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Microtubule dynamics underpin a plethora of roles involved in the intricate development,
structure, function, and maintenance of the central nervous system. Within the injured
brain, microtubules are vulnerable to misalignment and dissolution in neurons and have
been implicated in injury-induced glial responses and adaptive neuroplasticity in the
aftermath of injury. Unfortunately, there is a current lack of therapeutic options for treating
traumatic brain injury (TBI). Thus, using a clinically relevant model of mild TBI, lateral
fluid percussion injury (FPI) in adult male Thy1-YFPH mice, we investigated the potential
therapeutic effects of the brain-penetrant microtubule-stabilizing agent, epothilone D. At
7 days following a single mild lateral FPI the ipsilateral hemisphere was characterized by
mild astroglial activation and a stereotypical and widespread pattern of axonal damage
in the internal and external capsule white matter tracts. These alterations occurred in the
absence of other overt signs of trauma: there were no alterations in cortical thickness
or in the number of cortical projection neurons, axons or dendrites expressing YFP.
Interestingly, a single low dose of epothilone D administered immediately following FPI
(and sham-operation) caused significant alterations in the dendritic spines of layer 5
cortical projection neurons, while the astroglial response and axonal pathology were
unaffected. Specifically, spine length was significantly decreased, whereas the density
of mushroom spines was significantly increased following epothilone D treatment.
Together, these findings have implications for the use of microtubule stabilizing agents
in manipulating injury-induced synaptic plasticity and indicate that further study into
the viability of microtubule stabilization as a therapeutic strategy in combating TBI is
warranted.

Keywords: traumatic brain injury, fluid percussion injury, neuroplasticity, microtubule stabilization, epothilone D,
dendritic spine, cortical projection neuron, mushroom spine

INTRODUCTION

In popular media, mild traumatic brain injury (mTBI) has been referred to as a ‘silent epidemic.’
Indeed, in a majority of mTBI cases there is distinct absence of clear structural damage alongside
normal neuroimaging (Iverson, 2005, 2010; Belanger et al., 2007; Jagoda et al., 2009; Gao and
Chen, 2011; Smith et al., 2013). Nevertheless, subtle perturbations in brain structure likely evoke
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an insidious cascade of evolving widespread damage to neural
circuitry, thought to culminate in long-term and ongoing
neurological impairment and associated problems (Büki and
Povlishock, 2006; Farkas and Povlishock, 2007; Blyth and
Bazarian, 2010; Iverson, 2010; Wang and Ma, 2010; Meaney
and Smith, 2011; Johnson et al., 2012a; Hill et al., 2016).
This typically incorporates widespread axonal perturbation,
known as traumatic axonal injury, throughout the parenchyma
and particularly in the white matter tracts. This injury may
include changes in the somato-dendritic compartment such as
somal atrophy, distorted dendritic arbor geometry and loss of
complexity, and decreased dendritic spine density (Chen et al.,
2003, 2010; Stone et al., 2004; Spain et al., 2010; Gao and Chen,
2011; Gao et al., 2011; Greer et al., 2011; Campbell et al., 2012).

Data from experimental models shows that mTBI
characteristically generates sparse microscopic damage,
whereby neural circuits are rendered dysfunctional but not
destroyed (Iverson, 2005; DeKosky and Ikonomovic, 2010;
Shultz et al., 2016). This highlights an important target for
therapeutic intervention. Microtubule disruption and loss is
a key ultrastructural hallmark of neuronal injury (Maxwell
and Graham, 1997; Tang-Schomer et al., 2012). Moreover,
microtubule dynamics are fundamental to a multitude of
neuro-glial responses in the aftermath of injury (Chuckowree
and Vickers, 2003; Tang-Schomer et al., 2012; Brizuela et al.,
2015). Thus, manipulating microtubules provides a novel multi-
target approach for intervening in these processes (Brunden
et al., 2012; Baas and Ahmad, 2013; Dent, 2016). Of note,
microtubule-stabilizing agents of the taxane and epothilone
families are used chemotherapeutically at high doses to block the
growth of cancerous cells (Goodin, 2004; Michaud, 2009; Zhao
et al., 2009; Khrapunovich-Baine et al., 2011). Accumulating
data derived from a variety of experimental neural injury and
disease paradigms reveals that when used at low doses these
drugs have a range of beneficial effects, including dampening
detrimental gliotic responses, preventing synapse loss and
enhancing adaptive neuronal alterations as well as preserving
cognitive and motor functions (Moscarello et al., 2002; Zhang
et al., 2005; Andrieux et al., 2006; Ertürk et al., 2007; Brunden
et al., 2010, 2011, 2012; Hellal et al., 2011; Sengottuvel et al., 2011;
Barten et al., 2012; Tang-Schomer et al., 2012; Baas and Ahmad,
2013; Cartelli et al., 2013; Hur and Lee, 2014; Popovich et al.,
2014; Brizuela et al., 2015; Cross et al., 2015; Ruschel et al., 2015;
Jang et al., 2016; Penazzi et al., 2016).

The epothilones promote microtubule formation and
stabilization, and inhibit microtubule depolymerization
(Altmann et al., 2000; Chen et al., 2008). With particular
relevance to the brain, epothilones are more water soluble than
their taxane counterparts, are blood–brain barrier penetrant,
and are retained in the central nervous system for several days
after administration (Andrieux et al., 2006; Browne et al., 2011).
Importantly, the efficacy of epothilones as a therapeutic strategy
in the context of brain injury remains to be elucidated. To
address this shortfall we explored the effect of peripherally
administered epothilone D following a single mTBI using the
clinically relevant lateral fluid percussion brain injury (FPI)
model (Thompson et al., 2005). To visualize discrete alterations

in the somato-dendritic and axonal compartments of layer 5
cortical excitatory projections neurons we used the Thy1-YFPH
mouse, which revealed exquisite neuronal sub-structure (Feng
et al., 2000).

MATERIALS AND METHODS

Breeding and Genotyping of Thy1-YFPH
Transgenic Mice
All experimental procedures involving animals were approved
by the Animal Ethics Committee of the University of Tasmania
(ethics approval number A0011076) and are in accordance with
the Australian Code of Practice for the Care and Use of Animals
for Scientific Purposes. Animals were housed in standard
conditions (20◦C, 12 h/12 h light/dark cycle) with access to food
and water ad libitum and monitored daily for signs of stress and
illness. Thy1-YFPH line mice [B6.Cg-Tg(Thy1-YFP)HJrs/J, stock
number 003782] were obtained from the Jackson Laboratory (Bar
Harbor, ME, United States) and maintained as a heterozygous
colony. In these animals YFP is expressed under the control of
the neuron-specific Thy1 promoter in ∼80% of layer 5 and 2/3
neocortical pyramidal neurons (Feng et al., 2000). Ear punches
were taken at weaning (4 weeks) to determine inheritance of
the YFP transgene. Tissue was mounted on a glass slide and
examined with the 488 nm filter on a Leica DM LB2 microscope
(Leica Microsystems Pty Ltd., North Ryde, NSW, Australia).
Animals carrying the YFP transgene were identified as possessing
YFP-positive (YFP+) axons within their ear clips.

Surgical Preparation
Animals were prepared in groups of four per day. Two animals
received FPI while two were sham-operated. Mice were subjected
to lateral FPI using an established protocol (Carbonell et al.,
1998; Lifshitz et al., 2007; Alder et al., 2011). Briefly, adult
male YFP-H mice (10–12 weeks, 25–30 g; n = 12 FPI/brain-
injured, n = 12 sham-operated) were anesthetised in a pre-
charged induction chamber containing 5% isoflurane (Isoflo,
Abbot Australasia Pty Ltd., Botany, NSW, Australia) in 100% O2.

Mice were removed from the induction chamber, pre-emptive
analgesia, temgesic (buprenorphine hydrochloride, 0.1 mg/kg;
Reckitt Benckiser, West Ryde, NSW, Australia), was administered
subcutaneously and the fur covering the scalp was removed.
Mice were placed on a homeothermic blanket (Stoelting, Wood
Dale, IL, United States) to maintain body temperature at 37◦C
during surgery and stabilized in a stereotaxic frame (Narishige,
Tokyo, Japan) equipped with a nose cone to maintain anesthesia
(1–2% isoflurane in 100% O2). The scalp was cleaned with
betadine (Sanofi-aventis Consumer Healthcare, Virginia, QLD,
Australia) and 70% ethanol and the topical anesthetic bupivicaine
(Bupivicaine hydrochloride, 50 µl 0.25% in sterile saline; Pfizer,
West Ryde, NSW, Australia) was administered under the scalp.
A midline incision was made to expose the skull from bregma to
lambda. The skin was retracted and the fascia covering the skull
was removed. A 3.0 mm circular craniectomy was made 2.0 mm
posterior and 2.5 mm lateral to bregma on the right hand side of
the skull over the somatosensory cortex via manual trephination

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 July 2018 | Volume 12 | Article 223

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-12-00223 July 26, 2018 Time: 18:27 # 3

Chuckowree et al. Epothilone D Treatment Following TBI

with a pin vice equipped with a 2.7 mm trephine drill bit
(AgnTho’s, Lidingo, Sweden). The underlying dura was left intact.
An injury-hub was constructed over the craniectomy – a sterile
Luer-Loc syringe hub was cut from a 22-gauge needle, fixed over
the craniectomy using Loctite cyanoacrylate (Henkel Australia,
Sydney, NSW, Australia), secured to the skull using Paladur
dental acrylic (Heraeus Dental Science, Villebon, France), filled
with sterile saline and capped with a male Luer-Loc fitting. Pre-,
peri-, and post-surgical monitoring was performed to determine
respiratory rate, confirm absence of reflexes and monitor mucous
membranes/capillary refill time. Following injury-hub placement
animals were removed from the stereotaxic frame and allowed to
recover in a warmed cage until fully ambulatory (30–60 min) and
then placed back in their home cage.

Lateral Fluid Percussion Brain Injury and
Drug Treatment
Two hours following application of the injury-hub, once mice
had been fully ambulatory for over an hour, each animal was
re-anesthetised in a pre-charged induction chamber containing
5% isoflurane in 100% O2. Following induction of anesthesia,
the animal was removed from the induction chamber, the cap
was removed from the injury hub and the hub was re-filled
with sterile saline and attached to the FP302 Fluid Percussion
Device (AmScien Instruments, Richmond, VA, United States)
via a 30 cm spacing tube filled with sterile water. The animal
was placed on a heated pad and once a normal pattern of
breathing resumed, but prior sensitivity to stimulation, an injury
of mild severity (1.5 ± 0.1 atmospheres) was delivered to
the intact dura by releasing device’s pendulum onto a fluid
filled piston, causing transient displacement and deformation
of the dura and underlying brain. A transducer incorporated
into the device measured the pulse pressure and the peak
pressure was recorded within the software. Following injury,
animals were placed on their back and visually monitored for
recovery of spontaneous breathing. Additionally, the time taken
for animals to recover the righting reflex was recorded as
a measure of transient unconsciousness/loss of consciousness.
Following injury, we did not record any convulsions, mortalities
or other complications. Sham-operated animals underwent
identical procedures to FPI animals, however, the pendulum
was not released. Mice were re-anesthetised, the injury hub
was removed and the incision sutured. Immediately following
suturing, animals were administered with either epothilone D
(2 mg/kg, i.p.; Anita Laboratories, Hangzhou, China; n = 6 FPI
and n = 6 sham-operated) or vehicle (equivalent volume DMSO;
n = 6 FPI and n = 6 sham-operated). Mice received drug/vehicle
treatment within 20 min following completion application of
the FPI/Sham-operation. Animals were placed in a heated cage
and monitored during the recovery period until fully ambulatory
(30–60 min), prior to return to their home cage.

Immunohistochemistry
At 1 week post-injury/sham-operation, mice were intraperi-
toneally injected with a terminal dose of sodium pentobarbital
(300 mg/kg; Troy Laboratories Pty Ltd., Smithfield, NSW,

Australia) and transcardially perfused with 4% paraformaldehyde
in 0.1 M phosphate buffer. Brains were post-fixed in vivo for 24 h
at 4◦C. Each brain was removed from the skull, embedded in
5% agarose in 0.01 M phosphate buffered saline (PBS) and free-
floating coronal sections (50 µm) were cut using a Leica VT1000S
vibratome (Leica Biosystems Australia Pty Ltd., Mount Waverly,
VIC, Australia) to incorporate the entire injury impact site as
well as 0.5–1.0 mm anterior and posterior to this. Sections were
serially collected into Costar 24-well culture plates (Corning Life
Sciences, New York, NY, United States) containing 0.01M PBS
and 0.02% sodium azide and stored until required.

To perform immunohistochemistry, every sixth section from
each brain was moved into a fresh culture plate well to represent
the injury site. Prior to immunohistochemistry, sections were
rinsed in three washes of 0.01 M PBS. Sections then underwent
immunofluorescence labeling for glial fibrillary acidic protein
(GFAP). Briefly, sections were incubated in rabbit anti-GFAP
(1:2000; DAKO, Z0334, Glostrup, Denmark) in diluent (0.01 M
PBS with 0.03% Triton X-100) at 4◦C for ∼20 h, washed,
incubated in goat anti-rabbit Alexa 568 (1:1000; Invitrogen BRL,
Life Technologies, Grand Island, NY, United States) and DAPI
(1:6000; Invitrogen, D3571) in 0.01M PBS for 1.5 h, washed and
mounted serially onto slides (Livingstone International Pty Ltd.,
Rosebery, NSW, Australia) with Permafluor mounting media
(Thermo Scientific, Scoresbury, VIC, Australia).

Microscopy and Image Analysis
Images were collected with an UltraVIEW spinning disk
confocal microscope running Volocity Software (PerkinElmer
Pty Ltd., Glen Waverley, VIC, Australia), equipped with
a 20×/0.5 air, 40×/0.95 air and Plan Apo 60×/1.20 water
objective (Nikon, New York, NY, United States). For
quantitation of cortical thickness, YFPH cell number and
size and degenerated/dystrophic axonal bulb number and
size (in the internal and external capsules) the microscope
was configured to capture large stitched images of the upper
hemispheric quadrant of each brain (20 µm z-stacks, 1 µm
slices) with the 20× objective from three representative sections
throughout the injury, designated middle, anterior, and posterior
representing the middle section (first appearance of two blades
of the dentate gyrus) as well as the section 300 µm anterior and
300 µm posterior to this. Using ImageJ freeware (Schneider
et al., 2012) the cortex, external and internal capsule were
traced in each of the three sections and within these anatomical
boarders the individual YFPH+ cells in the cortex and axonal
bulbs/dystrophic neurites in the external and internal capsules
were traced for quantitation of size and density. To determine the
axonal degeneration index (degenerating/beaded YFPH+ axons)
single 40× magnification image stacks (20 µm z-stacks, 1 µm
slices) were collected from the same three sections as used for
the prior analysis. Images for the external capsule were captured
from the white matter on the medio-lateral boarder of the lateral
ventricle and those for the internal capsule were captured half
way between the dorsal and ventral boarder of the internal
capsule. For quantification of astrocyte activation (percent area
occupied by GFAP expressing astrocytes), 20× single image
stacks (20 µm z-stacks, 1 µm slices) were collected from the
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same regions used for analysis of axonal denegation, in addition
to layer 2/3 of the cortex directly under the impact site. Analysis
of percentage area GFAP and YFPH+ axonal degeneration was
performed using ImageJ freeware. For dendritic spine analysis,
image stacks were captured with the 60× water objective (0.2 µm
slices). Image stacks were collected from layer 4/5 directly under
the injury site. These included the image in the middle of the
impact site as well as an image medial and lateral to this. All
layer 5 apical dendrite obliquely projecting branches were traced
from each stack and the spines contained on these dendrites
were traced in Neurolucida (MBF Biosciences, Williston, VT,
United States). Morphology data was generated by allocating
each spine to one of three categories, mushroom (prominent
head, thin neck), stubby (greater width than length), and
thin (greater length than width). Changes in dendritic spine
density, length, and morphology were determined by loading
Neurolucida data files into Neurolucida ExplorerTM (MBF
Biosciences).

Statistical Analysis
Data was analyzed (and graphs created) in GraphPad Prism
(version 6.0, La Jolla, CA, United States) using unpaired
t-tests with Welch’s correction, or one- or two-way analysis of
variance (ANOVA) followed by Tukey’s multiple comparison
test. Averaged values were expressed as means ± standard
error of the mean (SEM). A p-value of <0.05, designated ∗,
was considered statistically significant. Figures were prepared in
Adobe Illustrator CS6 (version 16.0.0, Adobe Systems, San Jose,
CA, United States).

RESULTS

A Single Mild Lateral FPI Caused a
Transient Loss of Consciousness in the
Absence of Overt Morphological Change
Adult male Thy1-YFPH mice received a single mild lateral
FPI or sham-operation followed by epothilone D or vehicle
treatment and were perfused 7 days later. In brain-injured
mice the acute post-injury period was characterized by a
transient loss of consciousness, including a short interval of
apnoea (0.21 ± 0.04 min) and a significant delay in the
righting reflex (3.64 ± 1.63 min in brain-injured relative to

0.19 ± 0.13 min in sham-operated animals; p < 0.0001,
unpaired t-test with Welch’s correction). By 7 days post-
injury, there were no gross morphological alterations in the
brain following a single mild lateral FPI: cortical thickness,
as well as the number and somal size of cortical layer
5 YFP+ projection neurons, remained unchanged (Table 1,
p > 0.05 for all comparisons). Moreover, there was no
change in axonal number (axons per field of view) in the
external and internal capsules, or the length of apical oblique
dendrites (total length of dendrite per field of view) of layer 5
pyramidal neurons (Table 1). Epothilone D treatment did not
significantly (p > 0.05 for all comparisons) affect any of these
parameters, with cortical thickness, number and size of YFP+
cells, number of YFP+ axons in both the external and internal
capsules and length of YFP+ apical oblique dendrites remaining
unaltered following peripherally administered epothilone D
(Table 1).

Epothilone D Treatment Altered Dendritic
Spine Length, density, and Morphology
Dendritic spines were analyzed from radially projecting/oblique
branches of layer 5 projection neuron apical dendrites at the
layer 4/5 boarder (Figures 1A,B). All major morphological
spine classes (mushroom, stubby, thin) were represented in all
mouse groups (Figure 1C). Initial analysis segregated the total
spine population by length – spines (<2.5 µm) and filopodia
(>2.5 µm) (Hering and Sheng, 2001) – and revealed a significant
decrease (p < 0.05) in average spine length (Figure 1D), but
not filopodial length (Figure 1E), in response to epothilone D
treatment relative to vehicle treatment in both brain-injured
and sham-operated animals. Furthermore, binning the spines
by length showed that epothilone D treatment resulted in a
significantly higher proportion (p < 0.05) of shorter (<1.5 µm)
spines and significantly lower proportion (p < 0.05) of longer
spines (1.5–2.5 µm) (Figure 1F). With respect to density,
spine density was significantly increased (p < 0.05) in sham-
operated, but not brain-injured animals (Figure 1G) in response
to epothilone D treatment, whereas filopodial density was
unaltered in both sham-operated and brain-injured animals
(Figure 1H). Analysis of morphological sub-class revealed a
significant increase (p < 0.05) specifically in mushroom spines
in both brain-injured and sham-operated animals in response to
epothilone D treatment (Figure 1I).

TABLE 1 | Histological analyses comparing brain-injured and sham-operated animals following drug treatment.

Sham veh FPI veh Sham Epo FPI Epo

Cortical thickness (mm) 1.11 ± 0.06 1.07 ± 0.05 1.10 ± 0.05 1.08 ± 0.05

YFP+ cell density (per mm2) 36.67 ± 8.85 38.50 ± 10.43 35.67 ± 8.31 36.4 ± 4.72

YFP+ cell size (µm2) 159 ± 14.11 158.5 ± 13.4 159.67 ± 12.03 161.6 ± 6.54

Number axons Ext cap (per fov) 105.17 ± 24.12 101.5 ± 25.49 110.33 ± 26.46 83.83 ± 35.61

Number axons Int cap (per fov) 166.5 ± 20.81 164.33 ± 27.86 167.33 ± 35.24 161 ± 40.33

Dendrite length (µm) 1.27 ± 0.57 1.12 ± 0.51 1.08 ± 0.38 1.10 ± 0.37

Mice were exposed to a lateral fluid percussion injury or sham-operation and treated with epothilone D (2 mg/kg) or vehicle. Histological analyses confirmed there were no
significant differences (p > 0.05) between groups for any of the parameters assessed. Ext cap, external capsule; int cap, internal capsule; fov, field of view; veh, vehicle;
Epo, epothilone D; FPI, lateral fluid percussion injury.
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FIGURE 1 | Dendritic spine alterations in layer 5 pyramidal neurons in the adult mouse brain following mild lateral fluid percussion brain injury and epothilone D
treatment. Analysis was performed on layer 5 YFP-expressing neuron (A) apical oblique dendrites, which are laterally projecting spiney dendrites in layer 4/5 (small
arrows, B) protruding from layer 5 neuron apical dendrites (large arrows, B). For analysis, dendritic protrusions/spines were classified both by length (spines
<2.5 µm, D,F; filopodia > 2.4 µm, E,G) and morphology (C,I): either mushroom (large arrows in C), stubby (short arrows in C), or thin (small arrows in C). Epothilone
D treatment resulted in a significant decrease in spine length in both brain-injured and sham-operated animals, relative to their vehicle-treated controls (D), whereas
filopodial length was unaffected (E). Binning the data by length revealed that epothilone D treatment resulted in a significantly higher proportion of shorter spines (up
to 1.5 µm) and significantly lower proportion of longer spines (1.5–2.5 µm) (F). Moreover, epothilone D treatment significantly increased the density of dendritic
spines in sham-operated, but not brain-injured animals (G), while filopodial density was unaffected (H). Analysis by morphological sub-class showed that the
epothilone D treatment resulted in increased density of mushroom spines in both brain-injured and sham-operated animals relative to their vehicle-treated
counterparts, while density of stubby and thin spines was unaffected (I). Data are presented as mean ± SEM and were analyzed by one-way (D,E,G,H) or two-way
(F,I) ANOVA, followed by Tukey’s multiple comparison test. A p-value of < 0.05 was considered significant (∗). Scale bar (A) = 85 µm; (B) = 45 µm; (C) = 3.5 µm.
Yellow fluorescent protein (YFPH); sham-operated, vehicle-treated (sham veh); fluid percussion injury, vehicle-treated (fpi veh), sham-operated, epothilone D-treated
(sham epo); fluid percussion injury, epothilone D-treated (fpi epo).

Axonal Degeneration in the External and
Internal White Matter Tracts Was a Major
Feature of the Injured Brain and Was Not
Altered by Epothilone D Treatment
By 7 days post-injury, a single mild lateral FPI had generated
a distinct pattern of ipsilateral axonal damage throughout
the external (Figure 2A) and internal (Figure 2B) capsule
white matter tracts. Although the majority (85–90%) of YFP
expressing axons remained intact, a significant proportion
(p < 0.05) of axons showed a degenerating, beaded morphology
or a disconnected, degenerated and bulbar axonal fragment
morphology within the ipsilateral external capsule of brain-
injured relative to sham-operated animals (Figures 2C,D). These
axonal changes after mild FPI did not reach significance in
the ipsilateral internal capsule (Figure 2D) or contralateral
external capsule (not shown). Further analysis of the
axonal response to mild FPI revealed that number and size

of degenerated/dystrophic bulbar axonal fragments was
significantly increased (p < 0.05) in the ipsilateral external
capsule (Figures 2E,F). Moreover, degenerated axonal bulb
number, but not size, was significantly increased (p < 0.05) in
the ipsilateral internal capsule (Figures 2E,F) after mild FPI.
Interestingly, epothilone D treatment did not alter any aspect of
the axonal response to mild FPI (Figures 2D–F).

Mild Lateral FPI Evoked a Limited
Ipsilateral Astrogliotic Response That
Was Not Influenced BY Epothilone D
Treatment
Astrocyte activation was quantitated as the area occupied by
GFAP immunoreactive profiles at 7 days post-injury. GFAP
was significantly increased (p < 0.05) in the ipsilateral vs.
contralateral cortex of all mice (sham-operated vehicle treated
ipsilateral cortex, 6.20 ± 0.68% vs. sham-operated vehicle
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FIGURE 2 | Axonal alterations in major white matter tracts in the adult mouse brain following mild lateral fluid percussion brain injury and epothilone D treatment.
Mild lateral fluid percussion injury to the adult mouse brain generated a stereotypical and widespread pattern of axonal damage in the external (A) and internal (B)
capsule white matter tracts. At 7 days post-injury the majority of axons remained intact (arrows, upper panel in C), while a proportion showed a degenerating,
beaded morphology (arrows, middle panel in C) or a degenerated, fragmented and disconnected ‘axonal bulb’ morphology (arrows, lower panel in C). The
proportion of beaded axons (out of the total axon population) was significantly increased in the ipsilateral external capsule of brain-injured animals relative to their
sham-operated counterparts, but was unaltered in the ipsilateral internal capsule (D). Analysis of axonal bulbs indicated that there were significantly more axonal
bulbs in both the external and internal capsules of brain-injured animals relative to their sham-operated counterparts (E). Moreover, axonal bulbs were significantly
larger in the external, but not internal, capsule of brain injured animals relative to their sham-operated counterparts (F). Data are presented as mean ± SEM and
were analysed by two-way ANOVA (D–F) followed by Tukey’s multiple comparison test. A p-value < 0.05 was considered significant (∗). Scale bar (A) = 400 µm;
(B) = 125 µm; (C) = 10 µm. Sham-operated, vehicle-treated (sham veh); fluid percussion injury, vehicle-treated (fpi veh); sham-operated, epothilone D-treated (sham
epo); fluid percussion injury, epothilone D-treated (fpi epo); ipsilateral external capsule (ext cap); ipsilateral internal capsule (int cap).

treated contralateral cortex, 2.98 ± 0.37%; brain-injured
vehicle treated ipsilateral cortex, 6.13 ± 0.79% vs. brain-injured
vehicle treated contralateral cortex, 3.23 ± 0.54%; sham-
operated epothilone treated ipsilateral cortex, 5.91 ± 0.64%
vs. sham-operated epothilone treated contralateral cortex,
5.61 ± 0.32%; brain-injured epothilone treated ipsilateral cortex,
5.61 ± 0.32% vs. brain-injured epothilone treated contralateral
cortex, 2.87 ± 0.25%), indicating that the craniectomy itself
generated mild astroglial activation. More interestingly, GFAP
immunoreactive profiles (as measured by percentage area
occupied by GFAP immunoreactivity) were significantly

increased in the external capsule of brain-injured animals
(vehicle-treated 5.79 ± 0.49%; epothilone-treated 5.20 ± 0.55%)
relative to their sham-operated (vehicle-treated 3.58 ± 0.05%;
epothilone-treated 3.63 ± 0.53%) controls; however, this change
did not extend to the internal capsule.

DISCUSSION

Despite the absence of overt structural damage and the
presence of normal neuroimaging in a majority of mTBI
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cases, subtle widespread and progressing damage within
neural circuits is thought to underlie the development, and
potentially ongoing evolution, of impairments in neurosensory,
cognitive, psychosocial, and physical function (Iverson, 2005,
2010; Farkas and Povlishock, 2007; Dean and Sterr, 2013;
McMahon et al., 2014; Hill et al., 2016; Shultz et al., 2016;
Wang and Li, 2016; Wilde et al., 2016; de Koning et al.,
2017). The cellular alterations contributing to pathology in
the aftermath of mTBI are not fully understood and there
exists no treatment to halt or reverse the damage to neural
circuits. Thus, we investigated the discrete subcellular reactions of
axonal and somato-dendritic compartments following transient
structural brain injury and epothilone D-induced microtubule
stabilization. We should note that this study represents a
proof-of-concept investigation demonstrating that peripherally
administered epothilone D can enter the brain and have an
effect on neurons. In accordance with established protocols
(Carbonell et al., 1998; Spain et al., 2010; Alder et al., 2011) we
showed that a single episode of mild TBI generated significant
loss of consciousness, as measured by injury-induced apnoea
and delayed righting, in the absence of overt macroscopic
change. At the cellular level there was no significant loss of
YFP+ neurons, axons or dendrites or dendritic spines and no
evidence of neuronal atrophy by 7 days post injury. Moreover,
the dose of epothilone D was well tolerated and there were
no overt indications of ill health or drug-induced cellular
degeneration.

Dendritic spine loss is a characteristic feature of a variety
of diseases and injuries of the nervous system (Fiala et al.,
2002a; Campbell et al., 2012). Moreover, synapse loss is a
likely key candidate for the emergence of functional deficits
following TBI. Correct functioning of the neuronal cytoskeleton
is crucial for the maintenance of neuronal integrity. Actin
has a well-established and integral role in the function of
dendritic spines (Matus, 2000; Hotulainen and Hoogenraad,
2010; Lei et al., 2016). More recently, microtubules have been
implicated in spine formation and maintenance (Gu et al., 2008;
Jaworski et al., 2009; Kapitein et al., 2010; Dent, 2016). To
determine the effect of microtubule stabilization at the level
of dendritic spines, and to avoid any potential confounding
effects of the craniotomy, we examined spines on the radially
projecting branches, residing in layer 4/5, of layer 5 YFP+
cortical projection neuron apical dendrites. Interestingly, while
filopodia remained unaltered in terms of both length and density,
epothilone D had dramatic effects on the spine population,
causing an overall reduction in spine length, a shift to a
greater proportion of short spines, and an increase in the
formation of mushroom spines. The increase in spine density,
specifically of mushroom spines, was an unanticipated response
to epothilone D treatment and was observed both within the
brain-injured and sham-operated cortex. This may indicate a
more generalized effect of microtubule stabilization at the subtle
level of the dendritic spine, rather than a neuroprotective effect
of the drug evoked by injury. It is notable that the increase
in spine density occurred specifically in the mushroom spines,
which have previously been shown to be a relatively stable
population likely to host synapses (Hering and Sheng, 2001;

Fiala et al., 2002b). Although we were unable to trace axons
to determine innervation interactions between degenerating
axons and newly formed spines or determine the functionality
of the newly formed spines using the current methodology,
future studies quantifying colocalization of synaptic markers,
ultrastructural and electorphysiological analysis as well as
in vivo imaging of synaptic turnover could be used to
determine the presense/absence and functionality of synapses on
newly formed spines and validate the therapeutic potential of
epothilone D.

Although the current study did not directly address the
mechanism by which epothilone D increased spine density,
it is plausibile that this may be due to a direct effect on
the spines themselves, the axons innervating the spines or
a more indirect effect. Nonetheless, in terms of therapeutic
potential, microtubule stabilization may be useful for preserving
spine and synapse integrity following injury. In accordance
with this, we revealed a distinct increase in spine density
following epothilone treatment. Moreover, spine restoration has
been demonstrated following epothilone D treatment in an
Alzheimer’s disease model (Penazzi et al., 2016). Although further
investigations into the mechanisms of spine generation and
maintenance by epothilone D are required, we postulate that
microtubule stabilization and polymerization with epothilone
D may prevent microtubule disassembly and catastrophe
within both the dendrite shaft and spines, preserving spine
integrity and reducing spine loss. If spine generation continues,
this may contribute to an overall increase in spine density.
Whether this is a detrimental or beneficial response in the
aftermath of mTBI remains to be elucidated. Interestingly,
since changes in spine morphology have been linked to
alterations in synaptic strength and implicated in learning
and memory (Bourne and Harris, 2007; Gu et al., 2008;
Jaworski et al., 2009), manipulation of microtubule dynamics
could potentially be used to modulate these parameters. As
the epothilone D induced increase in spine density was
unanticipated, based on previous literature future studies
should determine whether these alterations evoke measureable
functional responses in terms of electrophysiological and
functional output.

Mild TBI has been described as a progressive disorder.
Although we did not see a significant loss of axons, dendrites
or spines by 7 days post-injury in the current study, there was
certainly observable axonal damage throughout the ipsilateral
cortex and white matter. Interestingly, the epothilone D
treatment regime used in the current study did not have a
protective effect on degenerating axons and our previous study
using a mouse model of amyotrophic lateral sclerosis showed
chronic epothilone D exposure may be detrimental to axons
(Clark et al., 2018). However, using an in vitro model of
structural axonal injury we have previously shown that low
dose epothilone D has a protective effect on injured axons
by increasing injury-induced axonal sprouting (Brizuela et al.,
2015), indicating that microtubule stabilization within damaged
axons may be partially responsible for the previously described
neuroprotective effect of epothilone D and may have feed forward
effects with regard to dendritic spine innervation. If followed to
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later post-injury time points, it is possible we may have observed
evidence of neuronal atrophy, progressive axonal degeneration
and spine loss following mild lateral FPI, as has been shown
in other studies of brain injury (Fiala et al., 2002a; Chen et al.,
2010; Gao and Chen, 2011; Gao et al., 2011; Greer et al., 2011;
Campbell et al., 2012; Johnson et al., 2012b; Winston et al., 2013)
and the previously described therapeutic effects of epothilone D
may have been revealed. In our hands, and in accordance with
previous studies, mild lateral FPI generated widespread traumatic
axonal injury, which was particularly evident in the external and
internal capsule white matter tracts (Smith and Meaney, 2000;
Spain et al., 2010; Wang and Ma, 2010; Ekmark-Lewen et al.,
2013; Smith et al., 2013; Hill et al., 2016). This included both
beaded, degenerating axons and degenerated, dystrophic axonal
fragments/bulbs. Both phenotypes have been reported in the
literature and may represent stages of degeneration, differences
in vulnerability between different axonal sub-classes or brain
regions, or be specific to the mechanical forces sustained during
injury (Reeves et al., 2005; Browne et al., 2011; Hånell et al., 2014).

Interestingly, axonal sprouting has been observed in certain
classes of damaged axons in experimental models of brain injury
(Salin et al., 1995; Batchelor et al., 2002; Deller et al., 2006;
Dickson et al., 2007; Blizzard et al., 2011; Greer et al., 2011).
Although not observed in the current study, it is possible that
epothilone D could be used to modulate this response. Indeed,
using an in vitro model, we have shown that epothilone D
has dose-dependent effects on regenerating cortical neurons
(Brizuela et al., 2015). This concept has important implications
for dose-dependent modulation of axonal sprouting in vivo, for
example enhancing adaptive regenerative attempts or dampening
maladaptive sprouting, which may underlie the development of
epileptic activity in the aftermath of injury (Santhakumar et al.,
2001; Kharatishvili et al., 2006; Bolkvadze and Pitkänen, 2012).

In response to FPI we observed mild ipsilateral astroglial
activation in the absence of glial scar formation. Contrary to
previous studies, astroglial activation was not influenced by
microtubule stabilization in the current study (Hellal et al., 2011;
Popovich et al., 2014; Ruschel et al., 2015). This may have been
due to a range of factors including the type of agent used (a
taxane versus an epothilone), the concentration or timing of
the epothilone D dose, the mild nature of the glial activation,
or the context of the injury (for example, brain versus spinal
cord). The absence of an observable injury-induced alteration
in dendritic spine density in the current study may have been
due to the spine population investigated, the proximity of the
spines to the site of impact, the brain region assessed and its
proximity to the injury, as well as the time point at which

analysis was performed. Therefore, to elucidate the efficacy of
microtubule stabilization as a therapeutic intervention for mTBI
further investigations will be required to reveal the full repertoire
of effects of microtubule stabilization in both the acute and
chronic phases of the injury response. Future studies will use
a range of dose regimes, including various concentrations and
times of administration throughout the post-injury sequalae, to
capture the dynamic aspects of injury-induced degeneration and
remodeling.

In summary, our findings indicate that peripherally
administered microtubule-stabilizing drugs alter synaptic
plasticity at the level of the dendritic spine. This has important
implications for controlling neuroplasticity in the aftermath of
brain injury. More generally, microtubule-stabilizing agents may
be useful for manipulating various aspects of the neuro-glial
response to injury and disease, as well as providing a modulatory
tool for investigating microtubule dynamics per se. Due to the
ubiquity of microtubules it will be imperative to consider the
full repertoire of roles in which they are involved, and take
into consideration the interplay between intrinsic factors such
as neuronal class and age and extrinsic factors such as the type
and severity of injury.
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