'," frontiers

in Cellular Neuroscience

REVIEW
published: 03 May 2018
doi: 10.3389/fncel.2018.00118

OPEN ACCESS

Edited by:

Galila Agam,

Ben-Gurion University of the Negev,
Israel

Reviewed by:

Masaaki Torii,

Children’s National Health System,
United States

Willayat Yousuf Wani,

University of Alabama at Birmingham,
United States

*Correspondence:
Irina Burd
iburd@jhmi.edu

Received: 31 January 2018
Accepted: 13 April 2018
Published: 03 May 2018

Citation:

Lei d, Calvo R, Vigh R and Burd |
(2018) Journey to the Center of the
Fetal Brain: Environmental Exposures
and Autophagy.

Front. Cell. Neurosci. 12:118.

doi: 10.3389/fncel.2018.00118

Check for
updates

Journey to the Center of the Fetal
Brain: Environmental Exposures and
Autophagy

Jun Lei, Pilar Calvo, Richard Vigh and Irina Burd*

Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School
of Mediicine, Baltimore, MD, United States

Fetal brain development is known to be affected by adverse environmental exposures
during pregnancy, including infection, inflammation, hypoxia, alcohol, starvation, and
toxins. These exposures are thought to alter autophagy activity in the fetal brain, leading
to adverse perinatal outcomes, such as cognitive and sensorimotor deficits. This review
introduces the physiologic autophagy pathways in the fetal brain. Next, methods to
detect and monitor fetal brain autophagy activity are outlined. An additional discussion
explores possible mechanisms by which environmental exposures during pregnancy alter
fetal brain autophagy activity. In the final section, a correlation of fetal autophagy activity
with the observed postnatal phenotype is attempted. Our main purpose is to provide the
current understanding or a lack thereof mechanisms on autophagy, underlying the fetal
brain injury exposed to environmental insults.
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PHYSIOLOGY

Autophagy is the cellular “self-eating” process by which damaged intracellular proteins, organelles
and pathogens are degraded (Carloni et al., 2008; Kadandale and Kiger, 2010). Under physiologic
conditions, it provides a degrade and recycle mechanism that releases amino acids, free fatty acids,
and monosaccharides for reuse (Zhang F. et al., 2016). Autophagy is a highly conserved pathway
common among disparate cladistic classes such as yeast, roundworms, and humans (Levine and
Klionsky, 2004). Depending on the pathology, autophagy can offer a beneficial cell salvage pathway.
Conversely, it can also act with apoptosis to promote cell death (Bildirici et al., 2012), especially
when autophagy activity is extremely elevated (Guha et al., 2016). Autophagy may also inhibit
apoptosis by way of mitochondria sequestration (Rocha-Ferreira and Hristova, 2016).

In mammals, there are three types of autophagy: macroautophagy, microautophagy, and
chaperone mediated autophagy (Tekirdag and Cuervo, 2018). Macroautophagy involves the
synthesis of multilayered vesicles called autophagosomes, which surround intracellular organelles
such as mitochondria as well as proteins. The loaded autophagosome fuses with a lysosome,
releasing lysosomal proteolytic enzymes that digest the contents of the vesicle (Hamasaki et al.,
2013). Microautophagy is a similar process that does not use autophagosome vacuolates. Instead,
microautophagy relies on the lysosome invaginating itself to surround and then digest the
degradation target (Marzella et al, 1981; Hamasaki et al., 2013). In contrast, the targets of
chaperone-mediated autophagy are not surrounded by vesicular structures. This latter process
relies on chaperone proteins selecting and marking intracellular proteins which are then
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translocated across the lysosomal membrane and degraded (Kaur
and Debnath, 2015). Of the three types, the most commonly
studied and the one forming the basis of this review is
macroautophagy, hereon referred to as autophagy.

Autophagy is a strictly controlled process mediated by many
proteins (Mizushima et al., 2010; Meschini et al., 2011; Yoshii
and Mizushima, 2017). An overview of the main functional
protein complexes and their interactions is provided in Figure 1.
Autophagy can be initiated in two primary ways. The first is
via activation of AMPK (adenosine monophosphate activated
protein kinase). The second is via inhibition of the nutrient
sensing system mammalian target of rapamycin (mTOR) (Roos
et al, 2009). Both mechanisms lead to phosphorylation and
activation of the Unc-51-like kinase (ULK1) complex that starts
inducting formation of the multilamellear phagophore. The
ULKI1 complex activates the phosphatidylinositol-3 kinase class
III (PI3K CIII) complex composed of beclin-1, autophagy-related
protein (ATG) 14, vacuolar protein sorting (VPS) proteins Vps34
and Vpsl5, which in turn generates phosphatidylinositol 3-
phosphate (PI3P) to facilitate membrane elongation. Various Atg
proteins join together to form the Atg5-Atgl2-Atgl6 complex.
This complex triggers the cleavage of pro-microtubule-associated
protein 1 light chain 3 (LC3) to form LC3-1 which is then
conjugated to phosphatidylethanolamine (PE) to form LC3-II

LC3-II promotes closure of the vesicle membrane, which is
the event that signals the final step in autophagosome vacuole
formation.

The importance of autophagy is evident early in human
embryonic development. During the late two cell zygotic stage,
autophagy is actively degrading maternally derived proteins that
originated from the oocyte but are now exhausted (Nakashima
et al., 2017). The low oxygen tension of the endometrial cavity
forces the blastocyst to induce autophagy to achieve extravillous
trobphoblast invasion (Genbacev et al., 1997). Subsequent LC3
activity in early pregnancy is also diffuse and ubiquitous
(Avagliano et al., 2016), as characterized by the extensive neural
tube defects observed when the Ambral protein in the PI3K-III
complex is absent (Fimia et al., 2007), as well as by strong LC3
signaling in the structures formed by neural crest cells (Cann
et al., 2008). Autophagy is also highly active and necessary for
neuronal differentiation (Zhao et al., 2010; Avagliano et al., 2016).
Experiments have also shown that Atg5 (Mizushima et al., 2001;
Kuma et al., 2004; Klionsky et al., 2016) or Atg7 (Komatsu et al.,
2005) deletion is characterized by early neonatal death. At its
most basic level, autophagy is basally present as an ongoing
constituitive process in every cell, though new evidence suggests
that different cell types regulate autophagy distinctly (Nakashima
et al., 2017).
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FIGURE 1 | The key proteins in mammalian autophagosome formation. Autophagy can be initiated in two primary ways. The first is via activation of AMPK (adenosine
monophosphate activated protein kinase) under hypoxia, stress, and energy deficit. The second is via inhibition of the nutrient sensing system mammalian target of
rapamycin (MTOR). Both mechanisms lead to phosphorylation and activation of the Unc-51-like kinase (ULK1) complex that starts inducting formation of the
multilamellear phagophore. The ULK1 complex activates the phosphatidylinositol-3 kinase class Il (PI3K Clll) complex composed of beclin-1, Atg14, vacuolar protein
sorting (VPS) proteins Vps34 and Vps15, which in turn generates phosphatidylinositol 3-phosphate (PI3P) to facilitate membrane elongation. Various Atg proteins join
together to form the Atg5-Atg12-Atg16 complex. This complex triggers the cleavage of pro-microtubule-associated protein 1 light chain 3 (LC3) to form LC3-I which
is then conjugated to phosphatidylethanolamine (PE) to form LC3-IIl. LC3-Il promotes closure of the vesicle membrane, which is the event that signals the final step in
autophagosome vacuole formation.
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DETECTING ALTERED FETAL BRAIN
AUTOPHAGY ACTIVITY

It is essential to demonstrate and measure physiologic autophagy
first before discussing pathologic autophagy. In commenting
on the problem of measuring autophagy activity, Mizushima
et al. declared there is “no gold standard” (Mizushima et al.,
2010; Klionsky et al., 2016). This is likely due to the myriad
of techniques available, including immunohistochemistry,
immunoblotting (Jiang and Mizushima, 2015), fluorescence
microscopy, electron microscopy, radiolabeling, flow cytometry,
and fluorescent probes (Cui et al., 2017; Yoshii and Mizushima,
2017). The autophagy factors most commonly used to measure
bilaminar membrane formation and elongation include
ULK1, WIPI1/2 [tryptophan (W), aspartic acid (D) repeat
domain phosphoinositide-interacting protein], Atg5, and
LC3. However, timing when to perform these techniques
requires careful planning as autophagic flux may obscure
overall trends in autophagy. Measurements of autophagy
activity should quantitatively capture its presence or absence.
Ideally, measurements should also be recorded over time,
so as to reveal trends in the rate of phagosome formation
and autophagolysosome degradation. Such intermittent
measurement of autophagy activity can pose a challenge.
Direct visualization of autophagy vesicles requires electron or
immunofluorescence microscopy. Either method requires a
cumbersome tissue preparation and image acquisition process
that can make the task of creating multiple snapshots to trend
autophagosome formation and fusion onerous. Consequently, it
is desirable to have insight into the opportune time to perform
a measurement so as to capture autophagy activity when it is
occurring. For example, Fineschi suggested a model of hypoxia
that first uses chaperone proteins such as heat shock proteins
(HSPs) and oxygen-regulated protein (ORP150) to detect the
onset of the inflammatory response to hypoxia (Fineschi et al.,
2017).

The single most common measured autophagy marker is
LC3. Avagliano et al. assessed autophagy activity distribution and
intensity during development of neural tissue in mouse embryos
and human fetuses. Their work revealed similar spatiotemporal
autophagy trends using immunofluorescence to detect LC3
expression. One hazard of LC3 measurement lies in that LC3
can be elevated in the context of authophagosome degradation
inhibition as well as in ectopy. Autophagy activity can also bein a
state of flux. Accordingly, one must measure the change in LC3-
II over time (Yoshii and Mizushima, 2017). Co-measurement
of LC3-II with degradation of p62 can be used as the latter is
directly attached to LC3 and degrades with autophagy (Bjorkoy
et al., 2005; Mizushima and Hara, 2006; Pankiv et al., 2007),
though p62 should also be used with caution in the setting of
starvation ( > 2h) (Jiang and Mizushima, 2015). Alternatively,
measuring LC3-II in the presence and absence of autophagy
inhibitors such as bafilomycin can be used to increase the
accuracy of LC3-II flux measurement (Yoshii and Mizushima,
2017). Radiolabeling amino acids inside cells and then incubating
the cells for a time that is long enough to allow proteins with
short half-lives to turn over but short enough so as to prevent

the reincorporation of freed amino acids into new proteins again
facilitates measurement of autphagy flux (Yoshii and Mizushima,
2017).

In another approach to measuring autophagy activity, a
tandem fluorescent protein quenching assay joins together RFP
(red fluorescent protein), GFP (green fluorescence protein),
and LC3 into a single RFP-GFP-LC3B tag (Thermo Fisher
Scientific: Waltham, MA). The fluorescence of the tag can
be exploited to expose acidic compartments, such as those
found in lysosomes. While the green GFP LC3-II and red RFP
fluorescence tags together shine yellow and are both present in
the neutral pH of the autophagosome, the green GFP LC3-II
signal is quenched in the acidic environment of the lysosome,
leaving the pH-stable mRFP-LC3 signal to fluoresce red alone
(Kimura et al., 2007).

Shvets et al. showed how flow cytometry could be used to
detect the levels of fluorescence proteins. The decrease in GFP-
LC3 fluorescence reflects ongoing autophagy activity (Shvets
et al., 2008).

Each autophagic assay has its own limitations. Ultrastructural
analysis (TEM) is insufficient to deal with the biological
variability and heterogeneity of an organ/tissue, which
requires specialized expertise. Fluorescent microscope or
flow cytometry has the potential experimental pitfalls, such as
potential for subjectivity, uniform, and criteria for quantitation.
Immunoblotting could be less sensitive and informative when
analyzing tissue- or stage-specific variations. As autophagy
involves dynamic and complicated processes, it is very important
to carry out proper assays that deal with the nature of autophagy.
All tests that are listed in the Table 1 as well.

DISCUSSION OF ENVIRONMENTAL
EXPOSURES

Multiple different environmental exposures alter autophagy
activity in the fetal brain (Table 1). Broadly, many of them can
be characterized as infectious, hypoxic, and toxic. While the
mechanism detailing the pathway from affect to phenotype is
urgently needed, at least some evidence shows that autophagy
influences these phenotypic presentations.

Multiple infectious agents alter autophagy as part of their
pathogenic exertion. The Zika virus (ZIKV) may cross the
placental barrier via a special type of autophagy called secretory
autophagy (Zhang Z. W. et al., 2016). Once crossed, the virus
hones in on tropic factors (Miner and Diamond, 2017) to infect
human fetal neural stem cells (fNSCs). Once inside an fNSC,
ZIKV makes NS4a and NS4b proteins that decrease mTOR and
induce autophagy (Liang et al, 2016) in a way that impairs
neurogenesis (Chiramel and Best, 2017). ZIKV also causes
microcephaly via apoptosis and autophagy-driven cell death of
cortical progenitor cells (Cugola et al., 2016). Research has shown
that treatment with the autophagy inhibitor hydroxychloroquine
reduces the incidence of ZIKV vertical transmission in pregnancy
(Caoetal., 2017).

Similar to Zika, HIV also exerts its some of its effects via
autophagy. Once HIV has infected an astrocyte, it produces
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a Nef protein that is associated with the HIV-Associated
Neurocognitive Disorders (HAND) phenotype. It has been
shown that infecting fetal astrocytes with an adenovirus
based vector of the Nef protein leads to accumulation of
autophagosomes by way of blocking their fusion with lysosomes.
As autophagy has an essential role in innate immunity, the
manufacture of Nef by HIV safeguards its presence inside the cell
and allows it to avoid destruction by the lysosome’s enzymatic and
acidic environment (Saribas et al., 2015).

While hypoxia and infection may be the result of different
underlying etiologies, they share a common disease pathway in
autophagy. The exact role of autophagy in neonatal hypoxic-
ischemic encephalopathy (HIE) is controversial. The findings
in several rodent studies have demonstrated conflicting roles
for autophagy, with some data suggesting a cell-protective role
(Carloni et al., 2008; Wang et al, 2012) while other studies
suggest autophagy led to a cell-death pathway (Koike et al.,
2008; Wen et al., 2008; Bidlingmaier et al., 2009; Xing et al.,
2012). Moving away from the rodent model, Ginet et al. has
shown in late pre-term and term neonates that HIE increased
the number of autophagosomes and lysosomes by one order
of magnitude in the asphyxia-sensitive ventrolateral thalamic
region of the brain. They demonstrated comparable findings in
both rodent and human neonates who died after acute perinatal
HIE. Their collected biomarker data also demonstrated increased
autophagy activity with significant increases in LC3-II activity
and simultaneous decreases in p62 (Ginet et al., 2014).

In addition to the autophagy mediated hazards posed by
infection and hypoxia, toxins also potently influence autophagy.
For example, exposure to ethanol during the ethanol sensitive
period of pregnancy leads to an increase in apoptosis and a
decrease in autophagy. Earlier research in humans suggested
that the ethanol sensitive period of pregnancy was as late as
20 weeks of gestation. More recent data from a rodent model
shows less autophagy activity and increased apoptotic markers
when mice are exposed to ethanol on post natal day 4, a time
period which approximately correlates to the third trimester in
humans. Conversely, later in pregnancy, when the fetal brain
stress response system has matured, ethanol exposure leads to an
increase in multiple autophagy markers that are accompanied by
significantly fewer apoptotic markers, signaling the onset of an
ethanol resistant period in pregnancy (Alimov et al., 2013).

In addition to gestational timing, ethanol exposure has
a second temporal affect on autophagy in the fetal brain.
Acute ethanol exposure induces autophagy activity to protect
the developing brain. In contrast, chronic ethanol exposure
in adult progeny activates mTOR, thereby inhibiting the
autophagy pathway in the brain (24556681). Consequently,
chronic ethanol exposure may impair protective autophagy
function when fetal neurons are faced with increased
stress.

A second toxin associated with recreational drug use is
3,4-methylenedioxymethamphetamine (MDMA). It is also used
to treat post traumatic stress disorder (PTSD) (Amoroso
and Workman, 2016). MDMA has been shown to upregulate
autophagy in the fetal brain by increasing Atg5 and LC3 levels
(Chae et al, 2009). Consuming MDMA during pregnancy is

related to fetal neural and cardiotoxicity as well as impaired
motor functioning (Meamar et al., 2010).

Though now less commonly abused, phencyclidine (PCP)
acts as a non-competitive antagonist of the glutamatergic N-
methyl-d-aspartate (NMDA) receptor. Its administration to
pregnant rats alters the behavior of their offspring and causes
neurodegenerative effects similar to those seen in schizophrenia
(SCH) (Radonjic¢ et al., 2008). Autophagy has also been shown to
play a key role in the disease mechanism of SCH (Merenlender-
Wagner et al., 2015). A recent study shows the presence of
autophagy in a PCP model of SCH in rodents. After PCP
administration, autophagy downregulation was seen by way
of reduced Beclinl expression in the neocortex and in the
hippocampus (Jevti¢ et al., 2016).

While some maternal exposures are part of the spectrum of
substance abuse, others are so ubiquitous that they are difficult
to avoid. For example, paraquat is a commonly used herbicide.
Paraquat exposure to a human progenitor cell line is associated
with an increase in autophagy (Zhao et al., 2016). In the adult
phenotype, paraquat has been linked to Parkinson’s disease in
farm workers through an increased production of reactive oxygen
species exerting their toxicity on neurons (Tanner et al., 2011).

A final category of substances that alter autophagy brain
activity in cells is very small metal particles. Metals, due to
their nature, cannot be degraded by a lysosome’s enzymatic
complement. Consequently, the entry of micronized metals into a
cell may induce autophagy though the digestive process cannot be
completed. Instead, the particles accumulate in autophagosomes.
Researchers have raised concerns about the impact the fetal
and neonatal brain may suffer from altered autophagy activity
from exposure to silver (Guo et al., 2017) and titanium dioxide
nanoparticles (Song et al., 2016), as well as even smaller
Cadmium Selenide / Zinc Sulfide (CdSe/ZnS) quantum dots
(Chen et al., 2013).

The previous discussions on various exposures are not
exhaustive and we cannot explain the mechanism for all the
exposures and phenotypes listed in Table 1. However, we can
reasonably speculate that autophagy plays at least some role
in certain phenotypic presentations. For example, progeny
with features of decreased physical size, such as microcephaly,
low birth weight, or IUGR may be attributable to elevated
autophagy levels. The psycho-sensorimotor deficits seen with
certain exposures may also be attributable to dysregulation of
autophagy activity in neurons.

FUTURE INVESTIGATIONS

All markers of autophagy activity cited in Table 1 were recovered
post-mortem or in-vitro. Future research is urgently needed to
employ these markers for in utero identification of potential
disease processes associated with environmental exposures in
pregnancy.

While many environmental exposures that influence
autophagy activity have been identified, many remain
to be discovered. The discovery of additional safe and
economical in vivo modulators of autophagy would offer
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additional tools to reverse common pathogenic affecters of
autophagy.

Three promising treatments for altered autophagy levels
include glucose, modest hypoxia, and hydroxychloroquine.

Our recent discovery of glucose infusion for pathogenic
autophagy activity represents a potentially accessible and cost-
effective treatment of perinatal brain injury in the setting of
intrauterine inflammation secondary to chorioamnionitis or
preterm birth (Lei et al., 2017).

A potential treatment for chronic ethanol exposure could lie
in the development of safe autophagy inducers. This has already
been demonstrated in a limited way by a study which showed that
a modest hypoxic preconditioning induced protective autophagy
in human neuronal stem cell cultures affected by long term
exposure to alcohol (Luo, 2014).

While the peak of the recent Zika outbreak in the Americas
has passed, it is imperative that further research is performed
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