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Physical Biology of Axonal Damage
Rijk de Rooij and Ellen Kuhl*

Department of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, United States

Excessive physical impacts to the head have direct implications on the structural integrity

at the axonal level. Increasing evidence suggests that tau, an intrinsically disordered

protein that stabilizes axonal microtubules, plays a critical role in the physical biology of

axonal injury. However, the precise mechanisms of axonal damage remain incompletely

understood. Here we propose a biophysical model of the axon to correlate the dynamic

behavior of individual tau proteins under external physical forces to the evolution of axonal

damage. To propagate damage across the scales, we adopt a consistent three-step

strategy: First, we characterize the axonal response to external stretches and stretch

rates for varying tau crosslink bond strengths using a discrete axonal damage model.

Then, for each combination of stretch rates and bond strengths, we average the axonal

force-stretch response of n= 10 discrete simulations, from which we derive and calibrate

a homogenized constitutive model. Finally, we embed this homogenized model into a

continuum axonal damage model of [1-d]-type in which d is a scalar damage parameter

that is driven by the axonal stretch and stretch rate. We demonstrate that axonal damage

emerges naturally from the interplay of physical forces and biological crosslinking. Our

study reveals an emergent feature of the crosslink dynamics: With increasing loading rate,

the axonal failure stretch increases, but axonal damage evolves earlier in time. For a wide

range of physical stretch rates, from 0.1 to 10 /s, and biological bond strengths, from

1 to 100pN, our model predicts a relatively narrow window of critical damage stretch

thresholds, from 1.01 to 1.30, which agrees well with experimental observations. Our

biophysical damage model can help explain the development and progression of axonal

damage across the scales and will provide useful guidelines to identify critical damage

level thresholds in response to excessive physical forces.

Keywords: tau protein, microtubules, slip bonds, diffuse axonal injury, neurodegeneration, multiscale modeling,

finite element analysis

1. INTRODUCTION

Brain injury is a major cause of disability and death that is often triggered by an external impact
to the head (Hyder et al., 2007; Taylor, 2017). This impact can consist of a single, severe event
that immediately leads to traumatic brain injury, or of repeated mild events that gradually result in
chronic traumatic encephalopathy. In both cases, the effect of the impact manifests itself at a much
smaller scale in the brain: the scale of the axon (Johnson et al., 2013; Smith and Meaney, 2016).

The axon is part of the nerve cell, the neuron, that further consists of a cell body with the
cell nucleus and synapses that form connections with other neurons. Figure 1 illustrates a typical
axon as a long and slender protrusion from the cell body to provide signaling pathways and
transport highways within and away from the brain (Debanne et al., 2011). The axonal cytoskeleton
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FIGURE 1 | The axon is a long and slender protrusion from the neuronal cell body that consists of a system of longitudinally aligned microtubules. Microtubules are

composed of heterodimers of α- and β-tubulin, shown in green and blue, that form 13 laterally joined protofilaments, each up to 100µm long. Axons can extend

several centimeters in length and their microtubules never run continuously from the cell body to the distal end. Instead, they form overlapping segments with 10–50

microtubules in any given cross section. Neuronal microtubules are stabilized and cross-linked by tau proteins, shown in red, which bind to microtubules with their

three or four binding repeats, shown in yellow. Several components of the axon including neurofilaments, other crosslinking proteins, and cytoskeletal organelles are

not displayed.

consists of a system of longitudinally aligned microtubules and
neurofilaments (Ouyang et al., 2013; Kirkcaldie and Collins,
2016) surrounded by an actin cortex and layers of fatty
material, the myelin sheath. Axonal microtubules are composed
of heterodimers of α- and β-tubulin that form 13 laterally
joined protofilaments, each up to 100µm long (Alberts et al.,
2014). These microtubules never run continuously from the
cell body to the distal end of the axon. Instead, they form
overlapping segments with 10–50 microtubules in any given
cross section (Krieg et al., 2017). Microtubules are interconnected
by active and passive crosslinking proteins including dynein,
kinesin, and tau (Coles and Bradke, 2015). Recent studies
suggest that tau protein plays a major role in various
types of neurodegeneration that are collectively recognized as
tauopathies. Classical examples include Alzheimer’s disease, Pick’s
disease, progressive supranuclear palsy, and chronic traumatic
encephalopathy (Woerman et al., 2016; Eisenberg and Sawaya,
2017). A classical hallmark of chronic traumatic encephalopathy
is an abnormal increase of tangled tau protein across the
brain (Mez et al., 2017). Yet, the precise cause, development,
and diagnosis of chronic traumatic encephalopathy are only

incompletely understood and remain active fields of research
(Asken et al., 2017).

Physical forces play an important role in the axon under
physiological conditions (Suter and Miller, 2011; O’Toole et al.,
2015). However, beyond a critical level, forces can trigger axonal
degradation and damage (van den Bedem and Kuhl, 2015).
Indeed, physical impacts to the head that result in excessive
axonal stretch (Ji et al., 2014)may trigger a gradual degradation of
the tau-microtubule complex (van den Bedem and Kuhl, 2017).
Tau protein is an intrinsically disordered protein with three or
four binding repeats that bind to neuronal microtubules and
prevents them from depolymerization (Kadavath et al., 2015).
Bound tau protein is believed to form an electrostatic zipper with
tau protein from neighboring microtubules (Fitzpatrick et al.,
2017). As such, tau plays a critical role in stabilizing individual
microtubules (Chung et al., 2015) and forming microtubule
bundles (Choi et al., 2016). Increasing evidence suggests that
axonal damage develops when a physical force is large enough
to break the tau-microtubule bonds. An excessive loss of
tau crosslinks results in the depolymerization of microtubules
(Kadavath et al., 2015), the disintegration of microtubule bundles
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(Krieg et al., 2017), and the disruption of axonal transport (Tang-
Schomer et al., 2012).While experimental testing of the structural
integrity of the tau-microtubule complex remains challenging (Li
et al., 2015), computational modeling of the axon in response
to physical forces can provide useful mechanistic insight into
these causal relations (de Rooij and Kuhl, 2018). Although all
cytoskeletal elements contribute to the mechanical properties of
the axon (Kirkcaldie and Collins, 2016), recent studies suggest
that the mechanical stiffness of the axon is most reduced when
disrupting axonal microtubules, followed by neurofilaments and
microfilaments (Ouyang et al., 2013). Mechanical models of
the axon have therefore mainly focused on microtubules (Suter
and Miller, 2011), which, because of their hollow circular cross
section, provide the largest resistance to bending and tension
(Howard, 2001). Models of the axon exist at various levels of
complexity ranging from a combination of rheological spring
and dashpot elements (O’Toole et al., 2008) via a discrete
arrangement of microtubules and crosslinks (Peter and Mofrad,
2012; Ahmadzadeh et al., 2015; Jakobs et al., 2015; Lazarus et al.,
2015) to a continuum representation of the axon as a whole
(Recho et al., 2016; García-Grajales et al., 2017). Our group has
recently proposed a new axonal damage model that integrates the
dynamics of microtubule polymerization and depolymerization,
the biology of crosslink attachment and detachment, and physics
of stretching using a custom-designed finite element model
(de Rooij et al., 2016; de Rooij and Kuhl, 2018).

Although brain damage has its mechanistic origin at the axon
level, the severity of a head impact is often quantified at the
whole brain level by applying experimentallymeasured linear and
rotational accelerations to a human headmodel (Kuo et al., 2017).
In these models, it is essential to accurately capture the brain
geometry (Kleiven and von Holst, 2002; Takhounts et al., 2003)
and its material properties (de Rooij and Kuhl, 2016; Budday
et al., 2017). The most critical input to these models, however,
is the critical strain or stretch level beyond which axonal damage
occurs (Bain et al., 2004). To better understand the propagation
of axonal damage across the scales, we have to connect the axon
level to the whole brain level. Toward this goal, we simulate the
effect of physical forces across the axon and derive a continuum
model for axonal damage as function of the applied stretch
and stretch rate. Central to our model is the classical Bell
model (Bell, 1978) that characterizes the dynamics of the tau-
microtubule complex, from which we infer a damage evolution
law that can be easily embedded into finite element models at
the whole brain level. Our work provides a systematic strategy to
mechanistically correlate crosslink dynamics on the microscopic
scale to the evolution of axonal damage on the mesoscopic
scale. We anticipate that this work will provide insight into the
development of brain damage across the scales and improve
currentmodeling techniques to quantify brain damage for a given
physical impact to the brain.

2. METHODS

2.1. Axon Model
We model of the axon as a system of straight microtubules that
are aligned in the longitudinal direction. Each cross section of the

axon has 19 potential microtubules sites arranged in a triangular
grid (de Rooij et al., 2016). On average, only half of these potential
sites are occupied by a microtubule. As Figure 2 indicates, we
assume that all microtubules have the same length and are
randomly distributed along the axon. In our finite element
model, eachmicrotubule consists of 1,250 one-dimensional truss
elements (de Rooij and Kuhl, 2018).

Neighboring microtubules within a cross section are
crosslinked by tau protein. At the beginning of the simulation,
these crosslinks are randomly distributed across the axon based
on a crosslink density parameter. To account for the dynamic
behavior of the axon, we have created an extension to the
standard finite element method that can either effect individual
finite elements or to sets of finite elements (de Rooij et al., 2016).
This dynamic behavior represents the molecular mechanisms
of particular proteins. Here, we assign a mechanism to each
tau protein crosslink. The mechanism describes the dynamic
behavior of crosslink detachment and reattachment by modeling
the crosslink as a slip bond. The detachment and attachment
rates, k(F), are governed by the classical Bell model (Bell, 1978)
that characterizes the strength of a chemical bond under a
mechanical force F:

k(F) =

{

k0 attach
k0 exp (F/F0) detach

with F0 =
kBT

ξ
(1)

where k0 is the rate of crosslink attachment and detachment due
to random thermal fluctuations. According to the Bell model for
slip bonds, the likelihood of detachment increases exponentially
with the physical force F applied to the bond. The sensitivity
to this mechanical force is described by the characteristic bond
strength F0 = kBT/ξ , where kB is the Boltzmann constant, T is
temperature, and ξ is the characteristic bond separation distance.

We fix the axon at its proximal end, in our model on the
left side, where it connects to the cell body with the nucleus,
and apply a physical stretch at the distal end, on the right side,
where it connects to other axons. This implies that we apply
homogeneous Dirichlet boundary conditions to the microtubules

FIGURE 2 | Axon model with longitudinally aligned microtubules that are

connected by tau protein crosslinks. To account for axonal dynamics, we

model each crosslink as a noncovalent slip bond and assign each crosslink a

mechanism of Bell model type. We fix the axon at its distal, left end and apply

a stretch, λ, and stretch rate, λ̇, to its proximal, right end.
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at both ends, zero on the left and non-zero on the right (de Rooij
et al., 2016). We constrain all nodes in the model to move along
the longitudinal axon direction only. To represent the axonal
cytosol, we embed the axon in a viscous fluid with a viscosity of
5 mPa·s (Haak et al., 1976). Table 1 provides an overview of all
model parameters.

Figure 3 illustrates the flowchart to solve our discrete axon
model within our custom-designed finite element algorithm.
To include the dynamic behavior of individual proteins, we
extended the conventional finite element method bymechanisms
(de Rooij et al., 2016). We include a mechanism by introducing
a Mechanism object with an Apply() function that contains
the full description of the crosslink behavior. We assign this
mechanism to each crosslink and execute the Apply() function
at the beginning of each iteration step in the Newton-Raphson
solver with adaptive time stepping. To apply the slip bond
mechanism of the Bell model, the Apply() function has to
ensure that each crosslink detaches and attaches at a rate k(F)
as in Equation (1) (de Rooij and Kuhl, 2018). At each time step
of our simulation, we calculate the probability of detachment
or reattachment. We distinguish two cases to calculate the
probability of detachment: detachment at a constant force F and
at a linearly increasing force F = rf t.

2.1.1. Crosslink Detachment at a Constant Force F
For a constant force F, we compute the probability of crosslink
detachment, p(F, t), at time t, based on the detachment rate k(F)
in Equation (1):

p(F, t) = k(F) exp(−k(F)t). (2)

TABLE 1 | Parameters of the axon model, the microtubule model, and the

crosslink model.

Value Unit References

AXON

Axon length 40 µm Caminiti et al., 2013

Axon diameter 540 nm Hirokawa, 1982

Microtubules per cross section 9.5 – Bray and Bunge, 1981

Cytosol viscosity 5 mPa·s Haak et al., 1976

MIRCOTUBULES

Microtubule length 10 µm Yu and Baas, 1994

Microtubule stiffness 1,200 MPa Gittes et al., 1993

Microtubule area 400 nm2 Suresh, 2007

CROSSLINKS

Crosslink distance 1 nm Hirokawa, 1982

Crosslink angle 45 deg Hirokawa, 1982

Crosslink stiffness 10 MPa Mallik et al., 2004

Crosslink area 1 nm2 de Rooij et al., 2016

Crosslink attachment rate, k0 4 1/s Wegmann et al., 2011;

Igaev et al., 2014

Crosslink bond strength, F0 1–100 pN [varied]

The crosslink bond strength, F0, is the only unknown in our model. Here, we vary the bond

strength over two orders of magnitude to explore its effects on axonal damage. All other

parameters are known from the literature.

This probability function directly yields the probability of
detachment within the next time step, between t0 and t0 + 1t,
as:

P(F,1t) =

∫ t0+1t
t0

p(F, t̄) dt̄
∫∞

t0
p(F, t̄) dt̄

= 1− exp(−k(F)1t). (3)

To obtain the probability of attachment of a crosslink, we simply
substitute F = 0 into Equation (3).

2.1.2. Crosslink Detachment at a Linearly Increasing

Force F = rft

For a linearly increasing force F, the probability of detachment
becomes (de Rooij and Kuhl, 2018):

p(F, rf ) =
k(F)

rf
exp

(

−
F0

rf

[

k(F)− k0
]

)

. (4)

The probability of detachment within the next time step, between
t0 and t0 + 1t, then follows as:

P(F,1F) =

∫ F0+1F
F0

p(F) dF
∫∞

F0
p(F) dF

, (5)

FIGURE 3 | Axon model flowchart based on a conventional Newton-Raphson

solver (blue) modularly enhanced by the application of mechanisms (orange).

At the beginning of each Newton-Raphson step, we apply the mechanism to

each crosslink element. In case the algorithms does not converge, we restore

the last equilibrium state of all mechanisms and reduce the time step size.
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where 1F = rf 1t. In our simulations, we compute the
individual loading rate rf for each crosslink as the crosslink force
divided by the time the crosslink has been attached.

2.2. Discrete Axonal Damage Model
The major objective of our axon model is to interpret axonal
damage as an emergent feature of the dynamic attachment and
detachment of crosslinks. Motivated by the common definition
of damage in continuum damage mechanics (Kachanov, 1986),
we define axonal damage as the relative loss of axonal stiffness
due to excessive detachment of crosslinks as the result of a
physical force. Indeed, Equation (1) shows that a physical force
F increases the detachment rate of crosslinks and, thereby,
results in net reduction of attached crosslinks. To quantify the
amount of damage, we first need to characterize the baseline,
undamaged, mechanical response of our model axon. This
baseline response is nonlinear, viscoelastic, and, therefore, rate
dependent (de Rooij and Kuhl, 2018). We obtain the baseline
response by performing simulations at an infinite characteristic
bond strength F0 → ∞, see Equation (1). This implies that the
detachment rate, k(F; F0 → ∞) = k0, is the same as the
attachment rate, and the total number of attached crosslinks will,
on average, remain constant. To account for viscous effects in
the baseline response of the axon, we perform these baseline
simulations for a range of loading rates rf .

We define axonal damage for a finite characteristic bond
strength F0 as the relative stiffness degradation with respect to the
undamaged axon. Consistent with continuumdamagemechanics
(Lemaitre, 1992), we use the scalar-valued damage parameter d
to quantify axonal damage. Damage ranges from d = 0 for a
completely intact axon to d = 1 for a fully damaged axon and
relates the reduced stiffness E to the initial undamaged stiffness
E0 as:

E = [ 1− d ]E0, (6)

where both E and E0 are the corresponding secant stiffnesses.
Figure 4 (left) shows characteristic force-stretch curves of the
axon for varying characteristic bond strengths F0. From these
force-stretch curves, we compute axonal damage d(λ) for a given
stretch λ as:

d(λ) = 1− E(λ)/E0(λ). (7)

Figure 4 (right) shows characteristic damage-stretch curves of
the axon for varying characteristic bond strengths F0.

2.3. Homogenization
To bridge the scales, we postulate a specific functional form for
the evolution of damage and assume that its parameters emerge
naturally from the dynamic behavior of the crosslinking tau
proteins. In other words, we seek an evolution equation that
provides an analytical expression for axonal damage, d(λ, λ̇),
as function of the axonal stretch λ and stretch rate λ̇. We
characterize the accumulation of damage through the logistic
function (Verhulst, 1845),

d(λ, λ̇) = Ĥ(λ − λ50(λ̇; F0);α(λ̇; F0)). (8)

The C∞-smooth Heaviside function Ĥ(x;α) = eαx/ [1+ eαx]
represents an S-shaped sigmoid curve, λ50 is the half damage
stretch at the midpoint of the S-shaped curve, at which d(λ =

λ50) = 0.5, and α is proportional to the slope at this midpoint.
Widely used in population dynamics, the logistic function implies
that the initial stage of damage is approximately exponential,
it then begins to saturate at the half damage stretch λ50, and
gradually converges to the fully damaged state, d = 1, as the
stretch increases. We assume that both λ50 and α are functions
of the characteristic bond strength F0 and vary with the applied
stretch rate λ̇. Importantly, in our model, this rate dependence
emerges naturally from the underlying crosslink dynamics.

2.3.1. Ansatz for the Half Damage Stretch λ50

For the half damage stretch λ50(λ̇; F0), we use Equation (4) to
compute the expected crosslink force, F̂, at which a crosslink
detaches:

F̂ =

∫ ∞

0
F̃p(F̃; rf )dF̃ = F0 exp

(

k0F0

rf

)

Γ

(

0,
k0F0

rf

)

, (9)

where Γ (a, b) =
∫∞

b e−xxa−1dx is the upper incomplete gamma
function. When the crosslinks are attached to microtubules,
we assume that they behave linearly elastic and we expect the
transition stretch to be proportional to the detachment force,

[λ50 − 1] ∝ F̂. With k0F0/rf ∝ 1/λ̇, we therefore propose:

λ50(λ̇; F0) = 1+ aλ exp

(

bλ

λ̇

)

Γ

(

0,
bλ

λ̇

)

, (10)

where aλ(F0) and bλ(F0) are parameters that depend on the
characteristic bond strength F0 and will emerge naturally from
the tau crosslink dynamics within the axon.

2.3.2. Ansatz for the Damage Slope α

For the damage slope α(λ̇; F0), we follow a similar approach.
Since we interpret damage as the net loss of crosslinks, axonal
damage is a function of the fraction of attached crosslinks n̂att:

d = 1− n̂att with n̂att =
t̂att

1
2 [t̂att + t̂det]

(11)

where t̂att and t̂det are the expected duration that a crosslink is
attached and detached respectively. This implies that, in the limit
of homeostasis between attachment and detachment, t̂att = t̂det
and n̂att = 1 and d = 0, whereas in the limit of an excessive
detachment, t̂att << t̂det and n̂att = 0 and d = 1. From the
definition of the S-curve, we know that α is proportional to the
slope of the damage curve at d = 0.5:

α ∝
dd

dλ

∣

∣

∣

∣

d=0.5

=
dd

dt̂att
·
dt̂att

dλ̇
·
dλ̇

dλ

∣

∣

∣

∣

∣

d=0.5

∝
dt̂att

dλ̇
. (12)

By combining the definition of the attachment time, t̂att = F̂/rf ,

with Equations (9) and (12), we propose:

α(λ̇; F0) =
aα

(λ̇)3

[

λ̇ −
[

bα + λ̇
]

exp

(

bα

λ̇

)

Γ

(

0,
bα

λ̇

)]

, (13)
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FIGURE 4 | Characteristic force vs. stretch and damage vs. stretch curves for varying characteristic bond strengths, F0. An infinite bond strength F0 → ∞ defines the

baseline, undamaged stiffness E0(λ). Finite bond strengths F0 trigger a net increase in crosslink detachment resulting in an increase in damage d and a reduced

axonal stiffness E(λ). Increasing the bond strength F0 decreases the not crosslink detachment, which increases the stretch λ and force F required to trigger axonal

damage. We define axonal damage, d(λ) = 1− E(λ)/E0(λ), as the ratio of the reduced and undamaged secant stiffnesses E(λ) and E0(λ).

where, again, aα(F0) and bα(F0) are parameters that depend on
the characteristic bond strength F0 and will emerge naturally
from the tau crosslink dynamics within the axon.

2.4. Continuum Axonal Damage Model
To embed the homogenized equations into a continuum axonal
damage model, we introduce the deformation ϕ(X, t) along the
axis of the axon and define the axon level stretch λ and stretch
rate λ̇,

λ =
∂ϕ(X, t)

∂X
and λ̇ =

dλ(X, t)

dt
. (14)

We then introduce the free energy density of the damaged axon
Ψ as the damage weighted stored energy of the undamaged,
elastic axon Ψ0,

Ψ (λ, λ̇) = [ 1− d ]Ψ0(λ) with d = d(λ, λ̇), (15)

and assume that the evolution of damage is driven by both stretch
and stretch rate, d(λ, λ̇), while the elastic energy is a function
of the stretch alone Ψ0(λ). Motivated by standard arguments of
thermodynamics, we introduce the Cauchy stress σ = P λ and
the Piola stress P as thermodynamically conjugate quantity to the
stretch λ, and interpret the Piola stretch P as damage weighted
elastic axonal stress P0,

P =
∂Ψ

∂λ
= [ 1− d ] P0 with P0 =

∂Ψ0

∂λ
. (16)

To keep track of the maximum amount of stretch the axon has
experienced throughout its history, it is common practice to
introduce an internal variable,

λ∗ = max
0≤t≤τ

{

λ(t)
}

, (17)

which drives the evolution of damage,

d =
exp(α [λ∗ − λ50])

1+ exp(α [λ∗ − λ50])
. (18)

The stretch rate dependent half damage stretch,

λ50(λ̇; F0) = 1+ aλ exp

(

bλ

λ̇

)

Γ

(

0,
bλ

λ̇

)

, (19)

and the stretch rate dependent damage slope,

α(λ̇; F0) =
aα

(λ̇)3

[

λ̇ −
[

bα + λ̇
]

exp

(

bα

λ̇

)

Γ

(

0,
bα

λ̇

)]

, (20)

follow from the homogenization in section 2.3 and vary with the
bond strength F0 of the individual crosslinks in the axon. Last, to
solve the continuum equations of axonal damage within a finite
element setting, we derive the tangent modulus,

A =
dP

dλ
= [ 1− d ]A0 −

dd

dλ
P0 with A0 =

dP0

dλ
. (21)

For our specific damage model with

dd

dλ
=

dd

dλ∗
dλ∗

dλ
with

dd

dλ∗
= α [ 1− d ] d

and
dλ∗

dλ
=

{

1 ... loading
0 ... unloading

(22)

we obtain the following simple structure of the tangent modulus,

A = [ 1− d ][A0 − α d P0 ]. (23)

For example, for an elastic material of Mooney Rivlin type, with
Ψ0 = c1 [ λ

2 + 2/λ− 3 ]+ c2 [ 2λ+ 1/λ2 − 3 ], the Cauchy stress
becomes σ = [ 1−d ] 2 [ c1+c2/λ ][ λ2−1/λ ], the elastic tangent
modulus is A0 = 2c1 [ 1 + 2/λ3 ] + 6c2/λ

4, and the elastic Piola
stress is P0 = 2 [ c1 + c2/λ ][ λ − 1/λ2 ], where c1 + c2 =

1
2 µ are

the two constitutive parameters of the Mooney Rivlin model and
µ is the overall shear modulus of the axon (Goriely et al., 2015a).
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FIGURE 5 | Characteristic output of a single simulation. The kymograph, (Top left), tracks the position of all microtubules throughout the simulation. It reveals a

complete separation between the proximal and distal ends of the axon. This separation manifests itself in a loss of the required external force and an increase in

axonal damage (Bottom left). Four snapshots of the axon show the crosslinks color coded by crosslink stretch (Right). These snapshots show an initial increase in

crosslink stretch, followed by a decrease after the proximal and distal sets of microtubule bundles have separated.

3. RESULTS

3.1. Axon Model
Figure 5 shows the result of a single simulation in which we
applied a stretch of λ = 1.2 at a stretch rate λ̇ = 10/s assuming a
bond strength of F0 = 5pN.

The computational kymograph in the top left traces the
location of all microtubules in the axon throughout the entire
duration of the simulation. The snapshots on the top right show
the axon at four different time points with the tau crosslinks color
coded by the crosslink stretch. Toward the end of the simulation,
the stretch in the remaining crosslinks decreases. This decrease
is accompanied by a clear separation between the proximal and
distal ends of the axon, as we can see from the kymograph.
This separation is indicative of axonal damage; it reduces the
overlap of microtubules and, thereby, the number of connecting
crosslinks in the damaged region. Indeed, the force vs. time curve
in the bottom left shows an initial increase in force followed by
a rapid decrease approximately 5ms into the simulation. The
axonal damage, computed according to section 2.2, increases
from d = 0 at the beginning of the simulation to d = 1 when
the two sets of microtubule bundles are fully disconnected.

3.2. Discrete Axonal Damage
To probe the sensitivity of axonal damage with respect to stretch
and stretch rates, we performed several sets of simulations for a
range of stretches, λ ∈ [1, 1.2], and stretch rates, λ̇ ∈ [0.1, 10]
/s. The only input parameter that is not well defined in the
literature is the characteristic bond strength of the tau crosslinks.

We therefore also probed a range of crosslink bond strengths,
F0 = [1, 5, 10, 50, 100] pN.

Figure 6 (top) shows the damage vs. stretch curves for n
= 1,000 simulations at all five crosslink bond strengths, F0 =

[1, 5, 10, 50, 100] pN, color coded by the stretch rate λ̇ ∈

[0.1, 10] /s. Consistent with the Bell model, for smaller values of
F0, axonal damage develops earlier, at lower axonal stretch levels,
than for larger values of F0. Indeed, Equation (1) shows that at
lower crosslink bond strengths F0, the detachment rates for a
given applied crosslink force F are higher, which manifests itself
in an increased axonal damage. Our axonmodel also predicts that
crosslink detachment is more likely to happen at higher crosslink
stretches for high loading rates, which follows directly from
Equation (9). Figure 6 captures this prediction as axonal damage
develops at higher values for axonal stretch for high loading rates.
Interestingly, this trend is reversed when considering damage vs.
loading time.

Figure 7 shows the same simulations as Figure 6, but now
as damage plotted vs. loading time. It is clearly visible that
higher applied stretch rates lead to earlier development of
axonal damage. Thus, increased loading rates triggers earlier
development of axonal damage, but at a higher axonal stretch, all
consistent with the Bell model.

3.3. Homogenization
To homogenize the results or our discrete axonmodel simulation
toward an overall constitutive damage model for the axon,
we calibrate our damage model d(λ, λ̇) in Equations (8),
(19), and (20), using our discrete axon level simulations. For
each characteristic crosslink force and applied stretch rate,
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FIGURE 6 | Axonal damage vs. axonal stretch color coded by the stretch rate for five bond strengths. Discrete axonal damage simulations with n = 10 simulations for

each stretch rate (Top); homogenization using the average response for each stretch rate to identify the parameters for S-shaped curve of the homogenized damage

model (Middle); and continuum axonal damage simulation (Bottom). The graphs demonstrate an important feature of the Bell model: at higher stretch rates, axonal

damage occurs at higher axonal stretch.

we compute the mean damage vs. stretch curve from our
simulations. For each mean curve, we calibrate the half damage
stretch λ50 and the damage slope α according to Equation (8).
Figures 6, 7 (middle) illustrate the mean damage curves for
each applied stretch rate, together with the best analytical fit
as a dashed, black line. These figures show a good qualitative
agreement between the discrete axonmodel and its homogenized
response, which supports our initial selection for the damage
evolution law, d(λ, λ̇), in Equation (8).

For each applied stretch rate, λ̇, the homogenization yields one
value for the half damage stretch λ50 and for the damage slope
α, assuming a fixed characteristic bond strength, F0. In the next
step, we use these values together with Equations (19) and (20) to
obtain a stretch-rate dependent half damage stretch λ50(λ̇) and
damage slope α(λ̇). From the best fits, we obtain discrete values
for the parameters aλ and bλ in Equation (19) and aα and bα in
Equation (20). Naturally, these four parameters will be different
for different characteristic bond strengths F0.

Figure 8 shows the numerical data points and the analytical
fits for the half damage stretch λ50(λ̇) and for the damage slope
α(λ̇) for the range of F0 = [1, 5, 10, 50, 100] pN. Qualitatively,
Figure 8 confirms that our expressions for λ50(λ̇; F0) and
α(λ̇; F0) in Equations (19) and (20), respectively, accurately
represent the simulation data. In addition, Figure 8 confirms that
λ50 increases with increasing stretch rate, λ̇, and with increasing

crosslink bond strength, F0. Both trends are consistent with our
crosslink model and with Figure 6. In contrast, the damage slope
parameter α decreases with increasing stretch rate, λ̇, and with
increasing crosslink bond strength, F0.

Table 2 summarizes the homogenized parameters aλ, bλ,
aα , and bα , for bond strengths within the range F0 =

[1, 5, 10, 50, 100] pN. With increasing bond strength F0, aλ, bλ,
and bα increase, while aα decreases. To interpolate between
the five bond strengths, we suggest the following rationale:
Motivated by Equations (19) and (20), we expect that aλ → 0
and aα → ∞ as the characteristic bond strength decreases
toward zero, F0 → 0. This suggests power law relations for
the parameters a of the form aλ = 1.936 · 10−3 (F0)

0.835

and aα = −0.675 (F0)
−0.166. Motivated by phenomenological

considerations, for the parameters b, we suggest a linear
dependence on ln(F0) of the form bλ = 4.64 · 10−6 ln(F0)+ 1.61 ·
10−6 and bα = 1.55 · 10−2 ln(F0) + 4.55 · 10−2. This completes
our damage model that is fully determined as function of stretch,
λ, and stretch rate λ̇, parameterized by the characteristic bond
strength, F0.

3.4. Continuum Axonal Damage
Once homogenized and calibrated, we can use the axonal damage
model and embed it into a continuum damage simulation using
the governing equations from section 2.4. We can, for example,
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FIGURE 7 | Axonal damage vs. time color coded by the stretch rate for five bond strengths. Discrete axonal damage simulations with n = 10 simulations for each

stretch rate (Top); homogenization using the average response for each stretch rate to identify the parameters for S-shaped curve of the homogenized damage model

(Middle); and continuum axonal damage simulation (Bottom). The graphs represent the same data as in Figure 6, and demonstrate an important feature of the Bell

model: at higher stretch rates, axonal damage occurs at higher axonal stretch, but earlier in time.

FIGURE 8 | Homogenization of half damage stretch λ50 and damage slope α from average response of n = 10 discrete axonal damage simulations for as function of

the stretch rate, λ̇, for five bond strengths, F0. Blue dots represents λ50 and α values from the average damage vs. stretch relations in Figure 6; solid black lines

represent homogenization using Equations (19) and (20) for five bond strengths, F0.

embed these equations into a nonlinear finite element analysis
and project the homogenized axonal response along the axonal
direction, in a one-, two-, or fully three-dimensional brainmodel.

These continuum damage simulations are fully determined by
our evolution equations for the damage variables d(λ, λ̇), which
emerge naturally from the axon-level crosslink dynamics.
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TABLE 2 | Homogenized axon parameters aλ and bλ to calculate the half damage

stretch λ50 according to Equation (19) and aα and bα to calculate the damage

slope α according to Equation (20) for a range of characteristic bond strengths F0.

Parameter F0 = 1 pN F0 = 5 pN F0 = 10 pN F0 = 50 pN F0 = 100 pN

aλ [-] 1.81 · 10−3 8.74 · 10−3 1.40 · 10−2 5.26 · 10−2 5.76 · 10−2

bλ [1/ms] 1.28 · 10−6 1.11 · 10−5 1.01 · 10−5 3.40 · 10−5 1.28 · 10−5

aα [-] −0.655 −0.675 −0.384 −0.151 −0.633

bα [1/ms] 0.048 0.074 0.069 0.070 0.1723

Figures 6, 7 (bottom) summarize the resulting damage vs.
stretch and damage vs. time contours color coded by the stretch
rate for five bond strengths. Both graphs highlight an important
feature of the Bell model: at higher stretch rates, axonal damage
occurs at higher axonal stretch, but earlier in time. Comparing
the continuum axonal damage model (bottom) to the discrete
axonal damage model (top) and its homogenization (middle)
confirms that our transient damage model at the continuum level
captures the same failure characteristics as the discrete axonal
damage model based on crosslink detachment and reattachment
dynamics.

Figure 9 illustrates the emergent axonal damage vs. stretch
λ [1.0, 1.5] (left) and time t ∈ [0.0, 1.0] s (right) at varying
stretch rates λ̇ ∈ [0.1, 10]/s at a constant bond strength of F0 =
100 pN. The white circles represent experimentally characterized
damaged, d = 1, and undamaged, d = 0, nervous tissue
samples that had been exposed to different strain levels (Bain
and Meaney, 2000). These experiments clearly report a transition
from a low likelihood of damage at low stretch rates to a high
likelihood of damage at high stretch rates and characterize the
critical stretch levels at which damage emerges. The black circles
define the conservative damage threshold at d = 0.05 for 14%
strain and a stretch of 1.13, the liberal damage threshold at
d = 0.90 for 34% strain and a stretch of 1.30, and the optimal
damage threshold at d = 0.25 for 21% strain and a stretch
of 1.19, indicated through the black dashed dlines (Bain and
Meaney, 2000). The thick black line highlights the best fit. Its
half damage stretch is λ50 = 1.22, which implies that at a
stretch of 1.22 corresponding to a 25% strain, half of the samples
were damaged. The graphs in Figure 9 demonstrate an emergent
feature of our transient crosslink model: For increasing stretch
rates, damage develops at a larger stretch (left) but earlier in time
(right).

Figure 10 illustrates the emergent axonal force vs. stretch λ ∈

[1.0, 1.5] (left) and time t ∈ [0.0, 1.0] s (right) at varying stretch
rates λ̇ ∈ [0.1, 10]/s at a constant bond strength of F0 = 100 pN.
The dark red area marks the elastic, undamaged regime, here
for the example of a Mooney Rivlin model according to section
2.4, with a parameter ratio of c1 : c2 = 3 : 1. All other colors
highlight the effect of damage with a gradually increasing force
that eventually reaches a peak and decreases as a result of axonal
softening. The continuum level force vs. time behavior (right)
agrees well with the axon level force vs. time behavior in Figure 5

(bottom left). The graphs in Figure 10 demonstrate an emergent
feature of our transient crosslink model: For increasing stretch

rates, the peak axonal force increases (left) but is reached earlier
in time (right).

4. DISCUSSION

Brain damage can be caused by a wide variety of physical impacts,
ranging from a single and strong blow to the head to several
mild but repeated concussive events. Independent of the type
of impact, brain damage typically originates at the level of the
axon: Diffuse axonal injury may develop instantaneously upon a
single severe impact, whereas chronic traumatic encephalopathy
develops gradually in response to repeated mild impacts to the
head. Yet, the precise mechanisms how physical impacts to the
head triggers pathologies at the axon level remain incompletely
understood (Goriely et al., 2015b). With current technologies, we
cannot reliably measure the direct effects of physical forces to the
head. However, mechanical modeling can help to indirectly assess
the effects of physical impact and correlate external loading to
critical damage thresholds on the axonal level (Greenwald et al.,
2008; Giordano et al., 2017; Kuo et al., 2017). Toward this goal we
propose a mechanistic biophysical model that interprets axonal
damage as an emergent property of crosslink dynamics, physical
stretches, and stretch rates.

4.1. Axonal Damage Is a Result of
Excessive Crosslink Detachment
We model the axon as a parallel arrangement of longitudinally
aligned microtubules that are crosslinked by tau protein. These
crosslinks can break and form according to the Bell model for
chemical bond breaking (Bell, 1978) under external physical
forces (Evans and Ritchie, 1997). The Bell model is characterized
by a characteristic bond strength, F0, which is the only unknown
variable in our axon model. All other parameters in the model
have been reported in the literature as summarized in Table 1.
To investigate the evolution of damage inside the axon, we apply
a displacement controlled external stretch at different stretch
rates. Damage emerges naturally as a result of the stretch-induced
forces acting on the crosslinks, which, according to the Bell
model, triggers a net increase of crosslink detachment. From
a physics perspective, we define axonal damage as the loss in
axon stiffness (Kachanov, 1986; Lemaitre, 1992) triggered by
a gradual loss of crosslinks (Ahmadzadeh et al., 2014) that
promotes microtubule depolymerization (Kadavath et al., 2015)
and destabilizes the axonal cytoskeleton and (Krieg et al., 2017).

4.2. Damage Accumulates at the Location
of Weakest Connectivity
A representative simulation of axonal damage is characterized by
an applied stretch, λ, at a given stretch rate, λ̇. The main output
of our simulation is the overall force-stretch behavior of the axon,
see Figure 5. We use this axonal force-stretch response to derive
the axonal damage-stretch response compared to the undamaged
baseline case, see section 2.2. Figure 5 shows that the axonal force
increases initially, peaks, and then quickly drops down to zero.
This drop is a defining feature of axonal damage and indicates
that the axon has lost all its mechanical resistance to loading. The
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FIGURE 9 | Continuum axonal damage. Axonal damage vs. axonal stretch (Left) and time (Right) at varying stretch rates and constant bond strength. White circles

represent experimentally characterized damaged, d = 1, and undamaged, d = 0, nervous tissue samples at different strain levels (Bain and Meaney, 2000). Black

circles define the conservative damage threshold at 14% strain, the liberal damage threshold at 34% strain, and the optimal damage threshold at 21% strain (Bain and

Meaney, 2000). The graphs demonstrate an emergent feature of our transient crosslink model: For increasing stretch rates, damage develops at a larger stretch (Left)

but earlier in time (Right).

FIGURE 10 | Continuum axonal damage. Axonal force vs. axonal stretch (Left) and time (Right) at varying stretch rates and constant bond strength. The dark red

area marks the elastic, undamaged regime. The graphs demonstrate an emergent feature of our transient crosslink model: For increasing stretch rates, the peak

axonal force increases (Left) but is reached earlier in time (Right).

kymograph in Figure 5 illustrates that this rapid loss in stiffness
is associated with a primary axotomy, the development of two
disconnected sets of microtubule bundles, one at the proximal
and one at the distal end, which ultimately defines axonal failure.
The exact location of the axotomy is stochastic due to the
probabilistic nature of the slip bond model and the underlying
axon geometry: Once a weak cross section randomly develops
along the axon, each remaining crosslinks in this cross section

has to carrymoremechanical load; this increases its probability of
detachment, which increases the probability that the cross section
becomes even weaker and eventually fails completely.

4.3. At Higher Stretch Rates, Axons Can
Sustain Higher Stretches
We perform numerical simulations for a range of stretches λ ∈

[1, 1.2] and stretch rates λ̇ ∈ [0.1,10] /s, and systematically vary
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the characteristic bond strength over two orders of magnitude
F0 ∈ [1,100] pN. Motivated by the randomness in the precise
axonal geometry and in the time of detachment and attachment
of individual crosslinks, we perform n = 10 simulations for
each set of input parameters and use the average result of those
simulations for further analysis. Figures 6, 7 (top) show the
axonal damage vs. stretch and time for a range of stretch rates.
The results in these figures are consistent with an important
emergent feature of our transient crosslink model: at higher
applied stretch rates, axonal damage develops at a higher axonal
stretch, but earlier in time (de Rooij and Kuhl, 2018).

4.4. The Homogenized Axonal Damage
Behavior Displays an S-Shaped Response
To derive a constitutive model for axonal damage that we can
embed into whole brain damage simulations (Goriely et al.,
2015a), we homogenize the discrete axonal response. For each
combination of stretch, stretch rate, and characteristic bond
strength, we perform n = 10 discrete axonal damage simulations
and average their damage-stretch response. We homogenize the
discrete model by fitting an S-shaped damage curve through the
average damage-stretch response. The S-shaped damage model
is similar to damage evolution laws for soft materials that
exponentially approach complete damage at d = 1 (Beatty and
Krishnaswamy, 2000; Weisbecker et al., 2012).However, several
damage evolution laws assume that damage only starts beyond
a certain stretch threshold (Peerlings et al., 2001). Here, we
choose the smooth S-shaped curve because our crosslink model
is also smooth (Bell, 1978) and because it nicely captures the
homogenized axonal response in Figures 6, 7 (middle).

4.5. The Damage-Stretch Behavior of the
Axon Is Defined by Two Parameters
Our S-shaped damage curve is defined by two parameters with
a clear physical interpretation: the half damage stretch λ50 that
defines the stretch at which the axon is half damaged and the
damage slope α associated with the slope at this half damage
stretch. Note that the half damage stretch λ50 is conceptually
similar to the damage stretch threshold that has been proposed
in literature (Marini et al., 2012; Li, 2016). We assume that both
the half damage stretch and the damage slope depend on stretch
rate and characteristic crosslink force, λ50(λ̇; F0) and α(λ̇; F0).
We derive the qualitative dependence on the stretch rate λ̇ from
the Bell model in Equations (19) and (20), which we compare to
our discrete axon simulations in Figure 8. Figure 8 reveals that
the half damage stretch, λ50, increases with increasing stretch
rate and with increasing bond strength. The increase of λ50
with increasing stretch rate λ̇ is consistent with the Bell model
that assumes that, at higher stretch rates, the axon can sustain
higher stretches prior to damaging. The increase of λ50 with
increasing bond strength F0 is also consistent with the Bell model
in Equation (1), since higher bond strengths F0 require higher
forces F to generate the same detachment rate. Figure 8 shows
that the slope, α, decreases with increasing stretch rate and
increasing bond strength. This is consistent with the Bell model
in Equation (20) and with the smoothness of the Bell model.

Table 2 summarizes the homogenized axon parameters aλ and
bλ to calculate the half damage stretch λ50 and the homogenized
axon parameters aα and bα to calculate the damage slope α for a
range of bond strengths F0. Table 2 suggests that, with increasing
bond strength F0, aλ, bλ, and bα increase while aα decreases.

4.6. Our Damage Model Agrees Well With
Experimental Findings
Section 2.4 and Figures 6, 7 (bottom) summarize our constitutive
model for axonal damage. Our damage model is completely
determined as a function of stretch λ and stretch rate
λ̇, parameterized in the bond strength F0. Although the
characteristic bond strength F0 is currently unknown, our
selected range F0 ∈ [1,100] pN lies well within the range of
physiological force levels observed at the protein level. For
example, dynein protein generates a force of about 1 pN (Mallik
et al., 2004), microtubule assembly may generate pushing forces
up to 3–4 pN (Dogterom and Yurke, 1997), and the growth cone
of the axon generates a total pulling force of about 1–20 nN
(Rajagopalan et al., 2010; Hyland et al., 2014). Strikingly, Figure 8
suggests that the values for the half damage stretch λ50 all lie
within λ50 ∈ [1.01,1.3] for our entire range of stretch rates λ̇ ∈

[0.1,10] /s and bond strengths F0 ∈ [1,100] pN. By definition, λ50
is the axonal stretch at which 50% of the axon is damaged. This
suggests that we can use the λ50 value as a surrogate measure for
the axonal damage level threshold. The range of λ50 ∈ [1.01,1.30]
agrees well with reported critical stretch values for axonal injury:
critical values between 1.05 and 1.10 have been found based
on animal and physical studies (Margulies and Thibault, 1992),
a critical stretch of 1.05 caused mild injury in cortical axons
in culture (Yuen et al., 2009), axonal stretch between 1.09 and
1.16 led to axonal injury in rats (Singh et al., 2016), and critical
stretches between 1.14 and 1.34 were found at stretch rates
between 30 and 60 /s in white matter brain tissue (Bain and
Meaney, 2000). Notably, these reported critical damage stretch
thresholds are all based on a single severe loading of the axon
and mimic the event of traumatic brain injury. To date, there is
no reliable data on critical damage stretch thresholds for multiple
mild loading of the axon that would mimic the event of chronic
traumatic encephalopahy (Asken et al., 2017).

4.7. Our Damage Model Integrates Well
Into Finite Element Algorithms
Once calibrated and validated, we can embed our constitutive
model for axonal damage in a continuum mechanics model
for whole brain simulations and superpose it to the isotropic
behavior of the tissue (Cloots et al., 2013; Mao et al., 2013; Goriely
et al., 2015b; Giordano et al., 2017; Weickenmeier et al., 2017).
Figures 9, 10 show that the continuum implementation of the
damage model, e.g., within a nonlinear finite element setting,
correctly reproduces the axon level features of damage. Notably, a
well-known problem with continuum damage models is that, in
the softening regime, the governing equations become ill posed
and the numerical solutions become mesh dependent. These
issues can be resolved with appropriate regularization techniques
(de Borst et al., 1993; Kuhl et al., 2000). A natural regularization
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technique is to account for the rate dependent nature of damage
(Geers et al., 1994). Although we do not explicitly investigate
regularization here, the inherent rate dependence of our axonal
damage model potentially regularizes the simulation at no
additional cost (Pereira et al., 2017).

4.8. Our Axon Model Has a Few Limitations
We have proposed a consistent strategy to relate microscale
protein behavior to axonal damage and to develop a constitutive
damage model that can be used at the continuum, whole brain
level. However, we do recognize several limitations to our model
that we plan to address in future work: First, our model assumes
that axonal damage is solely caused by the disruption in tau
protein crosslinks. Although this disruption is consistent with,
e.g., the diagnoses of chronic traumatic encephalopathy through
an abnormal increase of unbound tau, other mechanisms such
as microtubule rupture may contribute to damage of the axon
(Tang-Schomer et al., 2010; van den Bedem and Kuhl, 2015). In
addition, we simplified the axonal cytoskeleton as a composition
of microtubules and tau proteins, while we recognize that the
axon contains additional cytoskeletal elements and organelles
that could be structurally relevant, such as neurofilaments,
microfilaments, dynein, myosin, and the actin cortex (Ouyang
et al., 2013; Kirkcaldie and Collins, 2016; Tofangchi et al., 2016).
For example, neurofilaments and microfilaments contribute to
the axon’s elasticity and provide additional mechanical support
(Ouyang et al., 2013; Kirkcaldie and Collins, 2016). The actin
cortex generates an overall compressive force around the
axon that counteracts axonal tension and will likely affect the
development of damage (Fan et al., 2017; García-Grajales et al.,
2017). The extracellular matrix and the myelin sheaths around
the axon provide additional stability and mechanical support
(Goriely et al., 2015b; Weickenmeier et al., 2016). Clearly, further
experimental and computational research is needed to qualify
and quantify the effects of these structural elements on axonal
damage. Second, although the Bell model is widely used for a
variety of chemical bonds (Evans and Calderwood, 2007), it is not
specific to the tau-microtubule complex. The tau-microtubule
interaction is largely unknown and an active field of research
(Kadavath et al., 2015; Li et al., 2015; Vemu et al., 2016).
An improved understanding of the tau-microtubule binding
mechanisms and tau-tau interactions can directly feed into our
model and will help improving our model predictions. Third,
we assume an S-shaped damage evolution as function of axonal
stretch that provides a good representation of the numerical
simulation results. However, our current S-shaped curve does not
explicitly enforce that a zero damage condition at no loading. In
principle, we could use any other damage evolution law to model
the stretch- and stretch rate-dependent evolution of damage.
Fourth, our method of quantifying axon damage is based on

the excessive detachment of crosslinks caused by an externally
applied stretch. Within our computational model, however, this
axonal damage may recover when the axon is unloaded or
when the stretch is held constant and crosslinks reattach to
the microtubules. This recovery is non-standard in continuum
damage mechanics. Future research should investigate this issue
in more detail to improve on the dynamic mechanism assigned

to our crosslinks. For example, crosslinks that detach due to an
excessive force may not be able or allowed to reattach again,
which could be consistent with the experimentally observed
increase in tau protein concentration upon axonal damage.

5. CONCLUSION

The interplay of protein dynamics and physical forces is critical
to understand the underlying mechanisms of axonal degradation
and brain damage. Here we provides a systematic strategy to
relate the discrete dynamic behavior of tau crosslinks on the
protein level to the progressive structural degradation on the
cellular level to a continuum damage model on the tissue
level. Consistent with the definition in nonlinear mechanics,
we interpret damage as the gradual stiffness degradation that
emerges naturally from a net reduction of crosslinking tau
proteins. Motivated by molecular mechanisms, the evolution of
damage depends on both the axonal stretch and stretch rate.
The only unknown parameter in our model is the characteristic
crosslink bond strength, which we vary systematically over two
orders of magnitude. Strikingly, for a wide range of stretches,
from 1.0 to 1.5, stretch rates, from 0.1 to 10 /s, and bond strengths,
from 1 to 100 pN, our model predicts a rather narrow window
of critical damage thresholds from 1.01 to 1.30. These values
agree well with the experimentally observed axonal damage
thresholds reported in the literature. We anticipate that our
biophysical model will improve our fundamental understanding
of the development and propagation of brain damage across
scales and provide useful guidelines to characterize the critical
damage level thresholds in response to physical forces.
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