyhen et al., 2000; Katz et al., 2000; Weisstaub
et al., 2002; Elgoyhen and Katz, 2012), overt neuronal cell
death and centrally-mediated phenotypes, such as locomotion
problems would be expected. The absence of this effect provides
further (in this case circumstantial) evidence that α9 nAChR
expression is not widespread in the brain.

Finally, Lykhmus et al. suggest that the α9 and 10 nAChRsmay
be expressed in mitochondria, even though they state that the
antibodies stained mainly neurons and hypertrophied astrocytes.
Co-labeling with antibodies specific to synapses, neurons, or
mitochondria was not investigated.

Given all the above considerations, the staining with α9
antibodies in wild-type mice and lack of staining in α9 knockouts
is intriguing. One wonders if experiments in both genotypes were
performed side by side at the same time and with exactly identical
experimental conditions. Taken together, although puzzling, the
results need to be replicated using other techniques with more
controls for non-specificity, and positive controls to show that
the antibodies and probes are recognizing known structures
across the brain and within the auditory system. Co-labeling with
validated antibodies to specific organelles is necessary to make
any conclusions regarding the localization of α9 and α10 within
the brain. Speculations regarding a brain function for α9 and α10
nAChRs at this time are unwarranted.
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