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A commentary on

LTP and memory impairment caused by extracellular Aβ and Tau oligomers is APP-dependent

by Puzzo, D., Piacentini, R., Fá, M., Gulisano, W., Li Puma, D. D., Staniszewski, A., et al. (2017).
Elife 6:e26991. doi: 10.7554/eLife.26991

Human Brain-Derived Aβ Oligomers Bind to Synapses and Disrupt Synaptic Activity in a

Manner That Requires APP

by Wang, Z., Jackson, R. J., Hong, W., Taylor, W. M., Corbett, G. T., Moreno, A., et al. (2017). J.
Neurosci 37, 11947–11966. doi: 10.1523/jneurosci.2009-17.2017

Alzheimer’s disease (AD) is the most common neurodegenerative disorder, but despite decades of
extensive research, a disease-modifying therapy is still lacking. AD is a multifactorial disease that
occurs in familial and sporadic forms, but is always accompanied by neurotoxic accumulations
of amyloid and tau proteins. The deposition of amyloid was postulated to be central for AD
pathogenesis in the “amyloid cascade hypothesis” (Hardy and Higgins, 1992) that still dominates
the field. In its latest update, soluble oligomers are considered the most toxic species (reviewed by
Benilova et al., 2012; Ferreira et al., 2015). These secreted oligomers interact with many synaptic
receptors (e.g., glutamate, insulin, adrenergic, and neurotrophin receptors), hereby aberrantly
activating distinct signaling cascades, resulting in disrupted calcium homeostasis, excitotoxicity,
neurodegeneration, mitochondrial dysfunction, and major synaptic dysfunction (Ferreira et al.,
2015). The damaging effects of oligomers at synapses are believed to initiate AD, making synaptic
readouts especially useful to investigate its early phases (Selkoe, 2002). A commonmethod to study
synaptic function is in vitro induction of long-term potentiation (LTP), a form of synaptic plasticity,
the cellular basis of learning and memory.

The source of amyloid is the amyloid precursor protein (APP), which belongs to a small family
of transmembrane proteins together with amyloid precursor-like proteins (APLP) 1 and 2. APP
can undergo distinct secretase-mediated cleavages, following either the “non-amyloidogenic” or
“amyloidogenic” pathway. The first serves a range of important physiological functions, including
regulation of transcription and synaptic plasticity (reviewed by Müller et al., 2017). In contrast,
the amyloidogenic pathway releases amyloid-beta (Aβ) peptides of different lengths that form the
harmful oligomers. Mutations in genes related to APP processing and in the APP gene itself cause
familial AD (Van Cauwenberghe et al., 2016), but it is unclear whether APP is merely the Aβ

precursor, or whether it plays additional pathological roles in AD.
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In this commentary, we want to highlight two recent
papers that addressed this question using overlapping
and complementary methods: Puzzo et al. (2017) and
Wang et al. (2017). Both groups independently performed
electrophysiological recordings on hippocampal slices from
APP-KO mice, and examined whether the absence of APP
alters the disruptive effect of applied Aβ oligomers on synaptic
plasticity. Their results convey exactly the same message:
APP-KO mice are spared from the severe LTP deficits caused
by oligomers in wildtype mice. In addition, Wang et al.
(2017) reported that the presynaptic release probability and
excitation/inhibition balance are elevated by oligomers in
wildtype, but not in APP-KO mice. These findings could reflect
a general pathological mechanism with network-wide effects
(Palop and Mucke, 2016) and are in line with a previously
reported role for APP in regulating GABAergic inhibition (Wang
et al., 2014). Wang et al. (2017) further showed that APP is
required for Aβ’s co-localization with pre- and postsynaptic
markers, confirming a toxic Aβ-APP interaction.

On the other hand, Puzzo et al. (2017) investigated whether
the synaptotoxic effects of tau, the other key player in AD, are
likewise APP-dependent. They found that this is indeed the case,
and moreover, that both Aβ and tau oligomers can bind to APP
and even require APP for efficient internalization (Puzzo et al.,
2017). Importantly, this discloses APP as a shared interaction
partner between amyloid and tau. To examine whether these
electrophysiological and molecular findings are reflected in
cognitive measures, Puzzo et al. (2017) applied contextual fear
conditioning and radial arm water maze, which interestingly
revealed that knockout of APP also prevents oligomer-induced
deficits in associative and spatial memory.

Taken together, the results from Wang et al. (2017) and
Puzzo et al. (2017) convincingly show that APP is an important
mediator of oligomer toxicity. Nevertheless, since APP has so
many synaptic functions, it cannot be completely excluded that
constitutive APP-KO results in structural synaptic changes or
altered signaling pathways which could alternatively explain the
insensitivity to oligomers. Furthermore, both groups used young
APP-KO mice which display normal LTP, while these mice do
develop LTP deficits at older ages (Müller et al., 2017). Although
the application of oligomers to young mice could model relevant
pathological processes of early AD, it seems essential to repeat the
experiments with mice of a more advanced age, which is more
relevant for human AD and takes possible age-related alterations
of synaptic properties into account (Mattson and Magnus, 2006).

Another important open question is whether similar results
would have been obtained using mice with a more acute,
conditional APP reduction, such as a tamoxifen-inducible

APP-KO line (Callahan et al., 2017), especially in light of the

translational potential for APP-targeted therapy in patients.
Similarly, it remains to be investigated whether other members
of the APP family are also involved in oligomer toxicity, and
likewise offer any therapeutic potential. Since only APP can
release Aβ peptides, but APP and APLP2 are functionally
redundant (Fanutza et al., 2015; Müller et al., 2017), it may
be tempting to upregulate APLP2 while APP is downregulated,
to compensate for APP’s loss of function without affecting Aβ

production and toxicity.
The new pathological role for APP has implications for studies

using transgenic AD mouse models, which typically overexpress
human APP (recent overview in Jankowsky and Zheng, 2017).
Given that APP is directly involved in oligomer toxicity, models
with a more physiological APP expression, e.g., humanized
knock-ins, likely have higher construct validity.

In conclusion, the studies by Wang et al. (2017) and Puzzo
et al. (2017) lead to a model wherein APP acts as a central
pre- and postsynaptic linking molecule that mediates both Aβ-
and tau-induced synaptic and behavioral deficits. The results
strongly suggest that APP should be considered as therapeutic
target, to counteract the toxic (inter)actions of Aβ and tau at the
synapse and preserve crucial neuronal networks. Nevertheless,
the findings in the hippocampus of APP-KO mice will need to be
successfully translated to other AD-affected brain regions and to
human patients. The huge number of failed clinical trials and the
news of top pharma companies withdrawing from AD research
are extremely worrying, but let’s continue to join forces to find
that much needed cure.
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