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Most insect species rely on the detection of olfactory cues for critical behaviors for the
survival of the species, e.g., finding food, suitable mates and appropriate egg-laying
sites. Although insects show a diverse array of molecular receptors dedicated to
the detection of sensory cues, two main types of molecular receptors have been
described as responsible for olfactory reception in Drosophila, the odorant receptors
(ORs) and the ionotropic receptors (IRs). Although both receptor families share the
role of being the first chemosensors in the insect olfactory system, they show distinct
evolutionary origins and several distinct structural and functional characteristics. While
ORs are seven-transmembrane-domain receptor proteins, IRs are related to the
ionotropic glutamate receptor (iGluR) family. Both types of receptors are expressed on
the olfactory sensory neurons (OSNs) of the main olfactory organ, the antenna, but
they are housed in different types of sensilla, IRs in coeloconic sensilla and ORs in
basiconic and trichoid sensilla. More importantly, from the functional point of view, they
display different odorant specificity profiles. Research advances in the last decade have
improved our understanding of the molecular basis, evolution and functional roles of
these two families, but there are still controversies and unsolved key questions that
remain to be answered. Here, we present an updated review on the advances of the
genetic basis, evolution, structure, functional response and regulation of both types of
chemosensory receptors. We use a comparative approach to highlight the similarities
and differences among them. Moreover, we will discuss major open questions in the
field of olfactory reception in insects. A comprehensive analysis of the structural and
functional convergence and divergence of both types of receptors will help in elucidating
the molecular basis of the function and regulation of chemoreception in insects.
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Abbreviations: CNVs, copy number variants; cVA, cis-vaccenyl acetate; ETS, E26 transformation-specific transcription
factor; GR, gustatory receptor; GRN, gustatory receptor neuron; Indels, small insertions and deletions; IR, ionotropic
receptor; OBP, odorant binding protein; OR, odorant receptor; ORCO, odorant receptor co-receptor; OSN, olfactory sensory
neuron; SNMP1, sensory neuron membrane protein 1; SNPs, single-nucleotide polymorphisms; SSR, single-sensillum
recording; TF, transcription factor.
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INTRODUCTION

Detection of chemical cues in the environment is essential for
almost all animals to find food, mates, habitats or to avoid
predators. Among all invertebrates, insect olfactory systems have
extreme sensitivity and discrimination power to detect volatile
chemicals related to their food, conspecifics and predators. In
this regard, the olfactory system of Drosophila resembles the
organizational principles of the olfactory system of vertebrates
despite being simpler (Stocker, 2001; Vosshall and Stocker,
2007; Touhara and Vosshall, 2009). Thus, in both vertebrates
and invertebrates, odorants bind to transmembrane odorant
receptors (ORs) expressed in the cilia or dendrites of bipolar
olfactory sensory neurons (OSNs). The OSNs send their axons
to the brain, where they connect with second-order neurons in
the glomeruli of the antennal lobe, in insects, or its homolog
in vertebrates, the olfactory bulb. Furthermore, in both types
of organisms, each OSN expresses one or very few olfactory
molecular receptors, and the axons of OSNs that express the
same receptor project to the same glomeruli in both the olfactory
bulb and the antennal lobe (Su et al., 2009). These similarities
and the fact that Drosophila is a widespread model organism in
genetics and neurobiological research made its olfactory system
an attractive and simple model to study olfaction (see, for
example, the recent reviews by Wilson, 2013; Barish and Volkan,
2015; Carraher et al., 2015; Joseph and Carlson, 2015; Fleischer
et al., 2018; Grabe and Sachse, 2018; Rimal and Lee, 2018).

In Drosophila adults, OSNs are housed inside hair-like
structures called sensilla on the surface of the olfactory organs,
the third antennal segment and the maxillary palps (Shanbhag
et al., 1999). Each sensillum contains 1–4 OSNs (Shanbhag
et al., 1999; Joseph and Carlson, 2015). Based on their
morphology, sensilla are classified into four types: basiconic,
trichoid, intermediate and coeloconic (Shanbhag et al., 1999; Lin
and Potter, 2015). Additionally, they differ in regionalization
(Shanbhag et al., 1999) and in the substances they detect
(de Bruyne et al., 1999, 2001; Yao et al., 2005). These sensilla
have pores in the cuticle that allow odorants to diffuse into the
sensillum lymph and reach the dendrites of OSNs with the help
of odorant binding proteins (OBPs) (Shanbhag et al., 2001; Leal,
2013). Then, odorants are recognized by specific transmembrane
protein receptors in the dendrites of the OSNs. In insects, two
main families of olfactory receptors have been described, the
ORs and the ionotropic receptors (IRs), although a third family,
the gustatory receptors (GRs), is involved in carbon dioxide
detection (Jones et al., 2007; Kwon et al., 2007). Only one or
very few of these olfactory receptors are expressed in each OSN
(Vosshall et al., 2000; Benton et al., 2009), similar to what is
observed in vertebrates (Buck, 2000). Both receptor families
likely form heteromeric complexes between a specific receptor
and a co-receptor needed for cellular trafficking and function
(Larsson et al., 2004; Neuhaus et al., 2005; Benton et al., 2006,
2009; Silbering et al., 2011). However, although ORs and IRs
share characteristics including their role as initial chemosensors
for the insect olfactory system, research advances in the last
decade have shown that they have distinct evolutionary origins
(Robertson et al., 2003; Croset et al., 2010) and have several

distinct structural and functional characteristics (Hallem et al.,
2004; Benton et al., 2009).

In this review, we will present the research advances of
the genetic basis, evolution, structure, functional response and
regulation of both OR and IR chemosensory families. For this,
we will use a comparative approach emphasizing the similarities
and differences among them. Additionally, we will consider key
open questions in the field of olfactory reception in insects. Thus,
we will help in elucidating the molecular basis of the function
and regulation of chemoreception in insects by performing
a comprehensive analysis of the structural and functional
convergence and divergence of both types of receptors.

THE MOLECULAR BASIS OF
CHEMOSENSATION IN DROSOPHILA:
MOLECULAR STRUCTURE OF ORs AND
IRs

During the 1990s, the first attempts to discover the
chemoreceptors in insects by sequence similarity failed because
of their lack of homology with the G protein-coupled (GPCR)
ORs of vertebrates (Buck and Axel, 1991) and nematodes
(Troemel et al., 1995). Later, using difference cloning and
mining of genome databases, a family of proteins with seven
transmembrane domains with expression in the OSNs, the OR
family, was discovered in Drosophila (Clyne et al., 1999b; Gao
and Chess, 1999; Vosshall et al., 1999).

These Drosophila ORs show no obvious sequence homology
with GPCRs and display an inverted topology with an
intracellular N-terminus and an extracellular C-terminus
(Benton et al., 2006; Lundin et al., 2007; Smart et al., 2008).
Structurally, ORs likely form heteromers composed of one
odor-specific OR and another member of the OR family, the
odorant receptor co-receptor (ORCO; previously known as
OR83b) (Larsson et al., 2004; Neuhaus et al., 2005; Benton et al.,
2006). ORCO is highly conserved across insect species (Krieger
et al., 2003; Pitts et al., 2004; Jones et al., 2005; Smadja et al.,
2009), and it is also necessary for the trafficking of ORs to the
ciliary membrane in vivo (Larsson et al., 2004; Benton et al.,
2006).

In contrast to GPCRs, ORs do not have conventional binding
sites for G proteins, and several studies have reported that
OR-ORCO heteromers expressed in heterologous systems can
act as odorant-gated ionotropic channels with ionic permeability
to Ca2+, Na+ and K+ (Sato et al., 2008; Smart et al., 2008;
Wicher et al., 2008; Nakagawa and Vosshall, 2009). However,
one of these studies also reported a metabotropic component
that is dependent on G proteins and the cAMP transduction
cascade (Wicher et al., 2008). This metabotropic component
in the function of the OR-ORCO heteromers has been either
supported (Kain et al., 2008; Chatterjee et al., 2009; Deng et al.,
2011; Ignatious Raja et al., 2014; Miazzi et al., 2016; Murmu
and Martin, 2016) or argued against (Yao and Carlson, 2010) in
several studies of G-proteins in genetically modified flies.

Additionally, it has been reported that the activity of
ORCO is regulated by phosphorylation via protein kinase
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C (PKC), which is activated by the inositol 1,4,5-inositol
triphosphate/diacyl glycerol (IP3/DAG) signal transduction
cascade (Sargsyan et al., 2011). Two hypotheses have been
proposed in Drosophila to explain these results: (a) it is
possible that ORs may be mixed ionotropic-metabotropic
receptors (Wicher, 2010); or (b) alternatively, ORs may be
metabotropically modulated ionotropic receptors (Nakagawa
and Vosshall, 2009). These two hypotheses raise two different
putative structures of the odor-gated ionic channel that combine
either four or two OR/ORCO heteromers. If, as for the
other known superfamilies of ligand-gated ionic channels, the
central pore is formed by the combination of four subunits
(Carraher et al., 2015), then two putative structures could
arise. In the first putative structure, four OR subunits would
bind the odorants and produce fast opening of an ionic
channel formed by four ORCO subunits. Additionally, the
OR subunits interact with G proteins that produce slower
metabotropic transduction cascades that regulate the ORCO
channel (Wicher, 2010). In the second structure, two OR
and two ORCO subunits form the central pore of the ion
channel, which would open when a ligand binds the OR
subunits and could be regulated by metabotropic transduction
cascades (Nakagawa and Vosshall, 2009). In some other insect
species, a third hypothesis proposing only metabotropic signal
transduction and ORCO functioning as a pacemaker channel
controlling membrane potential has been suggested (Stengl,
2010).

While there are still no X-ray crystallography 3D structures
for the Drosophila ORs, site-directed mutagenesis, resonance
energy transfer and structural modeling efforts (Hopf et al.,
2015), have started to provide information about the molecular
structure of these seven-transmembrane-domain receptors
(Carraher et al., 2015). For example, the second extracellular loop
has been suggested to form a lid over the binding pocket, which
is formed by the extracellular regions of some transmembrane
helices, especially the third and to a less extent the sixth
and seventh, of the OR subunits (Carraher et al., 2015). In
addition, the interaction between the ORCO and OR receptor
subunits through the final intracellular loop and the adjacent
transmembrane helices might be important for transducing
ligand binding into receptor activation (Benton et al., 2006;
Kumar et al., 2013). Furthermore, channel gating could be
regulated using phosphorylation sites (Sargsyan et al., 2011) and
a calmodulin-binding site in the second intracellular loop of the
ORCO subunits (Mukunda et al., 2014; Bahk and Jones, 2016).

Ten years after ORs have been identified, in 2009, a new
family of olfactory receptors in Drosophila was discovered,
an ionotropic glutamate receptor (iGluR)-related family
of receptors, termed the IRs (Benton et al., 2009). The
IRs are formed by an extracellular N-terminus, a highly
variable ligand-binding domain with two lobes separated
by an ion channel domain, and a short cytoplasmic
C-terminus (Benton et al., 2009). Sixteen IRs out of the
66 discovered are expressed in antennal neurons, while the
rest, named ‘‘divergent IRs’’, are expressed in other locations
in the body (Benton et al., 2009; Sánchez-Alcañiz et al.,
2018).

While most IRs lack glutamate-binding residues, members
of the IR family of olfactory receptors show similarities
with the iGluRs of vertebrates and are suggested to form
ligand-gated ion channels (Benton et al., 2009; Abuin et al.,
2011; Rytz et al., 2013). Although X-ray crystallography 3D
structures for IRs are not yet available, some protein homology
modeling has been performed (Prieto-Godino et al., 2016,
2017). Still, the exact molecular mechanism of IR activation
by different specific odorants remains to be shown, as for
ORs. Although the molecular structures of ORs and IRs are
extremely dissimilar, they show some commonalities. Both
ORs and IRs form functional heterodimeric complexes of a
receptor and a coreceptor. However, while the OR functional
unit consists of the highly conserved co-receptor ORCO and
an odorant-specific OR, which provides the complex with its
ligand specificity (Benton et al., 2006), IRs show more than
one possible co-receptor—IR25, IR8a, IR76b and IR93a—and
a specific IR that, as for ORs, gives the complex its odorant
specificity (Benton et al., 2009; Silbering et al., 2011; Ai et al.,
2013). For both receptor families, the co-receptors are needed
both for odor-evoked electrophysiological neuronal responses
and receptor trafficking to the ciliary membrane, the sensory
compartment where odorant transduction takes place (Benton
et al., 2009; Abuin et al., 2011; Silbering et al., 2011; Ai et al.,
2013). IRs show reciprocal need for the co-receptor and the
ligand-specific IR for dendrite trafficking (Benton et al., 2009;
Abuin et al., 2011). Similarly, ORs need ORCO for trafficking to
ciliary membranes (Larsson et al., 2004; Bahk and Jones, 2016).
The transport of DrosophilaORs to and within the dendritic cilia
is regulated by the hedgehog (Hh) signal transducer smoothened
(Smo) (Sanchez et al., 2016).

Intriguingly, antennal pheromone-sensing neurons in insects
show the expression of another membrane-bound element, the
sensory neuron membrane protein 1 (SNMP1) (Rogers et al.,
1997, 2001; Jiang et al., 2016). SNMP1 is a CD36-related
receptor whose involvement in sensing cis-vaccenyl acetate
(cVA), a pheromone produced by males in Drosophila, has
been extensively studied (e.g., Benton et al., 2007; Jin et al.,
2008). SNMP1—together with the complex ORCO/OR67d and
the odorant/pheromone binding protein, LUSH—is essential for
cVA electrophysiological responses but not for trafficking the
OR complex to the sensory cilia (Benton et al., 2007). However,
SNMP1 might support the functional expression of DmORCO
found in mammalian cell culture (Halty-deLeon et al., 2016).
Moreover, it has been shown that SNMP1 is important for both
rapid activation and termination of the cVA response (Li et al.,
2014). Based on homology modeling and structure-function
studies, it has been recently proposed that SNMP1 funnels
hydrophobic pheromones through a putative ectodomain tunnel
from the extracellular fluid to the membrane receptors (Gomez-
Diaz et al., 2016). Although some members of the IR family, such
as the IR20a clade, have been proposed as pheromone sensors
(Koh et al., 2014), no evidence has been found for an equivalent
to SNMP1 dedicated to pheromone sensing for the IRs.

Other members of the peripheral sensory system include
the OBPs (Vogt and Riddiford, 1981). They are secreted by
auxiliary cells in the antenna and show specific sensillar patterns
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(Shanbhag et al., 2001; Leal, 2013). Although the number of OBP
genes in Drosophila is similar to the number of ORs and they
both show similar patterns of evolution in some species (Kopp
et al., 2008), there are also some OBPs found both in taste organs
and antennal IR-expressing neurons (Galindo and Smith, 2001;
Shanbhag et al., 2001). The specific role and action mechanism of
OBPs in olfaction are still under debate; although there are some
OBPs, such as LUSH, that have been linked to the detection of
odorants by ORs (Xu et al., 2005; Swarup et al., 2011; Gomez-
Diaz et al., 2013), no functional evidence has been found for the
need of OBPs in IR-expressing neurons.

THE GENETIC BASIS OF OR AND IR
PROTEIN FAMILIES

The OR protein family is encoded by 60 genes and a few
pseudogenes in the Drosophila genome. It comprises 62 receptor
proteins as Or46a and Or69a each give rise to two proteins by
alternative splicing (Robertson et al., 2003). Some of the OR
genes are clustered together in groups of two or three, probably
because they are recent duplications, but most of them are widely
dispersed in the genome (Robertson et al., 2003) (Figure 1). The
IR receptor family is extremely divergent, showing an overall
amino acid sequence identity of 10%–70%. Similar to the ORs,
these genes are distributed throughout the Drosophila genome,
many as individual genes, although some form cluster arrays of
few genes as e.g., in cytological regions 7 and 52 (Benton et al.,
2009) (Figure 1).

Expression studies of OR genes have shown that 45 members
of this family are present in the adult antenna and maxillary
palp, while 25 are expressed in the larval olfactory system.
Some ORs are expressed in both developmental stages, and
some are exclusive to one, either larvae or adults (Couto et al.,
2005; Fishilevich et al., 2005). In the antenna, each OR is
expressed in 2–50 OSNs (Clyne et al., 1999b; Vosshall et al.,
1999, 2000) in a stereotyped sensillar map in which each sensilla
subtype is characterized by the expression of one or few ORs
in each of the OSNs that innervate it. ORs are almost uniquely
expressed in neurons housed in single-walled sensilla, such as
basiconic, trichoid and intermediate sensilla (Shanbhag et al.,
1999; Lin and Potter, 2015), while IRs are expressed in double-
walled coeloconic sensilla (Benton et al., 2009; Silbering et al.,
2011, 2016). Thus, 18 sensilla types house 39 OSN classes
that express OR members with ten basiconics, two trichoids,
three intermediates in the antennae as well as three basiconic
sensilla types on the palps (Couto et al., 2005; Lin and Potter,
2015) Although ORs and IRs are expressed on different sensory
lineages in the antenna, there is one exception: in ac3 sensilla,
IR76b is coexpressed with OR35a/ORCO (Benton et al., 2009).
Additionally, one of the four OSNs of the ab1 basiconic
sensilla expresses two GRs, Gr21a and Gr63a, both dedicated to
CO2 sensing (Jones et al., 2007; Kwon et al., 2007). Similar to
vertebrates, each OSN usually expresses only one type of specific
OR (and ORCO), although there are some exceptions in which
two or three ORs are expressed in the same OSNs, such as
ab5 sensilla, where OR33b and OR47a, both present in larvae

and adult, are expressed together (Fishilevich and Vosshall, 2005;
Goldman et al., 2005).

Genomic analysis in Drosophila has revealed 66 IR genes,
including nine putative pseudogenes (Benton et al., 2009; Croset
et al., 2010). Extensive effort in expression analysis has shown
that antennal neurons express 16 IRs, most of which are in
neurons housed in coeloconic sensilla. Four IRs, IR20a, IR40a,
IR64a and IR93a, are expressed not in the coeloconic neurons but
in the arista and sacculus neurons (Benton et al., 2009; Silbering
et al., 2016). By using transgenic reporters, it was revealed that
out of the 44 non-antennal IRs, 32 were expressed in larvae and
27 in adults, where they were found in various organs, such
as the antennae, labella, pharynx, legs and wings (Joseph and
Carlson, 2015; Sánchez-Alcañiz et al., 2018). Similar to ORs,
some of them are specific to either larvae or adults, such as the
IR52 clade, expressed in foreleg taste neurons, which has been
related to mating behavior (Koh et al., 2014). Neurons housed
at coeloconic sensilla express from two to four IRs (Benton
et al., 2009). Additionally, IRs do not seem to be expressed in
the secondary olfactory organs, the maxillary palps, which only
contain OR-expressing neurons.

The expression studies carried out on both types of receptors
have also permitted the generation of a complete projection map
of the axons of the OSNs to the 52 glomeruli of the antennal
lobe in the brain, showing that every OSN that expresses a
particular olfactory receptor sends axonal projections to the same
glomerulus (Couto et al., 2005; Silbering et al., 2011; Grabe
and Sachse, 2018). There is a spatial organization in which
the afferents from the OSNs innervating each type of sensilla
project to glomeruli in the same location in the antennal lobe.
Thus, OSNs in the antennal basiconic sensilla project to the
medial region of the antennal lobe, palp basiconic sensilla to
the central-medial region, antennal trichoid sensilla to the lateral
anterior region, and antennal coeloconic sensilla to the posterior
region (Couto et al., 2005; Silbering et al., 2011). Therefore,
projections of OR- and IR-expressing neurons are segregated
although interconnected in the antennal lobe (Silbering et al.,
2011).

The genetic control of the stereotyped expression of the ORs
of both families in the OSNs is still under study. There is a
relationship between the expression of olfactory receptors and
the zonal localization of sensillum types/subtypes. Expression of
a given receptor is restricted to an OSN class that is located in a
particular sensillum subtype, and thus, all OSNs form a sensory
map on the antenna (Vosshall et al., 1999, 2000; Couto et al.,
2005; Benton et al., 2009; Silbering et al., 2011). Each sensillum
subtype houses stereotypical clusters of 1–4 OSN identities that
arise through asymmetric divisions from a single multipotent
sensory organ precursor (SOP; Rodrigues and Hummel, 2008).

The adult olfactory organs develop from the larval antennal
imaginal disc, where the various morphological types of sensilla
arise in the pupae due to the action of a combination of proneural
and helix–loop–helix transcription factors (TFs) (Fuss and Ray,
2009). Thus, the TF atonal is necessary for the development
of the antennal coeloconic and palp basiconic sensilla (Gupta
and Rodrigues, 1997), while amos and lozenge are required
for the antennal basiconic and trichoid sensilla (and the few
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FIGURE 1 | Genomic locations of the odorant receptor (OR) and ionotropic receptor (IR) genes. The five major chromosome arms are drawn to scale, with OR genes
shown left and IR genes right of each chromosome arm. Gene locations are based on data from Release 6 of the genome of D. melanogaster and the FlyBase
database (release FB2018_02; Gramates et al., 2017) The names of the olfactory receptors are color-coded as follows: adult divergent IRs (light brown),
larval-exclusive divergent IRs (brown), antennal IRs (red), antennal ORs (blue), maxillary palp ORs (light blue) and larval-exclusive ORs (magenta). Co-receptors are
indicated in bold letters. Expression both in adults and larvae is indicated as underlined text (Couto et al., 2005; Fishilevich et al., 2005; Benton et al., 2009;
Sánchez-Alcañiz et al., 2018).
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intermediate sensilla; Gupta et al., 1998; Goulding et al., 2000;
zur Lage et al., 2003). In the antennal disc, the differential
expression of Dachshund, Rotund, BarH1/H2, Bric-à-brac and
Apterous patterns the antennal disc into seven concentric rings
(Li et al., 2016; Hsieh et al., 2017). Each concentric ring will
determine a subset of the subtypes of sensilla in the antenna;
for example, the innermost ring determines the SOPs for the
at2, ac3, ab2, ab3, ab4, ab6 and ab8 sensilla (Li et al., 2016;
Hsieh et al., 2017). Finally, in each of these rings, the determined
SOPs will develop into a particular sensilla subtype, and each
OSN they house will specifically express one or few ORs (Barish
and Volkan, 2015). In contrast to insect OR-expressing neurons,
where most of them expresses a unique odorant-specific receptor
type, and the co-receptor ORCO, IR-expressing neurons do show
a more complicated receptor choice specification with some
neurons expressing more than two IRs, needed for its functional
response (Benton et al., 2009), but any information on the
IR specification remains elusive. Conversely, in OR-expressing
neurons, various studies have implicated several TFs in the OR
choice specification of each OSN (Martin et al., 2013). Thus
far, five TFs have been implicated in the regulation of the ORs
expressed in the palps (Clyne et al., 1999a; Ray et al., 2007;
Tichy et al., 2008; Bai and Carlson, 2010; Song et al., 2012),
while in the antennae, at least nine TFs are involved in the
control of OR expression (Jafari et al., 2012; Song et al., 2012).
Recently, a genetic immortalization method has been used to
elaborate a fate map of all olfactory lineages and to identify
Pointed, a E26 transformation-specific transcription factor (ETS)
family member, as a determinant of the Or67d pheromone-
sensing neuron development (Chai et al., 2018). Additionally, in
a sensillum, a cluster of OSNs is asymmetrically differentiated
from a single SOP into two classes in a manner dependent on
differential Notch activity in their sibling precursors. In this way,
Notch-ON and Notch-OFF specify olfactory receptor expression
and axonal targeting of the different OSNs housed in a single
sensillum (Endo et al., 2007). This pathway is dependent on the
co-repressor Atrophin, which regulates Histone 3 acetylation to
determine the OR expressed in any OSN (Alkhori et al., 2014).
Apart from the TFs that regulate the expression of the ORs,
mutagenesis of the upstream regulatory sequences of four OR
genes has identified particular sequence motifs that act positively
or negatively to dictate expression in the proper subset of OSNs
(Miller and Carlson, 2010).

EVOLUTION OF BOTH FAMILIES OF
CHEMORECEPTORS

Although the IR family is related to the iGluRs that mediate
synaptic communication in vertebrate and invertebrate nervous
systems (Benton et al., 2009), the insect OR receptors are not
related to the ORs found in vertebrates and nematodes and have
evolved independently (Robertson et al., 2003; Benton et al.,
2006).

In the case of the OR family, via comparative genomic and
transcriptomic analyses, several related but highly divergent
genes have been found in many insect genomes (Grosse-Wilde
et al., 2011; Kanost et al., 2016; de Fouchier et al., 2017), ranging

from the seven ORs found in the human body louse (Pelletier
et al., 2015), 79 ORs in the malaria mosquito (Fox et al., 2001;
Hill et al., 2002), 163 in the honey bee (Robertson and Wanner,
2006), 256 in the red flour beetle (Engsontia et al., 2008; Dippel
et al., 2016), to the more than 350 ORs found in some ant
species (Zhou et al., 2012). In social insects, the chemosensory
protein repertoire shows anOR-specific expansion (up to 450OR
candidates found in antennal transcriptomes and genome-wide
analysis) that does not seem to affect the IR or the GR families
(Robertson andWanner, 2006; Zhou et al., 2012; McKenzie et al.,
2014; Oxley et al., 2014; Pitts et al., 2017). This expansion has
been hypothesized to be linked to the strong diversification of
flowering plants as food sources and to the enhanced needs for
discrimination between nestmates and non-nestmates and for
reproductive division of labor in social insects, although direct
evidence for this in different species is still scarce (e.g., Sharma
et al., 2015; Pask et al., 2017). Comparative phylogenetic analyses
of these expanded ORs have allowed the identification of some
OR subfamilies, as e.g., pheromone receptors, and to study their
evolutionary origin and expansion in insect lineages (Missbach
et al., 2014; Koenig et al., 2015; de Fouchier et al., 2017). In the
case of ORCO, highly conserved homologs have been found in
several insect orders, such as Lepidoptera, Diptera, Coleoptera,
Hymenoptera, Hemiptera and Orthoptera (Krieger et al., 2003;
Pitts et al., 2004; Smadja et al., 2009; Yang et al., 2012). However,
in some cases, when the genomes of primitive not winged insects
have been investigated, either no OR or ORCO was found (as
in one member of the order Archaeognatha), or only a few
gene homologs of ORCO were identified (as a species of the
order Zygentoma; Missbach et al., 2014). Additionally, in the
crustacean Daphnia pulex, which shares a common ancestor
with insects, despite the fact that members of the GR family
were identified, no ORs were found (Peñalva-Arana et al., 2009).
Likewise, ORs are absent in the genomes of other arthropods,
such as spiders (Vizueta et al., 2017). These data suggest that
the OR family is exclusive to insects and probably evolved when
insects developed flight, with the evolution of ORCO first and
the other OR subfamilies later (Missbach et al., 2014). It is
thought that both the ORs and GRs are part of a superfamily of
chemosensory receptors (Robertson et al., 2003) and that the OR
family evolved from the GR family, which can be found in all
arthropods, when the insects became terrestrial organisms and
started to fly.

In contrast to the insect-specific origin of the OR family,
comparative genomic analysis across many animal groups
has revealed an ancient Protostome origin for the IR family
(Croset et al., 2010; Rytz et al., 2013). While antennal IRs are
conserved and show orthologs in many different insect species,
the genomic analysis of non-antennal IRs, originally named
‘‘divergent IRs’’, indicates a great expansion in Diptera and shows
unclear orthologous relationships in other insects, forming
phylogenetic species-specific clades across insects. It has been
suggested that the enormous expansion of this chemosensory
family arose from non-allelic homologous recombination and
retroposition (Croset et al., 2010). Most IRs exist as single-copy
highly conserved orthologs, but there are some cases where
non-allelic homologous recombination and ancient duplication
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events played a large role in IR evolution, as is the case for the
IR75 cluster (Croset et al., 2010).

Olfactory receptor families contain various pseudogenes. In
Drosophila sechellia, IR75a encodes an expected pseudogene,
with a premature stop codon, but it has been shown that it
is a ‘‘pseudo-pseudogene’’, meaning that the receptor remains
functional due to translational read-through of the premature
termination codon (Prieto-Godino et al., 2016), although
the exact mechanism of the read-through remains unknown.
Another IR receptor, IR31a, showed characteristics of this
pseudo-pseudogenization along with OR35a (Prieto-Godino
et al., 2016), but whether this is a common feature also in the
OR family remains to be shown.

Chemoreceptor families in Drosophila are extremely useful
models for studying how selection acts over organisms in a
changing environment because they show rapid adaptation over
short timescales, which seems to be a function of relaxed
constraints (Arguello et al., 2016). For example, Drosophila
sechellia is attracted to hexanoic acid, present in the noni fruit,
while D. melanogaster is not. This shift in preference is mainly
driven by a single amino acid change in the IR75b protein, which
together with some changes in the promoter and trans-acting
loci, tunes this receptor in D. sechellia to hexanoic acid (Prieto-
Godino et al., 2017), allowing this species to adapt to its specific
ecological niche.

By analysis of genome-wide data, including single-nucleotide
polymorphisms (SNPs), copy number variants (CNVs) and
small insertions and deletions (indels), of chemosensory families
from various Drosophila melanogaster populations (from
ancestral-like African populations to subsequent populations
that inhabit different niches) and comparison with other
large families, it has been demonstrated that chemosensory
receptors do not show high rates of adaptive divergence between
species but show genome-wide signals of recent selection within
D. melanogaster (Arguello et al., 2016). Additionally, they display
patterns of adaptive mutations that could predict diverse effects
on protein function (Arguello et al., 2016).

FUNCTIONAL REGULATION OF
NEURONAL RESPONSE

The responses of the OSNs could be modified by several
external and internal factors that affect the olfactory receptor
function at various levels, from genetic expression to functional
interaction. For example, the environmental temperature affects
olfactory behavior in Drosophila (Riveron et al., 2009) and also
modifies antennal electrical responses of OR-expressing OSNs,
as shown in electroantennograms (EAGs) and single-sensillum
recordings (SSRs) (Martin et al., 2011). Correspondingly, in
microarray transcriptomic studies using third antennal segments
of high-temperature-acclimated flies, there were changes in the
expression levels of several ORs and IRs (Riveron et al., 2013).
Although high temperature produced significant overexpression
only in four out of the 16 antennal IRs, the same tendency
was shown in the rest of the IRs analyzed (Figure 2) (Riveron
et al., 2013). However, for the ORs, significant changes
for nine members of the family were found, four of them

displaying overexpression and the other four andORCO showing
downregulation (Figure 2).

Additionally, internal signals can regulate the responses
of OSNs expressing ORs. For example, in a lepidopteran, the
crepuscular hawk moth, Manduca sexta, there is circadian
control through octopamine (OA) over the olfactory
metabotropic transduction of pheromones (Schendzielorz
et al., 2015). OA could act on ORCO, which has been suggested
to be a hormone-controlled pacemaker channel controlling
spontaneous activity, threshold and temporal resolution of
pheromone detection (Stengl, 2010; Stengl and Funk, 2013).
In this species, no evidence of ORCO-based ionotropic signal
transduction cascade has been found (Nolte et al., 2013, 2016).

Furthermore, the internal amino acid state canmodulate yeast
taste neurons. A common subset of the population of IR76b-
and IR25-expressing neurons in the proboscis is required for
yeast sensing (Steck et al., 2018). The response of these gustatory
receptor neurons (GRNs) is directly modulated by the internal
amino acid state, while the reproductive state modulates yeast
feeding downstream of the receptor neurons (Steck et al., 2018).

Olfactory neuronal responses driven by both types
of chemoreceptors can be differentially regulated. For
example, the OR-expressing OSNs strongly adapt to odors
in electrophysiological recordings of the whole antenna
(electroantennograms, EAGs) (Störtkuhl et al., 1999), individual
sensilla, (single-sensillum recordings, SSRs) (Nagel and Wilson,
2011; Martelli et al., 2013) or single OSNs (whole-cell patch
clamp) (Cao et al., 2016). In contrast, IR-expressing OSNs
showed no adaptation both in sensillum recordings (Abuin
et al., 2011) and in whole cell patch clamp (Cao et al.,
2016), indicating that the two types of neurons might use
distinct odor transduction mechanisms. The adaptation in the
OR/ORCO receptors seems to be mediated by odorant-induced
phosphorylation changes of the serine 289 of ORCO (Guo
and Smith, 2017). Additionally, there is a decrease in the spike
amplitude in the SSR of OSNs expressing ORs during odor
stimulation that has been related to its concentration (Martin
and Alcorta, 2016).

Moreover, some effort has been made in describing the
functional dynamics and latencies of the responses to odors in
OR-expressing OSNs inDrosophila (Martelli et al., 2013) because
a pure ionotropic response does not involve amplification
and is believed to be faster than a metabotropic response.
Although direct evidence for response latencies in ORs and
IRs in Drosophila is still missing, these latencies have been
investigated in EAGs of other insect species, such as the
orange spotted cockroach (Blaptica dubia), hissing cockroaches
(Gromphadorhina portentosa), locusts (Schistocerca americana),
honey bees (Apis mellifera) andmoths (Manduca sexta), showing
latencies as short as 2 ms (Szyszka et al., 2014).

FUNCTIONAL PROFILES OF ORs AND IRs

From the perspective of sensory modalities that involve these
two peripheral sensory systems, it seems that the OR receptor
family is exclusively used in olfaction, while the IR family covers
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FIGURE 2 | Changes in the antennal expression levels of OR and IR genes in response to high temperature. Percentage of detected genes that show up- and
down-regulated gene expression under heat treatment condition (shifting from 21◦C to 30◦C) using Affymetrix microarrays. Only significant changes with a false
discovery rate (FDR) <0.1 were considered. Data adapted from Riveron et al. (2013).

both chemosensory modalities, olfaction and taste, and even
non-chemosensory ones (Table 1).

Several studies have been carried out to establish the odorant
response profiles of OR receptors using electrophysiological
measurements, such as SSRs, obtained either by their
ectopic expression in an empty neuron (Hallem et al., 2004;
Hallem and Carlson, 2006) or directly in native OSNs (Clyne
et al., 1997; de Bruyne et al., 1999, 2001). These studies involved
panels of 100 odorants at most, although a computer simulation
study with 240,000 odorants was partially validated in functional
assays (Boyle et al., 2013). Likewise, similar studies have been
performed to determine the odorant response profiles of the IR
receptor family (Benton et al., 2009; Abuin et al., 2011; Silbering
et al., 2011). All available Drosophila odorant response data have
been combined to a single consensus response matrix linking
odorants to olfactory receptors in the DoOR database (Galizia
et al., 2010; Münch and Galizia, 2016).

Both chemosensory families are involved in food odor
sensing, detecting a vast array of chemicals. While ORs are
highly tuned to esters and alcohols (Hallem et al., 2004;
Hallem and Carlson, 2006), IRs are highly tuned to amines and
acids (Benton et al., 2009; Abuin et al., 2011; Silbering et al.,
2011; Min et al., 2013). Usually, the ORs are broadly tuned to
several compounds, while the IRs are more narrowly tuned to a
few compounds (Silbering et al., 2011).

While some ORs, especially those expressed in trichoid
sensilla, have been shown to be responsive to pheromones
(Benton et al., 2007; Kurtovic et al., 2007; van der Goes van
Naters and Carlson, 2007; Stengl, 2010), only a few IRs have

been linked to pheromone sensing either indirectly (Grosjean
et al., 2011) or through the IR20a clade (Koh et al., 2014).
Neurons that express members of the IR20a clade are mostly
located in the proboscis, pharynx, legs and wing margin of
Drosophila. They send their axonal projections to taste centers
in the brain that do not overlap with bitter-sensing neurons.
Some of these members are activated by odors from conspecific
females and are adjacent to a neural circuit for sexual behavior,
the fru+ neurons (Koh et al., 2014). Additionally, IR52c
and IR52d show sexually dimorphic expression in leg taste
neurons (Koh et al., 2014), but their specific ligands are still
unknown.

Some other sensory modalities, such as taste, while
multimodal in most cases, seem to be exclusively mediated
by GRs, IRs or a combination of both (Vosshall and Stocker,
2007; Liman et al., 2014; Sánchez-Alcañiz et al., 2018). To
date, there is no evidence involving ORs in taste sensation.
Using transgenic reporters, it has recently been shown that
most IRs are expressed in diverse populations of peripheral
sensory neurons of gustatory organs in both larvae and adults
(Sánchez-Alcañiz et al., 2018). In general, taste seems to require
the co-receptors IR25a and IR76b but not IR8a (Sánchez-
Alcañiz et al., 2018). In fact, it has been shown that IR25a
and IR7b are necessary in female sour-detecting GRNs for
oviposition preference in acid-containing food (Chen and
Amrein, 2017).

In Drosophila, long-range attraction to polyamines, pungent-
smelling compounds required in numerous cellular and
organismal processes, is mediated by IR76b and IR41a, while
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short-range attraction, which stimulates egg-laying behavior in
polyamine rich-medium, seems to be a multimodal stimulus
sensation mediated by IR76b and GR66a bitter-receptor neurons
(Hussain et al., 2016). This mechanism seems highly conserved,
as it is also found in mosquitoes (Hussain et al., 2016).

Flies use GRNs to respond to different concentrations of
salt (Vosshall and Stocker, 2007; Liman et al., 2014). While
attractive at low concentrations, salt can be harmful at higher
concentrations. Strikingly, a highly conserved IR in insect
genomes, IR76b, was shown to be a leak Na+ channel that detects
low salt and drives the salt-induced attractive pathway, while
other GRNs would drive salt-aversive behavior (Zhang et al.,
2013). This system could act as a bimodal switch for behavioral
salt attraction and aversion (Zhang et al., 2013). Recent reports
on Na+ sensing in Drosophila showed that IR76b-sensing GRNs
in both L- and S-bristles are required for repulsion (Lee et al.,
2017), contrary to the previous idea of IR76b directing only
attraction to low Na+ (Zhang et al., 2013). More research will
be needed to elucidate this open question. In addition to Na+

sensing, excessive Ca2+ taste avoidance is also important for
avoiding toxic levels of this mineral in the food. This avoidance
requires three members of the IR family—IR25a, IR62a and
IR76b—expressed in GRNs in the labella, although the ectopic
expression of these three elements is not sufficient to confer Ca2+

sensitivity, indicating that some other elements are needed (Lee
et al., 2018).

Little evidence of a functional role for IRs has been gathered in
larvae of Drosophila, but recently, it has been shown that larvae
lacking IR76b displayed highly reduced behavioral attraction to
some amino acids, while those lacking IR25a show no effect
in attraction to them (Croset et al., 2016). Using functional
imaging, it was shown that only a subset of IR76b-expressing
gustatory neurons respond to some amino acids. In these IR76b-
expressing cells, increases in calcium levels were observed upon
presentation of nine amino acids; however, this subset did not
correspond precisely with the stimuli that trigger preference
behavior (Croset et al., 2016). These nine amino acids also
elicited responses in IR60c-expressing neurons, although these
neurons are not required for amino acid preference but rather
mediate, together with IR76b, feeding suppression by high
concentrations of amino acids (Croset et al., 2016). In adults,
IR76b has been postulated as necessary for the post-mating
female preference for amino acids by tarsal taste neurons
(Ganguly et al., 2017). Additionally, it was suggested that IR20a
blocks the IR76b salt-sensing activity and facilitates a mutually
exclusive role of IR76b in both salt and amino acid sensing.
Co-expression of IR20a confers amino acid sensitivity to sweet-
sensing neurons but not to L-type sensilla (Ganguly et al.,
2017). Thus, indicating either that some other factor is needed
or that the switching mechanism mediated by IR20a could be
replaced.

Although little is known about fatty acid detection in insects,
it has recently been linked to the IR family of chemoreceptors
in Drosophila (Ahn et al., 2017; Tauber et al., 2017). By using
either Ca2+ imaging in sweet-sensing GRNs on tarsal sensilla
preparations or behavioral assays (Proboscis extension response,
PER) using IR25a and IR76b mutants, the requirement of IR25a

and IR76b in fatty acid detection was shown (Ahn et al., 2017).
Moreover, both RNAi knockdown of IR56d in sweet-sensing
neurons (Ahn et al., 2017) and functional imaging (Tauber
et al., 2017) linked this receptor to their detection. Neurons that
co-express Gr64f and IR56d are activated by medium-chain fatty
acids being sufficient for reflexive feeding responses (Tauber
et al., 2017). Fatty acids also elicit responses in bitter-sensing
GRNs, but their molecular basis remains unknown (Ahn et al.,
2017).

A healthy metabolism requires the control of sugar
consumption. In Drosophila, it has been shown, by an
optogenetic approach, that overconsumption of sugar could be
avoided by activation of a circuit that inhibits sucrose feeding
depending on IR60b (Joseph et al., 2017). IR60b is co-expressed
in a neuron in the pharynx together with IR94f and IR94h but
not with any sweet-sensing GRs (Joseph et al., 2017), although
the roles of IR94h and IR94f remain elusive. While alternative
explanations for the role of IR60b have been hypothesized
(Szyszka and Galizia, 2018), they need further experimental
analysis.

Carbonation, a non-nutritious product of microbial
fermentation, has been shown to be detected in Drosophila
by IR56d-expressing taste neurons together with IR25a and
IR76b co-receptors (Sánchez-Alcañiz et al., 2018). Using
transgenic reporters, it has been shown that IR56d is expressed
in two different neuronal populations: the one in the taste pegs
is dedicated to carbonation and fatty acid detection (but not
activated by sucrose), while the other one, in taste bristles, is
dedicated to sugar and fatty acid sensing (Tauber et al., 2017;
Sánchez-Alcañiz et al., 2018). Although carbonation is modestly
behaviorally attractive in an IR56d-dependent manner, IR56d
seems to be necessary but not sufficient for this attraction
(Sánchez-Alcañiz et al., 2018).

In conclusion, different cell-specific IR subunit combinations
seem to be the basis for different taste qualities.

Although not the topic of this review, it should be mentioned
that very recently, it was discovered that the IR family of
receptors, unlike the OR family, covers other sensory modalities
beyond chemosensation, such as hygrosensation (Enjin et al.,
2016; Knecht et al., 2016, 2017) and temperature sensing
(Knecht et al., 2016; Ni et al., 2016) in both adults and
larvae (Sánchez-Alcañiz et al., 2018). Moreover, IR25 has
been proposed as a temperature sensor that impacts the
temperature-dependent resetting of the circadian clock (Chen
et al., 2015).

DISCUSSION AND CLOSING REMARKS

Despite the recent increase in knowledge about themain receptor
families in olfaction in Drosophila (see reviews by Wilson, 2013;
Carraher et al., 2015; Joseph and Carlson, 2015; Fleischer et al.,
2018; Rimal and Lee, 2018), there are still many open questions
that remain to be answered.

For example, finding the ligands for orphan receptors in
both chemosensory families will shed light on the different
modalities that they subserve. Additionally, experiments
identifying the transduction mechanisms used by the two types
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of chemoreceptors will also help understanding the exquisite
sensitivity and specificity of these receptors. Also, accurate
X-ray crystallographic structures will help in solving some of
these standing issues such as the exact composition of olfactory
receptor heteromers or their ligand binding sites.

Although this review has been focused mainly on adult
Drosophila, these two families of receptors are also present
in larvae. However, few studies focus on larval chemosensory
modalities. Twenty-five members of the OR family are
expressed in the dorsal organ, the olfactory receptor organ
in larvae (Fishilevich et al., 2005) and several studies have
characterized their olfactory responses via behavioral tests
(Fishilevich et al., 2005; Gomez-Marin et al., 2011) and
electrophysiology measures (Hoare et al., 2008; Mathew
et al., 2013). As we already mentioned, recent studies on
larval IRs (Croset et al., 2016; Sánchez-Alcañiz et al., 2018)
have shown their involvement in different taste modalities.
Because there are both larval-specific ORs and larval-specific
IRs, it could be hypothesized that there might be some
larval-exclusive sensory modalities adaptations that have not
been investigated yet. Further research on both families of
larval chemosensory receptors will be needed to answer this
question.

Importantly, much evidence of both expression and
functional roles is coming from the use of Gal-4 lines,
which are a extremely useful tool in the field but also show
some caveats. Surely, the generation of more knockout
mutants for the different receptors will answer some of the
controversies caused by the caveats of using RNAi knockdown
strategies.

Another question that will be addressed in the future is that
the most ecologically relevant ligands may not have been found
yet. Olfactory receptors are considered narrowly or broadly
tuned based on analysis of ligands that may not be relevant
at all for the fly (Bohbot and Pitts, 2015). Few works have
linked olfactory ecology to structural and regulatory genetic

changes in the chemoreceptor families (Prieto-Godino et al.,
2017), but in upcoming years, new genome-editing technologies
and the advancement of next-generation sequencing in insect
species other than Drosophila will shed light on the function and
evolution of both the OR and IR families (Arguello and Benton,
2017), and such work will have repercussions for controlling
pests and diseases transmitted by insect vectors (van der Goes
van Naters and Carlson, 2006; Crava et al., 2016; Benton,
2017).

In this review, we have focused on the main peripheral
chemosensory systems at the receptor level (Table 1), but
the interaction between OR- and IR-related circuits in both
first relay and higher processing brain centers (Grabe and
Sachse, 2018) is mainly unexplored and of outstanding interest
for elucidating the behavioral output of the individual to
chemical cues.
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