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Since the original report of seizure control through starvation in the 1920s, the ketogenic
diet has been considered an energy-related therapy. The diet was assumed to be
functioning through the effect of reduced carbohydrate intake regulating cellular energy
state, thus giving rise to seizure control. From this assumption, the generation of
ketones during starvation provided an attractive mechanism for this altered energy state;
however, many years of research has sought and largely failed to correlate seizure control
and ketone levels. Due to this focus on ketones, few studies have examined a role for free
fatty acids, as metabolic intermediates between the triglycerides provided in the diet and
ketones, in seizure control. Recent discoveries have now suggested that the medium-
chain fats, delivered through the medium-chain triglyceride (MCT) ketogenic diet, may
provide a key therapeutic mechanism of the diet in seizure control. Here we describe
an unusual pathway leading to this discovery, beginning with the use of a tractable
non-animal model—Dictyostelium, through to the demonstration that medium-chain fats
play a direct role in seizure control, and finally the identification of a mechanism of action
of these fats and related congeners leading to reduced neural excitability and seizure
control.
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INTRODUCTION

Identifying the key therapeutic target of drugs is of great importance for biomedical science, since
this enables rapid screening to develop improved compounds (Chang et al., 2012), and strengthens
our understanding of the basic physiology underlying disease phenotypes. To confirm a mechanism
of a compound it is essential to remove or silence the target gene, in order to demonstrate a
subsequent loss of response to the compound. However, ablation of potential protein targets in
mammalian models is problematic, due to the diploid nature of cells (making gene ablation difficult)
and the complex array of related proteins often with overlapping catalytic function (e.g., in various
isoforms or protein families). To address these issues, simple tractable models can be used, where
gene ablation is rapid and efficient and a low complexity genome provides less redundancy in
cellular function (Williams et al., 2002), to provide innovative proposals relating to drug targets
that can then be validated in mammalian models. Using this approach, cells lacking the proposed
target, having lost response to the compound, would confirm a direct activity for the compound
against the target.
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AN INNOVATIVE TRACTABLE MODEL
SYSTEM PROVIDES THE GREAT LEAP
FORWARD

The social amoeba, Dictyostelium discoideum, provides an
unconventional system for molecular neuroscience research.
This organism grows naturally in the leaf litter of temperate
forests, existing in both single and multicellular stages (Figure 1;
Williams et al., 2006). Dictyostelium belongs to the Phylum
Amoebozoa, where phylogenetic analysis suggests that it
diverged from the animal linage after plants, but before yeast
and fungi. Despite the earlier divergence, many Dictyostelium
proteins maintain more homology with human proteins than
those of unicellular fungi (Eichinger et al., 2005). The haploid
nature of Dictyostelium enables rapid gene ablation by insertional

mutagenesis (Faix et al., 2013), and the production of mutant
libraries (Kuspa, 2006). The model can then be used to
investigate acute cellular effects, chronic growth effects and
developmental effects of compounds to demonstrate cellular
function (Robery et al., 2013; Waheed et al., 2014; Cocorocchio
et al., 2016, 2018). It is important to verify that targets identified
from mutant library screens are specific to the compound of
interest and are not conferring broad resistance to a range of
compounds. Furthermore, while Dictyostelium contains many
proteins highly conserved with humans, some proteins are absent
or have non-conserved functions. It is therefore not possible
to make translatable findings about non-conserved proteins
in Dictyostelium, and due to potential differences in cellular
function of Dictyostelium and human proteins, it is imperative
to validate findings in mammalian models.

FIGURE 1 | The tractable model organism, Dictyostelium discoideum has been used to investigate cellular mechanisms of epilepsy treatments and medium-chain
triglyceride (MCT) ketogenic diet associated fatty acids. The organism can exist in (A) a single cell stage, with cells around 10 µm in diameter. Due to their haploid
nature, genes can be easily ablated and isogenic mutants analyzed in drug target studies. Under starvation conditions Dictyostelium cells form (B) multicellular
fruiting bodies, of around 1–2 mm in height, comprising a spore head held above the substratum by dead vacuolated stalk cells, where the process of aggregation
and development has been widely studied. (C) The life cycle of Dictyostelium begins with unicellular growth, where cells consume bacteria and divide by binary
fission. Following the onset of starvation, cells enter a development cycle where cells aggregate and enter a multicellular stage through streaming to form a mound
and then finger structure. Motile slugs are able to migrate towards favorable locations and develop, or development may progress straight into a tipped mound, early
culminant and then mature fruiting body. Spores within the head of the fruiting body, which are able to survive unfavorable conditions, can then be released, and
germinate to re-enable unicellular growth.
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Dictyostelium has been used in a range of projects to
investigate the cellular and molecular mechanisms of the widely
used epilepsy treatment valproic acid (VPA). It has been used
to demonstrate a common mechanism of action of bipolar
disorder treatments through inositol depletion (Williams et al.,
2002; Eickholt et al., 2005), and in a conserved mechanism
to regulate the MAP Kinase pathway in neuroprotection
(Boeckeler et al., 2006). Dictyostelium has been valuable in
identifying an uptake mechanism for VPA via an orthologe
of the mammalian solute carrier family 4 (SLC4) bicarbonate
transporter (Terbach et al., 2011). Importantly, it was also the
first system to suggest a mechanism of VPA in regulating
phosphoinositide turnover in relation to seizure control (Xu
et al., 2007; Chang et al., 2012), which was subsequently
validated using in vivo mammalian models (Chang et al.,
2014). Dictyostelium was also employed in the identification
of a range of compounds related to VPA that showed efficacy
in neuroprotection and seizure control in mammalian models
(Chang et al., 2013, 2015, 2016). One of the compounds
identified through this pathway, decanoic acid, provides a
major constituent administered in the medium-chain triglyceride
(MCT) ketogenic diet.

METABOLISM OF THE KETOGENIC DIET

Ketogenic diets have been used to treat seizures since the 1920s
(Wheless, 2008). A modified form of the diet, the MCT ketogenic
diet introduced in 1971 (Neal, 2017), provides a restricted
carbohydrate diet, with around 45% of dietary energy delivered
as fatty acids, an improvement on the classic ketogenic diet
which makes up 60%–80% of dietary energy. This advancement
of the diet allows more carbohydrate and protein to be consumed
which improves tolerability and reduces gastrointestinal side
effects. While the classic ketogenic diet relies on long-chain
fatty acids, the MCT ketogenic diet provides energy in the form
of medium-chain fatty acids within triglycerides, consisting of
the eight-carbon octanoic acid and the ten-carbon decanoic
acid in a 40–60 ratio (Sills et al., 1986; Liu, 2008). Cleavage of
triglycerides in the gut leads to the release of free fatty acids,
which are absorbed through the gut wall and are metabolized
in the liver, where β-oxidation leads to the production of
ketone bodies (β-hydroxybutyrate, acetoacetate and acetone)
which are only seen in patients on a carbohydrate restricted
(or starvation) diet (Haidukewych et al., 1982; Augustin et al.,
2018). Although most fatty acids are degraded at this stage
(Sills et al., 1986), some medium-chain fatty acids along
with ketone bodies are distributed via the vascular system
throughout the body and to the brain (Wlaź et al., 2012,
2015).

SEIZURE CONTROL ACTIVITIES OF
KETONES AND FREE FATTY ACIDS

As the most investigated mechanism for ketogenic-diet
dependent seizure control, many studies have focused on a
role of ketones, with variable outcomes. In the absence of
dietary carbohydrates, ketones are generated and distributed

at concentrations of around 5 mM (Veech, 2004), where
they are thought to provide an alternate energy source to
glucose. In clinical studies, ketone levels poorly correlate with
anticonvulsant efficacy, and this ketone-based mechanism has
not been widely supported in animal model studies (Likhodii
et al., 2000; Thavendiranathan et al., 2000). Ketones have
been demonstrated to regulate GABA and glutamate levels
(Lutas and Yellen, 2013), but do not directly act at GABA or
glutamate receptors at physiological concentrations (Donevan
et al., 2003), nor do they directly alter hippocampal synaptic
transmission (Thio et al., 2000). Ketones do not directly
block seizure activity in hippocampal slice models, induced
to generate seizure-like activity with either pentelentetrazol
(PTZ) or low magnesium conditions (Chang et al., 2016;
Figure 2) or in 4-aminopyridine induced ex vivo seizure
models (Thio et al., 2000). Although the role of ketones in
the ketogenic diet is controversial there is evidence in support
of their efficacy. Ketones have been demonstrated to regulate
mitochondrial function (Kim et al., 2015b) implicating cellular
energy regulation. The ketogenic diet has also been suggested
to function in seizure control through increasing activation
of adenosine A1 receptors in a mouse model, however it
remains to be determined if this effect is through ketone-
dependent or fat-dependent mechanisms (Masino et al., 2011).
Ketones have also been demonstrated to regulate synaptic
KATP channels, providing a further potential mechanism in
seizure control (Kim et al., 2015a; Li et al., 2017). Finally,
ketones may function through epigenetic effects, regulating
gene expression in relation to seizure susceptibility (Kobow
et al., 2013; Lusardi et al., 2015). A comprehensive evaluation
of the current experimental understanding of the efficacy
of ketone bodies is reviewed elsewhere (Simeone et al.,
2018).

The first investigation of medium-chain fatty acids relating to
seizure control arose through several papers identifying elevated
levels of both octanoic acid and decanoic acid in the plasma
of patients on the MCT ketogenic diet (Haidukewych et al.,
1982; Sills et al., 1986; Dean et al., 1989). Here, decanoic acid
was shown at an average level of 157 µM (87–552 µM) and
octanoic acid at 310 µM (104–859 µM). The relatively low
number of patients assessed in these studies (up to 12 individuals)
prevented a correlation between fatty acid levels and seizure
control. Subsequently, an in vivo study of straight-chain fatty
acids identified strong effects of long-chain fatty acids (e.g.,
palmitic acid containing 16 carbons) in a picrotoxin-induced
seizure model in mice, with small but significant effects of
decanoic acid in delaying the onset of clonic convulsions without
an effect on survival time. The opposite effect was found
for decanoic acid with subcutaneous PTZ induced seizures,
where survival time was increased but clonic convulsions were
not delayed (Nakamura et al., 1990). The small magnitude
of the effect and the large variability of response did not
provide clear support for a mechanism of decanoic acid in
seizure control. More compelling evidence was provided by later
studies.

It has been identified in Dictyostelium that medium-
chain fatty acids regulate phosphoinositide signaling, in a
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FIGURE 2 | Seizure-like activity in an in vivo model is acutely blocked by decanoic acid (DA) and related compounds but not by ketones. The MCT ketogenic diet
involves the oral intake of (A) medium-chain triglycerides, which are converted into the fatty acids decanoic acid and octanoic acid in the intestine. These
medium-chain fatty acids are then transferred to the liver, where they are further metabolized to form ketone bodies. Fatty acids and ketones are transported in the
blood to the brain where they are able to cross the blood brain barrier. Following the identification of decanoic acid as a potential therapeutic effector of the MCT
ketogenic diet in Dictyostelium, its seizure control activity was compared to that of the ketones acetone and β-hydroxybutyrate (BHB), with seizure-like activity
induced in a rat hippocampal slice model following (B) pentelentetrazol (PTZ) or (C) low magnesium treatment. In both models, epileptiform activity was not blocked
by either ketones (BHB or acetone) at high concentrations (10 mM). In contrast, the medium-chain fatty acid, DA rapidly blocked activity at 1 mM. Data is derived
from Chang et al. (2016). (D,E) A range of novel compounds and related structures implicated through the use of Dictyostelium have also been demonstrated to
show seizure control activity, where seizure-like activity is induced in a rat hippocampal slice model following PTZ treatment. Data derived from Chang et al. (2014).

similar but more potent mechanism to valproic acid (Chang
et al., 2012). This study further demonstrated that some of
these fatty acids blocked PTZ-induced epileptiform activity
in an in vitro rat hippocampal model (Figure 2), again
with a more potent effect than VPA. This anti-seizure effect
occurred within 10 min of treatment, continually perfused
with artificial CSF with high glucose content suggesting
that the mechanism of seizure control was not dependent
upon the build-up of ketones through the metabolism of
fatty acids. Further studies identified that decanoic acid, and
derivatives of octanoic acid show strong seizure control in
a PTZ induced rat hippocampal model for seizure activity,
again under perfusing CSF conditions unlikely to allow ketone
generation (Chang et al., 2013). Medium-chain fatty acids

were effective in a (perforant path stimulation-induced) status
epilepticus in vivo model within 20 min of administration.
A further study confirmed that branched-chain octanoic acid
compounds showed strong structure-specific seizure control
activity in a PTZ-induced hippocampal seizure model (Chang
et al., 2015), in addition to blocking excitotoxic cell death
induced by low magnesium levels in primary hippocampal
neurons. Some related structures in this study showed potent
control of epileptiform activity (Figure 2), without the negative
side effect of VPA on histone deacetylase activity, widely
associated with teratogenicity (Phiel et al., 2001; Gurvich et al.,
2004).

Medium-chain fatty acids have also been demonstrated to
function in seizure control in in vivo models. In one study in
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mice, seizure thresholds were increased in the in vivo 6 Hz
model using a single bolus oral gavage dose of decanoic acid
at 10 mmol/kg and 30 mmol/kg, and a similar increase was
observed in the MES threshold model at 50 mmol/kg p.o.,
although no effect was observed at decanoic acid doses up
to 50 mmol/kg p.o following seizure induction with i.v. PTZ
(Wlaź et al., 2015). This group also showed that octanoic acid
provided as a single bolus oral gavage dose at 20 mmol/kg and
30 mmol/kg significantly increased the dose of i.v. PTZ required
to induce myoclonic twitch, and at 30 mmol/kg increased the
dose of i.v. PTZ required to induce clonus, and that octanoic
acid increased the seizure threshold above 10 mmol/kg in the
6-Hz model (Wlaź et al., 2012). The comparative importance of
octanoic acid and decanoic acid was also examined in a mouse
study. In this study, dietary treatment of mice with medium-
chain triglycerides comprising either only octanoic acid or only
decanoic acid was followed by induction of seizure like activity
using both the 6 Hz model and the latency to first generalized
seizure in the flurothyl model (Tan et al., 2016). This study
showed that decanoic acid (only) triglycerides increased seizure
thresholds whereas octanoic acid (only) triglycerides did not,
supporting a role for decanoic acid in seizure control. It is also
worthwhile to note that, since this study showed both decanoic
acid and octanoic acid triglycerides provided a common level
of ketosis, but only the decanoic acid triglyceride diet provided
seizure control, this decanoic acid-dependent seizure control
activity is likely to be unrelated to the generation of ketones.
These studies therefore support a mechanism of seizure control
through decanoic acid.

In many of these in vivo studies, a therapeutic role of
fatty acids has been overlooked due to the perceived role
of ketones as the mechanism of the diet. Therefore, it
remains to be determined if free fatty acids may provide the
therapeutic effects underlying the diet. For example, in one
study (Mantis et al., 2014), augmentation of the ketogenic
diet with glucose increased seizure susceptibility in a genetic
mouse model, however, this study did not describe ketone
levels or free fatty acid levels following glucose administration,
thus it remains unclear if the role of glucose in these
experiments was due to effects on ketosis or free fatty acid
levels.

The MCT ketogenic diet leads to elevated levels of both
octanoic acid and decanoic acid in the plasma of patients
(Haidukewych et al., 1982), however, most studies suggest
that decanoic acid and not octanoic acid is responsible for
the therapeutic benefits of the diet (Chang et al., 2013,
2016; Hughes et al., 2014; Tan et al., 2016). So is there a
benefit of including octanoic acid in the diet? Interestingly,
recent studies have shown that octanoic acid, rather than
decanoic acid, is preferentially metabolized in neurones by
β-oxidation (Khabbush et al., 2017). This finding suggests
that the presence of octanoic acid in the MCT ketogenic
diet may allow decanoic acid to escape catabolism, thus
accumulating, to enhance a therapeutic mechanism in preventing
seizures. This finding supports an earlier in vivo study in mice
using the 6 Hz seizure test that demonstrates an increased
anticonvulsant activity of combined octanoic acid and decanoic

acid in comparison to decanoic acid alone (Wlaź et al.,
2015).

CELLULAR TARGETS FOR FREE FATTY
ACIDS IN RELATION TO NEURONAL
EXCITABILITY AND SEIZURE CONTROL

Two molecular mechanisms for decanoic acid have recently
been proposed. As an acute mechanism for seizure control,
decanoic acid has been shown to reduce excitatory postsynaptic
currents (EPSCs) using whole cell patch clamp recordings from
CA1 pyramidal neurons, likely through inhibition of excitatory
AMPA receptors (Chang et al., 2016). By expressing distinct
AMPA receptor subunits (GluA1, GluA2 and GluA3) in a
Xenopus oocyte model, a direct inhibitory effect of decanoic
acid against AMPA receptors was then confirmed, enabling
detailed electrophysiological characterization (Chang et al.,
2016). These studies showed that decanoic acid directly inhibits
the two most abundant AMPA receptors subunit combinations
found in the brain, with greatest potency against GluA2/3
(IC50 = 0.52 mM) and GluA1/2 (IC50 = 1.16 mM). This
inhibitory effect was voltage-dependent, where potency against
GluA2/3 receptors at −80 mV (IC50 of 1.11 mM) was elevated
following depolarization to −40 mV (to IC50 of 0.43 mM),
suggesting stronger inhibitory activity during prolonged seizure
activity.

As a chronic mechanism of action, decanoic acid has also
recently been demonstrated to activate the nuclear receptor,
PPARγ, leading to increased mitochondrial proliferation
(Hughes et al., 2014). Using cultured neuronal cells, decanoic
acid but not octanoic acid was shown to trigger mitochondrial
biogenesis and elevate the activity of the mitochondrial
complex I. Since seizure activity is commonly found arising
from a wide array of mitochondrial mutations (Zsurka and
Kunz, 2015), this mechanism of decanoic acid is thought
to increase ATP availability and improve brain energy
metabolism, leading to an increase in seizure threshold
and to a reduction in seizure activity following long term
treatment.

CONCLUSION

Understanding the mechanism of action of the MCT ketogenic
diet in regulating neuronal excitability is critical for improving
the treatment of patients with drug resistant epilepsy. Although
the diet has clearly shown therapeutic relevance (Liu, 2008;
Neal et al., 2008), evidence for a ketone-dependent mechanism
in this function remains limited. The recent proposal for the
efficacy of the diet is that fats provided through triglycerides
in MCT supplements, in particular decanoic acid (Chang
et al., 2013, 2015, 2016), may provide a direct function in
blocking seizure activity independent of ketosis. Furthermore,
novel compounds related to these medium-chain fatty acids
may offer new approaches for seizure control without dietary
restrictions (Chang et al., 2013). The studies outlined here
provide a range of corollaries that should be considered in
future experimentation. These include closely monitoring both
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fatty acid and ketone levels at a cellular and in vivo level,
in both research and clinical settings to clarify the distinct
contributions of fatty acids and ketones in epilepsy treatment.
Furthermore, further studies may investigate improvements in
the diet by modifying the fatty acid content of the diet, in
addition to exploring other secondary targets of these fatty
acids, and in the development of related chemicals that may
function through the same therapeutic mechanism but lack
the rapid metabolic degradation shown for medium-chain
fatty acids.
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