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Astrocytes are the most prevalent glial cells in the brain. Historically considered as
“merely supporting” neurons, recent research has shown that astrocytes actively
participate in a large variety of central nervous system (CNS) functions including
synaptogenesis, neuronal transmission and synaptic plasticity. During disease and injury,
astrocytes efficiently protect neurons by various means, notably by sealing them off
from neurotoxic factors and repairing the blood-brain barrier. Their ramified morphology
allows them to perform diverse tasks by interacting with synapses, blood vessels and
other glial cells. In this review article, we provide an overview of how astrocytes acquire
their complex morphology during development. We then move from the developing to
the mature brain, and review current research on perisynaptic astrocytic processes, with
a particular focus on how astrocytes engage synapses and modulate their formation and
activity. Comprehensive changes have been reported in astrocyte cell shape in many
CNS pathologies. Factors influencing these morphological changes are summarized in
the context of brain pathologies, such as traumatic injury and degenerative conditions.
We provide insight into the molecular, cellular and cytoskeletal machinery behind these
shape changes which drive the dynamic remodeling in astrocyte morphology during
injury and the development of pathologies.
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INTRODUCTION

Astrocytes have classically been depicted as star-like cells (Ramón y Cajal, 1913), however
advanced visualization techniques have instead revealed astrocytes as bush- or sponge-like cells,
each of which covers a distinct territory in the central nervous system (CNS; Bushong et al.,
2004; Benediktsson et al., 2005). One of the most intriguing features of mature astrocytes is
their extraordinary complexity: at high resolution, the ramification of the spongiform astrocytic
processes into myriads of nanoscopic protrusions can be observed, frequently of sizes below the
diffraction limit of light, and associated with synapses (Witcher et al., 2007; Medvedev et al., 2014).
Their morphological complexity correlates with the plethora of functions astrocytes execute in the
healthy CNS, including maintaining homeostasis, providing metabolic and neurotrophic support,
promoting synaptogenesis, neurotransmitter uptake and recycling, modulating the plasticity
and density of synapses. All of these tasks require close contacts between astrocytes and their
targets, where the interactions are particularly plastic and can change depending on the individual
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physiological conditions. Moreover, astrocytes respond to
pathologies in a process known as reactive astrogliosis, when
they undergo substantial morphological changes to protect
the CNS from inflammation, infection and neurodegeneration.
In this review article, we summarize current knowledge of
how astrocytes acquire, maintain and change their elaborate
morphology through their molecular machinery and, in
particular, via the cytoskeleton. We begin by describing the
developmental process of astrogenesis and then focus on how
astrocytes associate with and influence synapses in the mature
CNS via their smallest processes, the perisynaptic astrocytic
processes (PAPs). Finally, we discuss reactive astrogliosis and
concentrate on the pathologies leading to the most profound
shifts in astrocyte shape.

DEVELOPMENT: HOW TO BECOME A
STAR

Like neurons, astrocytes originate from radial glial cells, which,
despite their uniform appearance, form different progenitor
domains within the ventricles of the developing brain, and
generate cell subtypes with distinct morphological, functional
and positional identities. Neurogenesis and gliogenesis
from radial glial cells follow a step-like arrangement during
development (Hirabayashi and Gotoh, 2005). In the mouse
brain, neurogenesis starts at day E11 of prenatal development.
The first cells exhibiting astrocyte characteristics appear between
E16–E18, when neurogenesis decreases in favor of gliogenesis
(Costa et al., 2009; Gao et al., 2014). However, the vast majority
of astrocytes will only become detectable during the first 3 weeks
after birth. Astrogenesis requires the early commitment of glial

cell precursors to the astrocyte lineage, and the subsequent
colonization of the CNS by differentiating astrocytes.

Early and intermediate astrocyte progenitors are difficult to
trace and manipulate. To our knowledge, unique factors which
actively instruct precursors to differentiate into astrocytes have
not to date been identified. Rather, it appears that astrogenesis
relies on the repression of neurogenic genes through numerous
signaling pathways (Kanski et al., 2014; Nagao et al., 2016).
However, the pro-gliogenic transcription factors involved are not
restricted to astrocyte differentiation as they are also required
for the generation of oligodendrocytes (Stolt et al., 2003).
To acquire their positional identity, differentiating astrocytes
‘‘re-use’’ molecular mechanisms, such as the homeodomain
code, which neurons follow earlier in development (Hochstim
et al., 2008). Subsequent to the principal commitment of
precursor cells to the astrocyte lineage, astrocyte progenitors
leave their cradles and populate the entire CNS (Bandeira
et al., 2009). Region-specific fate mapping in the spinal cord
and cortex revealed that the migration of astrocyte progenitors
occurs along radial glial cell processes (Figure 1A; Tsai et al.,
2012). However these processes disappear early in postnatal
development, raising the question as to how later-appearing
astrocytes reach their specific locations throughout the CNS
(Rakic, 2003). One possible explanation is that early emerging
astrocytic precursors migrate along the radial glial cells and
pioneer unhabituated brain regions. After reaching their final
positions, these pioneer astrocytes expand by symmetric cell
division and colonize defined brain areas. Tracing experiments in
the postnatal cortex demonstrated the capability of astrocytes to
generate up to 50% of the total astrocyte numbers via symmetric
cell division (Ge et al., 2012). Another 10% of cortical astrocytes

FIGURE 1 | Astrogenesis and morphogenesis of astrocytes during development. (A) First wave of progenitor migration: asymmetric division of neural stem cells
within the ventricular zones creates the first wave of astrocyte precursor cells (black and blue), which migrate along the processes of radial glial cells (gray) towards
their final location in the central nervous system (CNS). (B) Clonal expansion of pioneering astrocytes and second wave of migrating astrocyte progenitor during late
development: pioneering astrocytes of the first migration wave (blue) undergo symmetric cell division in the upper cortical layers, while a second wave of astrocyte
progenitors emerges from the subventricular zone (SVZ; green), predominantly colonizing the lower cortical layers. Corpus callosum (CC). (C) Time course of
astrocyte morphogenesis during postnatal development, demonstrated by two neighboring astrocytes (blue and black). Differentiating astrocytes possess long main
processes at postnatal day (PND) 7, which invade the domains of neighboring astrocytes. At PND14, ramification into smaller processes has increased, whilst the
extent of invasion into domains of neighboring astrocytes is reduced. Three weeks after birth, at PND21, astrocytes have acquired their complex morphologies within
their distinct domains. At this stage, only very limited intermingling with neighboring astrocytes occurs.
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are generated directly from radial glial cells during their final
cell division (Masahira et al., 2006). The remaining 40% of
the total astrocyte population are derived from progenitor cells
originating from the subventricular zone (SVZ). Despite the
absence of the guiding processes of radial glial cells, this astrocyte
population nonetheless continues to migrate along the tracks of
pioneering cells (Jacobsen and Miller, 2003; Rakic, 2003). It is
currently unknown how these ‘‘latecomers’’ move along formerly
beaten tracks, nor how they find their precise destination in the
developing brain. These ‘‘second wave’’ astrocytes typically cover
shorter distances compared to the pioneering astrocytes, and
populate the cortical layers adjacent to the SVZs (Figure 1B; Ge
et al., 2012).

After arriving at their designated position, astrocytes begin
to express their canonical markers, such as glial fibrillary
acidic protein (GFAP), S100β, Aldh1L1, Sox9, AldoC, Glt1 and
glutamine synthase (for a review see Molofsky et al., 2012).
During this period, astrocytes also initiate the formation of
their stellate morphology (Figure 1C). The time course in
forming the uniquely ramified morphology of astrocytes has
been documented in rats by Bushong et al. (2004) using
immunolabeling and dye filling. In brief, during the first
week of postnatal development, protoplasmic astrocytes display
considerable diversity in morphology. S100ß and GFAP-positive
cells extend between three and six long main processes and
develop a ramification of fine, stringy or filamentous processes.
At this stage, astrocytes are not yet restricted to the defined
domains typically observed for mature astrocytes, and can
extend their long main processes beyond any rudimentary
boundaries. By postnatal week 2, astrocytes have adopted
a more uniform morphology, with complex ramification
patterns of their processes. However, the astrocytic processes
are still stringy or filiform and have not yet matured into
the characteristic spongiform shapes. During this period, the
well-documented astrocytic territorial domains are recognizable
for the first time, although overlap of processes is still present.
By postnatal week 3–4, astrocytes have matured into their
terminally differentiated state through the establishment of
dense spongiform processes within their individual domains.
However, the morphological and functional identity of astrocytes
is not entirely hardwired but rather depends on the individual
environment, particularly on the input of surrounding neurons
throughout their lifetime.

Scientists are only now beginning to comprehend the
molecular signals and their downstream mechanisms involved
in establishing astrocyte morphology. Genetic studies in
Drosophila identified neuron-secreted FGFs as critical for
the elaboration of astrocyte morphology (Stork et al., 2014).
Recent work in the optical lobe of Drosophila showed a role
for the transmembrane leucine-rich repeat protein Lapsyn in
regulating the morphogenesis of the astrocyte-like medulla
neuropil glia, which also cooperates with FGF to promote
astrocyte branch formation and survival (Richier et al., 2017).
Moreover, a comprehensive study in the rodent cerebellum
indicated that the acquired identity of astrocytes could be
overwritten by surrounding neurons (Farmer et al., 2016). In
this study, the authors demonstrate that the morphogen sonic

hedgehog secreted from the adult Purkinje cells sustains the
functional identity of adjacent Bergmann glia. Manipulating
sonic hedgehog in the mature cerebellum induces another
astrocyte subpopulation, so-called velate astrocytes, to acquire
the transcriptome and electrophysiological characteristics of
Bergmann glia. Taken together, these studies show that astrocytes
represent a population of particularly plastic and heterogeneous
cells, which are responsive to their neuronal neighbors.

WHAT STARS ARE MADE OF AND WHAT
KEEPS THEM IN SHAPE

The development of the stunning complexity of astrocytes
from the thin precursor cylindrical radial glial cells necessarily
involves extensive remodeling of the cytoskeleton. However
very little is known about the molecular machinery behind
these comprehensive shapeshifts. A key reason contributing
to this limited insight is that the commonly-used cell culture
astrocyte models do not accurately recapitulate astrocytes in situ
or during normal morphogenesis. While neurons develop
spontaneously from apolar progenitors and form mature cells
with elaborate axon and dendrite morphologies in culture,
astrocytes in serum-enriched cultures acquire a polygonal
morphology analogous to non-neuronal cells (McCarthy and de
Velllis, 1980). More importantly, transcriptome analysis revealed
that cultured polygonal astrocytes have different genetic profiles
compared to astrocytes in situ, but share similar profiles with
immature and reactive astrocytes (Foo et al., 2012). Changes
in culture conditions and pharmacological treatments, such
as artificially increasing intracellular cAMP levels, can convert
polygonal astrocytes into stellate astrocytes within a matter
of minutes (Shapiro, 1973). However, this process does not
resemble in vivo differentiation of progenitor cells into ramified
astrocytes. Instead, this so-called process of ‘‘stellation’’ is
a model used to identify the cellular architecture necessary
to maintain the typical astrocyte morphology. Keeping these
limitations in mind, we review here what is known about the
cytoskeletal organization of stellate astrocytes in culture and
in vivo.

Microtubules
The function of microtubules has rarely been addressed
in stellate astrocytes in general, and during astrogenesis in
particular. An early electron microscopy study demonstrated
dense microtubule networks in mature astrocytes, compared
to immature astrocytes that exhibit more loosely packed
microtubules (Peters and Vaughn, 1967). Only recently,
microtubules were visualized for the first time in radial glia and
their astroglia progeny in living brain tissue (Eom et al., 2011).
Short-term live imaging revealed the restriction of microtubules
to the main processes, where they appear to be relatively stable.
In cell culture, the in vivo distribution of microtubules is
analogously present in stellating astrocytes, where microtubules
co-extend with intermediate filaments in forming the processes.
Pharmacological inhibition of microtubule polymerization
during stellation prevents the transition of astrocytes into the
star-like cells (Goetschy et al., 1986). Nonetheless comprehensive
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analyses of the changes and functions of microtubules in
astrocytes during stellation are not currently available and further
studies are needed.

Intermediate Filaments
Intermediate filaments have been studied extensively in
astrocytes thanks to the availability of knockout mouse models.
Like microtubules, intermediate filaments are restricted to
the main processes of astrocytes in vivo (Figure 2A; Bushong
et al., 2002). The interconnected scaffold-like network in
astrocytes is a composite of different intermediate filament
proteins which change during development and maturation.
Astrocyte progenitors express the intermediate filament proteins
of vimentin, nestin and synemin, whereas maturing and
differentiated astrocytes express only GFAP and vimentin
(Sultana et al., 2000). During adulthood, GFAP expression
in astrocytes varies largely depending on the brain region.
In the cortex, 85% of astrocytes are negative for GFAP but
upregulate this intermediate filament protein again during aging
(Kimelberg, 2004). GFAP or vimentin are the essential subunits
for polymerizing intermediate filaments. In immature astrocytes
deficient in both GFAP and vimentin, nestin itself is unable
to polymerize into filaments (Pekny et al., 1999). Intermediate
filaments also play a scaffolding role in organizing the cytoplasm
and organelles, and modulate directed vesicle transport (Potokar
et al., 2007). However, deficiencies in GFAP and/or vimentin
have no obvious effect on the outgrowth of astrocytic processes in
mixed neuronal cultures or on the development and maturation

of astrocytes in vivo, despite impaired intermediate filament
formation (Pekny et al., 1995, 1998).

The Actin Cytoskeleton
Studies that induced drastic shapeshifting between polygonal
and stellate morphologies of astrocytes in cell culture have
increased our understanding of the actin cytoskeleton in this
process. In their polygonal shape, astrocytes possess prominent
actin fibers that depend on a high activation state of myosin-II
(John, 2004). In contrast, when astrocytes adopt stellate shapes
in vitro, they exhibit a lack of actin fibers and instead establish
Arp2/3-dependent actin networks (Murk et al., 2013). Branched
Arp2/3-based actin arrays and the machinery for linear actin
filaments act in direct opposition to each other, and rely on
distinct signaling pathways (Rotty et al., 2015). Signaling through
receptors such as beta-adrenergic receptors activates PKA and/or
PKCepsilon and inhibits the ROCK-RhoA-axis. Concurrently,
an increase in Rac1 activity drives the remodeling of contractile
actin fibers into branched actin arrays (Moonen et al., 1976;
Ramakers and Moolenaar, 1998; Burgos et al., 2007; Racchetti
et al., 2012; Kobayashi et al., 2013; Murk et al., 2013). In addition
to experiments using polygonal astrocytes, improved cell culture
models based on defined culture media (Scholze et al., 2014;
Wolfes and Dean, 2018), immunopanning (Foo et al., 2012), 3D
scaffolds and matrices (Lau et al., 2014; Woo et al., 2017), and
organoids (Renner et al., 2017) will facilitate functional studies
of the underlying molecular machinery controlling astrocyte
morphogenesis.

FIGURE 2 | Morphology of astrocytes in vivo and their dynamic association with synapses. (A) Z-projection of a cortical rat astrocyte (P14), stained for glial fibrillary
acidic protein (GFAP; red) and S100β (green), by confocal microscopy after tissue clearance (left). Scale bars: 10 µm. 3D rendering and morphometric analyses
show the restriction of the intermediate filament protein GFAP to main processes, which are decorated with myriads of fine S100β-positive processes (right; with
permission from Murk et al., 2013). (B) Schematic of dendritic filopodia, with the precursors of dendritic spines, emerging from dendrites (magenta) in the absence
(top) or presence of perisynaptic astrocytic processes (PAPs; green, bottom). Without the support of astrocytic processes, sprouting dendritic filopodia have a short
lifespan and are likely to retract. Astrocytic processes contact filopodia-like protrusions, which then exhibit an increased stability and higher tendency to develop into
mature dendritic spines. (C) Schematic of a mature tripartite synapse consisting of the pre-synapse (gray), post-synapse (magenta) and PAPs (green), which respond
to long-term potentiation (LTP) with structural changes. Induction of LTP transiently enhances the motility and retraction of PAPs allowing growth of the postsynaptic
dendritic spine to occur. Subsequent to dendritic spine remodeling, PAPs intensify their coverage of synapses.
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A STARRING ROLE FOR ASTROCYTES AT
SYNAPSES

The main processes of astrocytes form the basis of their
star-like shape, while their true spongiform morphology relies
on myriads of small protrusions. After birth, the sophisticated
ramification into nanoscopic astroglial protrusions occurs in
parallel with synaptogenesis, when astrocytes begin to associate
with developing neuronal connections via PAPs and establish
‘‘tripartite synapses.’’ The frequency of establishing tripartite
synapses depends on the brain area and local neuronal activity
(Araque et al., 1999). Studies in different organisms from
Drosophila to humans indicate PAPs as conserved structures
that are essential for brain function. Consistently, the number
of PAP-associated synapses covered by astrocytes is increasing
from fly to human (Oberheim et al., 2009; Stork et al., 2014).
For instance, a single rodent astrocyte can associate with up
to 120,000 synapses (Bushong et al., 2002), whereas a human
astrocyte, according to a several-fold larger cell size and a
10-fold increase in the number of main processes, contacts up
to two million synapses (Oberheim et al., 2006, 2009). These
hominid-specific characteristics in astrocyte morphology are
fundamental for sophisticated learning andmemory, as shown in
chimeric mice harboring human induced pluripotent stem cells
(iPSC)-derived astrocytes. The transplanted human astrocytes
replace the host’s astroglia and develop the characteristic
larger ramification of normal human astrocytes. Moreover, the
chimeric mice show substantially enhanced synaptic plasticity
and learning, compared to control animals (Han et al.,
2013). Although further experimental evidence is needed to
directly test for the link of PAPs in moderating synaptic
responses in tripartite synapses, the correlation of enhanced
learning andmemory with increasing ramification and astrocyte-
synapse interactions is impressive. It implies PAPs are key
structures that astrocytes require to actively partake in synaptic
activity.

Astrocytes control the ionic homeostasis of the CNS (Simard
and Nedergaard, 2004) where they modulate synaptic plasticity
by active buffering of potassium ions (Pannasch et al., 2011).
In addition, astrocytes clear neurotransmitters and recycle their
inactive derivatives back to the presynaptic terminal (Schousboe
et al., 2013). Gliotransmitters such as d-serine, glutamate, ATP,
taurine and TNFα are secreted by astrocytes and regulate
synaptic activity (Panatier et al., 2006; Stellwagen and Malenka,
2006; Cao et al., 2013; Martin-Fernandez et al., 2017; Tan et al.,
2017; Van Horn et al., 2017). During postnatal development,
astrocytes sequentially secrete a range of factors, such as
thrombospondins and hevin, that are involved in initiating
the formation of silent synapses (Christopherson et al., 2005;
Kucukdereli et al., 2011; Singh et al., 2016). Subsequently, other
astrocyte-secreted factors, such as glypicans 4 and 6, turn the
established silent synapses into active connections (Allen et al.,
2012). To establish and maintain a neuronal network with
individually controllable synapses through diffusible molecules
require a tight spatial-temporal control of signaling in vicinity
of synapses. The molecular equipment required for these
tasks, including metabotropic glutamate receptors (mGluRs),

glutamate transporters and ion channels, is enriched in PAPs
and is thus in immediate proximity to synapses (Chaudhry et al.,
1995; Higashi et al., 2001; Lavialle et al., 2011).

Along with locally secreted factors, PAPs influence
synapses through direct contact mediated by cell adhesion
molecules. Filopodial precursors of dendritic spines are
endowed with a substantially enhanced lifespan and develop
into mature dendritic spines with greater frequency in direct
association with PAPs (Figure 2B, Nishida and Okabe, 2007).
Immunohistochemical and electron microscopy studies
showed several cell adhesion molecules that appear to link
PAPs to synapses. Several molecules, such as SynCAM1,
NCAM and αvβ3-integrins, form connections between PAPs
and synapses (Theodosis et al., 2004; Hermosilla et al.,
2008; Sandau et al., 2011), but their true nature regarding
astrocyte-neuron interactions still needs to be demonstrated in
functional approaches. One striking example of a shapeshifter
transmembrane protein on astrocytes that affects neuronal
functions is neuroligin 2. Neuroligin 2 localizes to astrocyte
processes and its specific deletion in astrocytes affects astrocyte
morphogenesis and substantially imbalances neuronal circuits by
impairing the formation of excitatory synapses (Stogsdill et al.,
2017). The γ-protocadherins (γ-Pcdhs) are another candidate for
cell adhesion molecules that can functionally connect astrocytes
and neurons (Keeler et al., 2015). γ-Pcdhs are present on PAPs
and directly drive synaptogenesis in neuron-astrocyte co-culture
models (Garrett and Weiner, 2009). However, γ-Pcdhs also
directly link neuronal pre- and post-synapses (Rubinstein et al.,
2015; Molumby et al., 2016, 2017). Accordingly, the modulation
of synapses via γ-Pcdhs likely only relies on PAPs to some
extent.

Several studies indicate a supportive role for astrocytes on
synapses, whereas others discovered an essential function in
reducing the total number and structural plasticity of synapses.
One of the first pairs of cell adhesion molecules analyzed in a
functional approach is the receptor tyrosine kinase EphA4 and
its ligand ephrin-A3 that exhibit a negative regulative effect
on excitatory synapses. In the adult hippocampus, EphA4 is
restricted to dendritic spines, whereas ephrin-A3 is enriched
on adjacent PAPs. The interaction of neuronal EphA4 with
astrocytic ephrin-A3 evokes spine retraction, a process which is
distorted in EphA4-deficient mice (Murai et al., 2003). Reverse
signaling from neuronal EphA4 towards astrocytic ephrin-A3
evokes decreased levels of the glutamate transporters Glt1 and
GLAST in PAPs, which correlates with shrinking dendritic
spines (Carmona et al., 2009; Filosa et al., 2014). EphA4-
ephrin-A3 signaling thus represents a means of how cell-cell
contact-based neuron-glial communication can induce negative
structural plasticity in neurons. In addition, astrocytic processes
contain the phagocytic receptorsMERKT andMEGF10 that have
both been identified in mediating synapse elimination through
active engulfment (Chung et al., 2013).

The Dynamic Cytoskeleton in PAPs
The interplay of PAPs with synapses alters depending on
the organism’s physiological condition, such as parturition,
lactation, chronic dehydration, starvation, voluntary exercise
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or sleep deprivation (Theodosis, 2002; Procko et al., 2011;
Tatsumi et al., 2016; Bellesi et al., 2017). Recently, quantitative
measurements in the sensory-visual cortex during eye occlusion
demonstrated the plasticity of PAPs covering synapses. These
experiments demonstrated clearly that PAPs are particularly
dynamic during development as well as during activity of
synaptic circuits (Stogsdill et al., 2017). Overall morphological
changes in PAPs in response to environmental cues seem
to occur slowly over hours to days, whereas live imaging
experiments ex and in vivo revealed extensive structural plasticity
PAPs within much shorter time-frames—of only minutes
(Figure 2C; Bernardinelli et al., 2014; Perez-Alvarez et al.,
2014). Activation of synapses through stimulating metabotropic
glutamate receptors or glutamate uncaging triggered transiently
increased PAP motility which ultimately evoked a more
stable interaction of PAPs with dendritic spines (Figure 2C;
Bernardinelli et al., 2014).

Rapid changes in PAPs highlight a prominent role for a
dynamic cytoskeleton during structural remodeling of astrocytes
(Bernardinelli et al., 2014). In view of the fact that PAPs are
devoid of microtubules and intermediate filaments, all structural
changes in PAPs are likely to involve the reorganization of the
actin cytoskeleton. Dynamic PAPs present as miniature versions
of lamellipodia and filopodia, the F-actin-rich subcellular
compartments of migrating non-neuronal cells (Hirrlinger et al.,
2004). Analogous to typical lamellipodia, extensions of PAPs
are severely impaired upon inactivating the small GTPase Rac1
(Nishida and Okabe, 2007), and likely depend on inhibition
of Rac1 downstream targets, such as actin regulators forming
Arp2/3-dependent branched actin arrays (Rottner et al., 2017).
Accordingly, direct inhibition of the Arp2/3 complex in brain
tissue or knockdown of its upstream regulators N-WASP,
WAVE2 and PICK1 in cell culture induces profound alterations
in the morphological complexity of astrocytes. On the one
hand, Arp2/3 inactivation in situ has been associated with
the loss of fine astrocytic processes (Murk et al., 2013).
On the other hand, small G-actin binding proteins called
profilins, which charge actin monomers with ATP and mainly
enhance actin polymerization (Jockusch et al., 2007), modulate
the overall complexity of astrocytes and actin turnover in
PAPs. Isoform-specific knockdowns of either ubiquitous profilin
1 or CNS-specific profilin 2a which is involved in neurons
in presynaptic membrane trafficking and dendritic spine
remodeling (Pilo Boyl et al., 2007; Michaelsen et al., 2010),
reduce the total volume of astrocytes in organotypic slices.
However, selective inhibition of profilin 1 affects the number and
movement of filopodia processes by slowing the reorganization
of filamentous actin (Molotkov et al., 2013; Schweinhuber et al.,
2015).

Another actin binding protein prominently localized to PAPs
is ezrin, a linker protein connecting the actin cytoskeleton
directly to the plasma membrane (Derouiche and Frotscher,
2001; Haseleu et al., 2013). Active ezrin is exclusively located
in PAPs and is required for motility of astrocytic filopodia
induced by glutamate-activating mGluR3 and 5 (Lavialle et al.,
2011). In addition to the typical actin regulators, connexin30 has
also been shown to regulate synaptic strength by controlling

the synaptic location of astroglial processes (Pannasch et al.,
2014). Deletion of connexin30 evokes increased ramification
and process length, with PAPs invading the synaptic cleft and
causing elevated uptake of glutamate at excitatory synapses. The
molecular details that underlie connexin30 regulation of PAPs
are currently unclear, but appear to involve its intracellular
C-terminus, which is likely to be a hub for interactions with
as-yet unidentified actin regulators. A potential candidate might
be drebrin, an actin regulator binding sidewise to filaments,
which has been shown to interact with connexin43 in cultured
astrocytes (Butkevich et al., 2004). However, whether drebrin
does indeed bind and control connexin30 function in astrocytes
is not known.

STARS WITH SENSITIVE FEET

While astrocytes use PAPs to register, support and modulate
neuronal activity at synapses, they also almost entirely encompass
the vasculature of the CNS with processes known as endfeet.
In conjunction with specialized endothelial cells, pericytes
and an elaborate basal lamina, astrocytic endfeet create the
blood brain barrier to facilitate the brain’s selective uptake
of required nutrients and metabolites, the exclusion of toxic
substances and immune cells as well as the efflux of waste
products (Daneman and Prat, 2015). Perivascular endfeet possess
prominent orthogonal arrays of intramembranous particles
at their plasma membrane, where aquaporins and potassium
channels accumulate (Rash et al., 1998; Warth et al., 2005).
Accordingly, astrocytic endfeet act as major hubs to regulate the
ion and water homeostasis in the CNS (Min and van der Knaap,
2018). Endfeet and PAPs emplace astrocytes as cellular interface
between synapses and vasculature, where they enable the
appropriate supply of oxygen and energy to neurons according
to their activity-dependent demands. Intensive research showed
the ability of astrocytes to regulate the local cerebral blood flow
by sensing and relaying neuronal signals to the vasculature.
The currently discussed mechanisms of astrocyte-mediated
blood flow control comprise potassium siphoning, metabolic
neurovascular coupling and intracellular calcium waves, which
evoke the synthesis of vasoactive metabolites (see for review
MacVicar and Newman, 2015). Despite the relevance of endfeet
for astrocyte functions, very little information is available on
their intracellular structures. Microtubules have been visualized
in endfeet of perivascular astrocytes in a single in vivo study
but their role in this subcellular compartment is unknown
(Eom et al., 2011). Immunohistochemical analyses revealed
prominent GFAP-positive intermediate filaments in endfeet.
Endfeet differ distinctively in their fine structures between
rodents and humans. Perivascular GFAP appears in rats as
rosettes around blood vessels and creates the impression of an
incomplete coverage of the vasculature by the astrocyte endfeet
(Rungger-Brändle et al., 1993). In contrast, in humans GFAP
in endfeet exhibits a densely packed, tile-like pattern entirely
encompassing the blood vessels (Oberheim et al., 2009). More
recent electron microscopy 3D reconstructions demonstrated
the complete coverage of blood vessels in the rat brain by
astrocyte endfeet despite the rosette-like GFAP localization
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(Mathiisen et al., 2010). Under normal conditions, blood vessels
in the brain and spinal cord from GFAP- and vimentin-deficient
mice frequently show increased dilatation (Pekny et al., 1999).
To our knowledge, the microanatomy of actin filaments in
astrocyte endfeet is unknown. Indications for a putative role of
actin in astrocytes are indirect, reported from loss-of-function
studies and cell culture experiments. Astrocyte endfeet have
enriched protein complexes composed of the transmembrane
protein dystroglycan and its associated ligands syntrophin and
dystrophin, and in other cell types this complex bridges the actin
cytoskeleton with laminins in the extracellular matrix (Higginson
and Winder, 2005). Moreover, the defined localization of
potassium channels and aquaporin-4 in the plasma membrane
of endfeet partially depends on tethered dystroglycan protein
complexes. In cell culture, the actin cytoskeleton directly governs
the localization of aquaporin-4 (Nicchia et al., 2008). Deleting
the focal adhesion adapter protein vinculin in Bergmann glia
disturbs the GFAP distribution in endfeet but has no obvious
effect on neurovascular functions (Winkler et al., 2013).

FROM STARS TO SCARS

Dealing With Insults
Under normal conditions, the majority of astroglia occupy
a distinct territory in the brain parenchyma, with the most
distant processes of neighboring astrocytes exhibiting very
limited intermingling (Bushong et al., 2002). In terms of
morphological plasticity, microscopic observations at low

magnification give the impression that astrocytes are rather
quiescent under normal conditions. Only the smallest astrocyte
protrusions—such as PAPs—are motile and alter their shape
upon neuronal activity. However, in response to injury and
other pathological conditions, astrocytes undergo astrogliosis
and become ‘‘reactive.’’ This process is accompanied by dramatic
changes in morphology, including prominent hypertrophy,
altered ramification and outgrowth of particularly long processes
(Figure 3). Astrogliosis is recognized as a defense mechanism
that controls inflammation and the blood-brain barrier integrity.
An important contribution of astrogliosis is the isolation of
non-injured tissue from damaged areas, and the support of
neuronal circuit and tissue regeneration (Burda et al., 2016). The
molecular triggers and specific signaling mechanisms of reactive
astrogliosis have been reviewed in detail (Sofroniew, 2009; Ben
Haim et al., 2015); here we discuss knownmorphological changes
that occur during reactive astrogliosis and present the scope of
their physiological function.

Shapeshifting of reactive astrocytes depends on the nature and
severity of the CNS insult. Acute and diffuse trauma without
tissue damage evoke a transient upregulation of GFAP and
other intermediate filament proteins in conjunction with minor
and reversible hypertrophy of both astrocyte cell bodies and
main processes (Wilhelmsson et al., 2006). Reactive astrocytes
thereby uphold their local domains and do not proliferate.
Longer lasting and more severe injuries provoke higher GFAP
levels in astrocytes and lead to more prominent cell body
hypertrophy associated with the interpenetrative extension of
distant processes into adjacent astrocyte domains and occasional

FIGURE 3 | Morphological hallmarks of reactive astrocytes in traumatic brain injury. Typical distribution of reactive astrocytes after a cortical stab wound in the mouse
cortex 7 days after injury. Schematic drawings show the main processes of astrocytes, which contain high levels of GFAP (gray) upon injury. GFAP-positive astrocytes
exhibit different morphologies depending on their distance from the lesion site: in the immediate vicinity (magenta), astrocytes polarize and extend long “palisading”
processes. In the second row, multiple processes of the hypertrophic astrocytes (yellow) are orientated towards the injury site; with increased distance, astrocytes
possess hypertrophic cell bodies and primarily main processes (green). Finally, reactive astrocytes at the border of the unaffected parenchyma upregulate GFAP but
show no signs of hypertrophy (blue). Note that cortical astrocytes in the uninjured contralateral hemisphere sparsely express GFAP, as indicated with silhouettes
(bottom left image).
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hot spots of cell proliferation (Myer et al., 2006). Reverting
hypertrophy and downregulating GFAP levels in highly reactive
astrocytes is possible, but correlates negatively with the duration
and severity of the diffuse brain injury (Petito et al., 1990).
Traumatic brain injuries with severe tissue penetration and
profound lesions create the most prominent response of
reactive astrocytes by collectively forming a glial scar to protect
the surrounding parenchyma from spreading inflammation,
infection and neurodegeneration (Figure 3). Astrocytes that are
in the vicinity of focal lesions resemble ‘‘palisades,’’ bordering,
orienting and extending long processes towards the injury site.
Live imaging experiments in mice with cortical stab wounds
revealed that 45% of reactive astrocytes are polarized. Polarized
and elongated cells originate from mature astrocytes through
their transient de-differentiation and proliferation (Bardehle
et al., 2013; Wanner et al., 2013). Astrocytes behind the
palisades manifest prominent hypertrophy and a tendency
to orientate most processes towards the lesion (Kanemaru
et al., 2013). With increasing distance from the injury, the
hallmarks of astrogliosis—such as hypertrophy and elevated
GFAP levels—tend to decrease, and appear to be analogous
to mild diffuse CNS injuries (Figure 3). Live imaging and
ablation experiments demonstrated the local occurrence of
reactive astrogliosis at the insult site without any active migration
of additional astrocytes from neighboring brain areas (Bardehle
et al., 2013; Tsai et al., 2012).

In comparison to microglia that respond to CNS insults
within minutes, the time course of morphological changes
for astrocytes is relatively slow (Nimmerjahn et al., 2005).
Hypertrophy and GFAP upregulation appear after 2–3 days
post-injury, with palisading astrocytes observed approximately
1 week after injury (Robel et al., 2011). Nevertheless, astrogliosis
and glial scarring are essential for the early phase of tissue
protection after traumatic injuries, as reactive astrocytes protect

against spreading cell death and inflammation after spinal cord
injuries (Faulkner et al., 2004). In close proximity to lesion sites,
palisading and hypertrophic astrocytes sustain their reactivity
permanently, whereas astrocytes at greater distances from the
injury return to their normal state (Bardehle et al., 2013).
Persistent glial scars have been considered a crucial part of the
failure of regenerative treatments of traumatic brain and spinal
cord injuries (Cregg et al., 2014). Whether reactive astrocytes
represent a major hurdle or a benefit for regenerative treatments
remains a topic of intensive debate (Anderson et al., 2016).

Stars in Disease
Scar-forming astrocytes have been reported in a number of
pathological conditions such as Alzheimer’s disease (AD) and
brain tumors, but follow amore complex response pattern during
the progression of these diseases. During the later phases of AD,
reactive astrocytes form prominent glial scar-like barriers around
amyloid plaques and disrupt the anthropoid-specific architecture
of non-reactive astrocytes in the neocortex (Colombo et al.,
2002). Whether astrocyte reactivity also occurs in earlier phases
of AD is currently under debate. PET scans in patients and some
mouse models indicate astrogliosis as an early component of AD
development (Heneka et al., 2005; Carter et al., 2012). In contrast,
the triple transgenic mouse model of AD exhibits comprehensive
cytoskeletal atrophy of astrocytes prior to amyloid plaque-
associated astrogliosis (Kulijewicz-Nawrot et al., 2012). The
precise role of astrocytes in AD needs to be further investigated
as both astrocyte atrophy and astrogliosis may indicate the
participation of astrocytes in the neuropathology of this disease.

Gliomas are also surrounded by activated astrocytes initially
with prominent palisades (Figure 4; Le et al., 2003). However
in this disease, the astrogliosis response is unable to isolate
the tumor from the intact tissue. Gliomas exploit reactive
astrocytes together with other cell types to create a favorable

FIGURE 4 | The abuse of scarring astrocytes by glioma. Schematic drawings of how reactive astrocytes turn from initially tumor containing to cancer promoting
cells. Astrocytes (black) form prominent palisading processes in response to growing glioma masses (gray rhomboid cells). Glioma derived signals force the reactive
astrocytes to secret trophic factors (yellow), pro matrix metalloproteinase-2 (scissors) and microRNA containing exosomes (green, left). The uptake of microRNA
containing exosomes evokes the epigenetical downregulation of tumor suppressing PTEN in glioma. PTEN depletion and astrocyte-derived trophic signals enhance
the cell proliferation of the glioma cells. Expanding tumor cells use matrix metalloproteinases to degrade the surrounding extracellular matrix (blue stripped pattern)
and begin to penetrate the glial scar (center). In the late phase, glioma have comprehensively degraded their adjacent extracellular matrix and seemingly consumed
the originally tumor encompassing astrocytes (right).
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microenvironment. Neurotrophic factors and pro-matrix
metalloproteinase-2 (MMP2) secreted from astrocytes promote
tumor growth (Hoelzinger et al., 2007; Lee et al., 2009).
Interestingly, gliomas enhance cell proliferation and invasive
migration via an astrocyte-induced knockdown of the key tumor
suppressor PTEN. The epigenetic downregulation of PTEN in
the cancer cells relies on the uptake of microRNAs, which are
packaged in exosomes and secreted from neighboring astrocytes
upon tumor-derived signals (Zhang et al., 2015). Brain tumors
then consume the bordering reactive astrocytes over time, before
they invade and disrupt the surrounding tissue as well as the
blood-brain barrier (Watkins et al., 2014).

Profound changes in astrocyte cell morphology and function
are induced by external signals and computed from pathological
and physiological cues. Non-reactive astrocytes persistently
survey their environment for abnormalities such as pathogenic,
aggregated and serum proteins, as well as cytokines and
chemokines. Contact with these cues activates multiple receptors
and signaling pathways, which then trigger astrocyte reactivity
programs (Burda et al., 2016). Besides pathological signals,
astrocytes constantly receive instructions from healthy neurons,
which actively suppress astrocyte reactivity. Key molecules

within these signaling pathways include neuron-derived FGF-2
and astrocytic β1-integrin. Interestingly, loss-of-function of
both factors causes astrocyte reactivity in the absence of any
pathological condition (Robel et al., 2009; Kang et al., 2014).
One important signal mediator involved in various signaling
pathways, is the aforementioned lipid and protein phosphatase
PTEN, a key molecule in antagonizing the PI3K signaling
pathways (Kreis et al., 2014). PTEN is involved in the regulation
of cell size and proliferation of astrocytes as well as the formation
of glial scars (Fraser et al., 2004; Dey et al., 2008; Renault-Mihara
et al., 2017). Mechanistic details from the nestin-STAT3+/−

mouse model which has impaired astrogliosis show that the
affected astrocytes upregulate PTEN. The intrinsic defects in glial
scarring comprising process orientation and elongation as well as
leukocyte seclusion are rescued through PTEN inhibition, which
evokes substantial cytoskeletal remodeling by changing the
activation state of the small GTPases RhoA and its downstream
effectors (Table 1; Renault-Mihara et al., 2017).

In contrast to the wealth of knowledge on stimuli, receptors
and signaling pathways evoking astrogliosis, we know very
little about the downstream machinery exerting the functional
and morphological changes in reactive astrocytes. One factor

TABLE 1 | Mouse disease models targeting or affecting cytoskeletal regulators in vivo.

Mouse models Effects in disease models Open questions and remarks

Cdc42
Tamoxifen-induced GLAST/eGFP Cdc42loxP/loxP mice
Traumatic brain injury (Robel et al., 2011; Bardehle
et al., 2013)

Impairment of pathology-induced proliferation of
astrocytes but increased numbers in microglia upon
traumatic brain injury. No obvious defects in
microtubule organization and dynamics.

No process outgrowth related-phenotype in contrast
to previously reported microtubule dependent defects
in cultured astrocytes (Etienne-Manneville and Hall,
2001). Unclear, whether diverging outcomes rely on
differences between cultured and astrocytes in vivo, or
mosaic pattern of scattered Cdc42-deficient
astrocytes in vivo.

GFAP and Vimentin
GFAP−/−Vim−/− mice

1. Brain and spinal cord injuries (Pekny et al., 1999)
2. Sciatic nerve lesion (Berg et al., 2013)
3. Entorhinal cortex lesion (Wilhelmsson et al.,

2004)
4. Photothrombosis model for stroke (Liu et al.,

2014)

GFAP−/−Vimentin−/−PPT1 −/− mice

5. Batten disease (Macauley et al., 2011)

GFAP−/−Vimentin−/− in APPswe/PS1dE9 AD
background

6. Alzheimers disease (Kamphuis et al., 2014)

1. Impaired hypertrophy of cell bodies and main
processes, less dense glial scars, frequent
bleedings into lesion sites.

2. Complete axon regeneration.
3. Enhanced Synaptic regeneration.
4. Enhanced axonal remodeling and improved

motor recovery.
5. Rapid onset and progression of disease through

impaired blood-brain-barrier and profound
neuroinflammatory response.

6. Less interaction of astrocytes with Aβ plaques.
No effect on Aβ plaque load.

Wide range in beneficial and detrimental phenotypes
by GFAP/Vimentin deficient mice among the different
disease models.

STAT3
Nestin-Stat3−/− Mice Spinal cord injury
(Renault-Mihara et al., 2017)

Attenuated up-regulation of GFAP, failure of astrocyte
hypertrophy, and pronounced disruption of astroglial
scar. Reactive astrocytes fail to elongate and show
no preferential orientation towards the lesion.
Reduced activation of RhoA. Rescuable by reduction
in PTEN.

Study indicates a predominant role of the actin
cytoskeleton in reactive astrocytes in contrast to
previous findings (Etienne-Manneville and Hall, 2001).

Palladin
Adult rats Cerebral cortex injury (Boukhelifa et al.,
2003)

Upregulation of Palladin. Role in modulation of actin cytoskeleton upon injury
not explored.

a-Actinin
Adult mice Cortical stab wound injury (Abd-El-Basset
and Fedoroff, 1997)

Upregulation of a-actinin. Role in modulation of actin cytoskeleton upon injury
not explored.

Summary of in vivo studies with mouse disease models, which, either directly addressed or reported phenotypes associated with the cytoskeleton.
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partially responsible for the swelling of astrocytes is simply
water, which is increasingly taken up through aquaporin-4,
and which reactive astrocytes upregulate and redistribute from
their perivascular endfeet over the entire plasma membrane
(Saadoun et al., 2005; Ren et al., 2013). Aquaporin-4-dependent
water uptake contributes to the defense response of astrocytes,
as shown in loss of function experiments, where deleting this
water channel perturbs the ability of astrocytes to migrate in cell
culture and to form glial scars in vivo (Saadoun et al., 2005).
Furthermore, loss of aquaporin-4 impairs astrocyte secretion
of proinflammatory cytokines in autoimmune encephalitis (Liu
et al., 2014). However, the effective impact of aquaporin-4-
dependent water uptake in reactive astrocytes in pathological
conditions is currently under debate. Depending on the
individual nature of the pathological condition, changes in
astrocytic aquaporin-4 can either facilitate or counteract the
formation of cerebral edema (for a review see Stokum et al.,
2015).

Another major driving force in hypertrophy and process
outgrowth in scar-forming astrocytes is the cytoskeleton. Below
we discuss in depth the individual filament systems of the
cytoskeleton in reactive astrocytes and their shape changes under
pathological changes, and review in vivo analyses and studies
using cultured astrocytes.

Microtubule Activity in Scar-Forming
Astrocytes
Cell biology experiments provide substantial insights into the
function of the microtubule network during palisading of
scar-forming astrocytes. One of the most frequently used cell

culturemodels is the scratch injurymodel of polygonal astrocytes
grown in a 2D monolayer (Etienne-Manneville, 2006). This
assay provokes the coordinated orientation, polarization and
extension of astrocytes into the wound area, analogous to
palisading astroglia during traumatic brain injury (Figures 5, 6),
although it should be noted that cultured cells migrate
unlike their counterparts in vivo (Bardehle et al., 2013).
Astrocyte polarization begins with the microtubule-dependent
reorientation of both the microtubule-organizing center and
the Golgi apparatus (Etienne-Manneville and Hall, 2001). The
reorientation of the Golgi in astrocytes by microtubules is
distinct from that in other cells, as Golgi alignment relies solely
on the actin cytoskeleton during migration of most other cell
types (Magdalena et al., 2003). Microtubules are particularly
enriched in long astrocytic processes (up to 150 µm; Figure 6).
Moreover, microtubules reach the extreme tip of these astrocyte
protrusions in contrast to other cell types, where only a minority
of microtubules selectively enter the actin-enriched leading edge
(Schober et al., 2007; Dent et al., 2011; Sakamoto et al., 2013).
Treatment with the tubulin depolymerizing agent nocodazole
demonstrated the integral function of microtubules for the
directed outgrowth of palisade-like processes.

A key molecule in the directed elongation of astrocyte
processes is the small GTPase Cdc42, which regulates the
alignment of the microtubule-organizing center and Golgi
through an mPar6-PKCzeta signaling complex (Etienne-
Manneville and Hall, 2001). Downstream targets of Cdc42-
mPar6-PKCzeta are dynein motor proteins and inactive
GSK3-beta, which induces the steering interaction of the tumor
suppressor protein, adenomatous polyposis coli (APC) with
the microtubule plus-ends (Figure 5; Etienne-Manneville and

FIGURE 5 | Roles of cytoskeletal systems during the Injury response of astrocytes in vitro. Summary in view of the localization and roles of microtubules,
intermediate and actin filaments in cultured astrocytes upon injury. The schematic drawings depict the cytoskeletal systems and their major regulators involved in
extension of astrocyte processes and cell body hypertrophy.
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FIGURE 6 | Organization of the cytoskeleton in reactive astrocytes in comparison to fibroblasts and neurons in vitro. Schematic drawings of microtubules (green) and
F-actin arrays and fibers (magenta) in cultured mouse astrocytes after injury (left), migrating fibroblasts (center) and in extending axonal growth cones of developing
neurons (right). The dashed line indicates the injury border and the nucleus is shown in gray (N). Elongated polygonal astrocytes at the wound edge extend into the
cell-free space and have actin filaments (magenta) that are organized around the cell body and in bundles reaching into the center of the processes, while the leading
edge possesses only a narrow outer rim of filamentous actin within sparse ruffles (left). Microtubules are enriched throughout the processes and reach into the
extreme tip. In contrast, both fibroblasts and neuronal growth cones exhibit prominent actin arrays and fibers in the periphery of their leading edge forming filopodia,
lamellipodia or lamellipodia-like veils. Most of their microtubules are present behind the actin-rich periphery, where microtubules form dense parallel bundles in
growth cones. Microtubules extending into the actin-rich periphery frequently associate with actin fibers of filopodia.

Hall, 2003). Cdc42 is actively delivered towards the leading edge
through anterograde transport by Arf6-positive vesicles (Osmani
et al., 2010). Moreover, Cdc42 controls microtubule-dependent
outgrowth of astrocyte processes through Rac1 (Figure 5;
Etienne-Manneville and Hall, 2001). However, inducible genetic
deletion of Cdc42 in vivo does not affect the orientation of
palisading astrocytes but impairs their pathology-induced
proliferation in traumatic brain injuries (Table 1; Robel et al.,
2011; Bardehle et al., 2013). Whether this in vivo phenotype
relies on differences in microtubule regulation between genuine
and cultured astrocytes or the mosaic pattern of scattered
Cdc42 deficient astrocytes influenced by the majority of
surrounding wildtype cells, is currently unknown. Future work
will need to further study the significance of microtubules in
reactive astrocytes through comprehensive studies in vivo and
additional cell culture models.

Intermediate Filaments in Glial Scarring
Because of the prominent upregulation of intermediate proteins
in reactive astrocytes, this filament network is traditionally
seen as the most relevant cytoskeletal system in astrogliosis
(Sultana et al., 2000). In contrast to during development,
intermediate filaments substantially participate in astrogliosis
and glial scarring, with their impact dependent on the CNS
region and the type of pathology. Of note, GFAP and vimentin
deficiency impairs the hypertrophy of cell bodies and main
processes in reactive astrocytes. Moreover, glial scars that occur
as a consequence of brain or spinal cord injuries are less
dense and are frequently accompanied by significant bleeding
in the central lesion sites (Table 1; Pekny et al., 1999). Deleting
both intermediate proteins affects axon remodeling and motor
behavioral recovery in mice after stroke and correlates with

increased sensitivity of astrocytes to oxidative stress during
hypoxia and subsequent reperfusion (de Pablo et al., 2013; Liu
et al., 2014). Furthermore, the loss of GFAP and vimentin in
a mouse model for chronic neurodegenerative Batten disease
impairs the blood-brain barrier and accelerates the onset and
progression of the pathology (Macauley et al., 2011). The absence
of intermediate filaments also affects the interaction of astrocytes
with amyloid plaques in AD mouse models, albeit without
significant effect on the AD plaque load (Table 1; Kamphuis et al.,
2014). However, deficiency in GFAP and vimentin may also have
beneficial effects, as shown in GFAP- and vimentin-deficient
mice exhibiting complete axon regeneration after induction of a
sciatic nerve lesion (Table 1; Berg et al., 2013). In addition, a lack
of GFAP and vimentin induces remarkable synaptic regeneration
after entorhinal cortex lesions (Table 1;Wilhelmsson et al., 2004).

The fine structure of the intermediate filament network
was mainly studied in culture after scratch induced-injuries,
where intermediate filaments run along the cells’ front-rear
polarity axis in elongating astrocytes (Sakamoto et al., 2013).
Intermediate filaments play an important role in establishing
and maintaining cell polarity, directing movement and control
of nuclear positioning, and interacting and coordinating
with other filament systems of the cytoskeleton (Dupin
et al., 2011; Sakamoto et al., 2013; Leduc and Etienne-
Manneville, 2017). Intermediate filaments and microtubules
create coextensive networks along the elongated processes of
astrocytes (Figure 5) and the arrangement of both filament
types is coordinated through APC (Sakamoto et al., 2013).
On the one hand, a major role of intermediate filaments may
involve the creation of template tracks for microtubules to
enhance persistence of cell polarity and directed movement
(Figure 5; Gan et al., 2016). Alternatively, microtubules may
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be required to establish stabilizing intermediate filaments
according to increased anterograde and reduced retrograde
transport of intermediate filament subunits along microtubules
in extending astrocytes (Leduc and Etienne-Manneville, 2017).
Along with microtubules, intermediate filaments associate with
actin filaments and control the assembly of actin fibers and
orientate traction forces for direct cell movement (Figure 5;
Costigliola et al., 2017; Jiu et al., 2017).

The Actin Cytoskeleton During Astrogliosis
In contrast to the comprehensive knowledge on the actin
cytoskeleton in non-neuronal cells and neurons, little is currently
known regarding the nature and function of the actin filament
cytoskeleton in astrocytes in general (as described above) and,
in particular, during astrogliosis. Available data indicate distinct
differences in the actin organization of polarizing astrocytes
after injury, compared to other extending or migrating cells
(Figure 6; Dent et al., 2011; Steffen et al., 2017). In cell
culture, protruding processes of polygonal astrocytes exhibit
a slim outer rim of filamentous actin with occasional ruffles,
where other growing or migrating cells such as fibroblasts
and neurons possess prominent actin meshworks and fibers in
their periphery and form lamellipodia and filopodia (Figure 6;
Etienne-Manneville and Hall, 2001). In scar-forming astrocytes,
most actin filaments are instead concentrated around the cell
body. Depolymerizing actin filaments with the toxin cytochalasin
D seems to have little effect on the formation of long processes
in polygonal astrocytes but blocks their artificial migration in
scratch wound assays (Etienne-Manneville and Hall, 2001). In
contrast, astrocytes with STAT3-dependent defects in reactivity
and process elongation also present defects in actin-dependent
focal adhesion disassembly and have substantially enhanced
actomyosin tonus, while the organization of microtubules is
unaffected (Table 1; Renault-Mihara et al., 2017). Moreover,
astrocytes do respond to injury in vitro and in vivo by a drastic
upregulation of the actin regulators α-actinin and its ligand
palladin, which are known to reorganize actin filaments through
crosslinking and bundling (Table 1; Abd-El-Basset and Fedoroff,
1997; Boukhelifa et al., 2003). The particular injury-specific
increase and accumulation of actin regulators in scar-forming
astrocytes imply a currently unknown contribution of the actin
cytoskeleton to glial scarring.

Although the relevance of actin dynamics in palisading
astrocytes is not clear, studies in astrocytes in culture and
in tissues indicate a role of the actin cytoskeleton in
controlling hypertrophy and alterations in astrocyte complexity.
Acute inhibition of the Arp2/3 complex in brain slices
increases the astrocyte cell body size and abundance of
large processes analogous to reactive astrocytes in diffuse
trauma. Moreover, inactivating the Arp2/3 complex accelerates
the hypertrophy of stellate astrocytes in the oxygen/glucose-
deprivation model of stroke, whereas overactivating Arp2/3 by
depleting its endogenous inhibitor PICK1 or overexpressing the
activator N-WASP suppresses cell body expansion (Figure 5;
Murk et al., 2013). This is in line with other studies
indicating a switch from Rac1 and Arp2/3-dependent networks
towards actin organization in reactive astrocytes relying on

RhoA and linear actin filaments in association with myosin
(John, 2004; Renault-Mihara et al., 2017). However, the
expansion of astrocyte cell bodies and main processes upon
Arp2/3 inhibition is another indication of distinct actin
organization in astrocytes compared to other cells, where the
Arp2/3 inactivation instead leads to shrinkage, collapse or
inhibited outgrowth (Figure 6; Korobova and Svitkina, 2008;Wu
et al., 2012).

CONCLUDING REMARKS

The morphological features of astrocytes are integral to the
normal shape and functioning of the CNS from late embryonic
development throughout all stages of an organism’s life. Despite
their critical relevance in both normal and disease states,
the molecular mechanisms behind the plastic morphology of
astrocytes are poorly understood. Nonetheless, improvements
in cell culture methods and the development of new tools
and elaboration of sophisticated microscopy techniques will
allow observation and manipulation of more authentic astrocyte
settings. In this context, nanoscopic PAP-synapse interactions
are becoming increasingly accessible with super-resolution light
microscopy, and as such, provide an appealing experimental
alternative to sophisticated electron microscopy (Heller et al.,
2017). Recently introduced astrocyte-specific and inducible gene
targeting models will allow the functional characterization
of astrocytes throughout the entire CNS without undesired
collateral damage in neurogenic radial glia cells (Srinivasan
et al., 2016; Winchenbach et al., 2016). Finally, human-
specific and disease-relevant characteristics of astrocytes, which
are associated with abnormal morphologies and functions
(Windrem et al., 2017) can now be studied in vivo. The
substitution of murine astrocytes through the implantation of
glial progenitors derived from human-iPSC makes it possible
to investigate the specific role and contribution of abnormal
astrocytes in diverse pathologies. A better understanding of the
plasticity of astrocyte morphology and function will help us to
gain insight into the fundamental properties of this profound
shapeshifter in both normal cells and diverse human pathologies.
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Chowdhury, H. H., et al. (2007). Cytoskeleton and vesicle mobility in
astrocytes. Traffic 8, 12–20. doi: 10.1111/j.1600-0854.2006.00509.x

Procko, C., Lu, Y., and Shaham, S. (2011). Glia delimit shape changes of
sensory neuron receptive endings in C. elegans. Development 138, 1371–1381.
doi: 10.1242/dev.058305

Racchetti, G., D’Alessandro, R., and Meldolesi, J. (2012). Astrocyte
stellation, a process dependent on Rac1 is sustained by the regulated
exocytosis of enlargeosomes. Glia 60, 465–475. doi: 10.1002/glia.
22280

Rakic, P. (2003). Developmental and evolutionary adaptations of cortical radial
glia. Cereb. Cortex 13, 541–549. doi: 10.1093/cercor/13.6.541

Frontiers in Cellular Neuroscience | www.frontiersin.org 15 August 2018 | Volume 12 | Article 261

https://doi.org/10.1002/glia.22723
https://doi.org/10.1002/glia.22723
https://doi.org/10.1523/JNEUROSCI.3579-11.2011
https://doi.org/10.1101/cshperspect.a020388
https://doi.org/10.1101/cshperspect.a020388
https://doi.org/10.1242/jcs.00288
https://doi.org/10.1038/nn.4649
https://doi.org/10.1016/j.ydbio.2006.02.029
https://doi.org/10.1016/j.ydbio.2006.02.029
https://doi.org/10.1002/glia.20990
https://doi.org/10.1083/jcb.85.3.890
https://doi.org/10.1098/rstb.2014.0047
https://doi.org/10.1098/rstb.2014.0047
https://doi.org/10.1073/pnas.1004406107
https://doi.org/10.1073/pnas.1004406107
https://doi.org/10.1111/bpa.12602
https://doi.org/10.1111/bpa.12602
https://doi.org/10.1101/gad.188326.112
https://doi.org/10.1016/j.ceca.2013.03.001
https://doi.org/10.1016/j.ceca.2013.03.001
https://doi.org/10.1016/j.celrep.2017.02.060
https://doi.org/10.1016/j.celrep.2016.03.093
https://doi.org/10.1007/bf00224329
https://doi.org/10.1007/bf00224329
https://doi.org/10.1038/nn994
https://doi.org/10.1242/jcs.125146
https://doi.org/10.1093/brain/awl165
https://doi.org/10.1038/ncomms11102
https://doi.org/10.1002/glia.20724
https://doi.org/10.1126/science.1110647
https://doi.org/10.1523/JNEUROSCI.4466-06.2007
https://doi.org/10.1523/JNEUROSCI.4707-08.2009
https://doi.org/10.1016/j.tins.2006.08.004
https://doi.org/10.1083/jcb.201003091
https://doi.org/10.1016/j.cell.2006.02.051
https://doi.org/10.1016/j.cell.2006.02.051
https://doi.org/10.1038/nn.3662
https://doi.org/10.1073/pnas.1016650108
https://doi.org/10.1073/pnas.1016650108
https://doi.org/10.1006/excr.1997.3922
https://doi.org/10.1083/jcb.145.3.503
https://doi.org/10.1523/JNEUROSCI.2401-14.2014
https://doi.org/10.1523/JNEUROSCI.2401-14.2014
https://doi.org/10.1083/jcb.32.1.113
https://doi.org/10.1038/jcbfm.1990.141
https://doi.org/10.1038/sj.emboj.7601737
https://doi.org/10.1111/j.1600-0854.2006.00509.x
https://doi.org/10.1242/dev.058305
https://doi.org/10.1002/glia.22280
https://doi.org/10.1002/glia.22280
https://doi.org/10.1093/cercor/13.6.541
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Schiweck et al. Astrocyte Morphology in Health and Disease

Ramakers, G. J. A., and Moolenaar, W. H. (1998). Regulation of astrocyte
morphology by RhoA and lysophosphatidic acid. Exp. Cell Res. 245, 252–262.
doi: 10.1006/excr.1998.4224

Ramón y Cajal, S. (1913). Un nuevo proceder para la impregnación de la neuroglía.
Bol. Soc. Esp. Bio. 2, 104–108.

Rash, J. E., Yasumura, T., Hudson, C. S., Agre, P., and Nielsen, S. (1998).
Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and
ependymocyte plasma membranes in rat brain and spinal cord. Proc. Natl.
Acad. Sci. U S A 95, 11981–11986. doi: 10.1073/pnas.95.20.11981

Ren, Z., Iliff, J. J., Yang, L., Yang, J., Chen, X., Chen, M. J., et al. (2013). ‘Hit & Run’
model of closed-skull traumatic brain injury (TBI) reveals complex patterns of
post-traumatic AQP4 dysregulation. J. Cereb. Blood Flow Metab. 33, 834–845.
doi: 10.1038/jcbfm.2013.30

Renault-Mihara, F., Mukaino, M., Shinozaki, M., Kumamaru, H., Kawase, S.,
Baudoux, M., et al. (2017). Regulation of RhoA by STAT3 coordinates glial scar
formation. J. Cell Biol. 216, 2533–2550. doi: 10.1083/jcb.201610102

Renner, M., Lancaster, M. A., Bian, S., Choi, H., Ku, T., Peer, A., et al. (2017). Self-
organized developmental patterning and differentiation in cerebral organoids.
EMBO J. 36, 1316–1329. doi: 10.15252/embj.201694700

Richier, B., Vijandi, C. D. M., Mackensen, S., and Salecker, I. (2017).
Lapsyn controls branch extension and positioning of astrocyte-like glia in
the Drosophila optic lobe. Nat. Commun. 8:317. doi: 10.1038/s41467-017-
00384-z

Robel, S., Bardehle, S., Lepier, A., Brakebusch, C., and Götz, M. (2011).
Genetic deletion of cdc42 reveals a crucial role for astrocyte recruitment
to the injury site in vitro and in vivo. J. Neurosci. 31, 12471–12482.
doi: 10.1523/JNEUROSCI.2696-11.2011

Robel, S., Mori, T., Zoubaa, S., Schlegel, J., Sirko, S., Faissner, A., et al. (2009).
Conditional deletion of ß1-integrin in astroglia causes partial reactive gliosis.
Glia 57, 1630–1647. doi: 10.1002/glia.20876

Rottner, K., Faix, J., Bogdan, S., Linder, S., and Kerkhoff, E. (2017). Actin assembly
mechanisms at a glance. J. Cell Sci. 130, 3427–3435. doi: 10.1242/jcs.206433

Rotty, J. D., Wu, C., Haynes, E. M., Suarez, C., Winkelman, J. D., Johnson, H. E.,
et al. (2015). Profilin-1 serves as a gatekeeper for actin assembly by Arp2/3-
dependent and—independent pathways. Dev. Cell 32, 54–67. doi: 10.1016/j.
devcel.2014.10.026

Rubinstein, R., Thu, C. A., Goodman, K. M., Wolcott, H. N., Bahna, F.,
Mannepalli, S., et al. (2015). Molecular logic of neuronal self-recognition
through protocadherin domain interactions. Cell 163, 629–642. doi: 10.1016/j.
cell.2015.09.026

Rungger-Brändle, E., Messerli, J. M., Niemeyer, G., and Eppenberger, H. M.
(1993). Confocal microscopy and computer-assisted image reconstruction
of astrocytes in the mammalian retina. Eur. J. Neurosci. 5, 1093–1106.
doi: 10.1111/j.1460-9568.1993.tb00963.x

Saadoun, S., Papadopoulos, M. C., Watanabe, H., Yan, D., Manley, G. T., and
Verkman, A. S. (2005). Involvement of aquaporin-4 in astroglial cell migration
and glial scar formation. J. Cell Sci. 118, 5691–5698. doi: 10.1242/jcs.02680

Sakamoto, Y., Boëda, B., and Etienne-Manneville, S. (2013). APC binds
intermediate filaments and is required for their reorganization during cell
migration. J. Cell Biol. 200, 249–258. doi: 10.1083/jcb.201206010

Sandau, U. S., Mungenast, A. E., Alderman, Z., Sardi, S. P., Fogel, A. I.,
Taylor, B., et al. (2011). SynCAM1, a synaptic adhesion molecule, is
expressed in astrocytes and contributes to erbB4 receptor-mediated control
of female sexual development. Endocrinology 152, 2364–2376. doi: 10.1210/en.
2010-1435

Schober, J. M., Komarova, Y. A., Chaga, O. Y., Akhmanova, A., and Borisy, G. G.
(2007). Microtubule-targeting-dependent reorganization of filopodia. J. Cell
Sci. 120, 1235–1244. doi: 10.1242/jcs.003913

Scholze, A. R., Foo, L. C., Mulinyawe, S., and Barres, B. A. (2014). BMP signaling
in astrocytes downregulates EGFR to modulate survival and maturation. PLoS
One 9:e110668. doi: 10.1371/journal.pone.0110668

Schousboe, A., Bak, L. K., and Waagepetersen, H. S. (2013). Astrocytic control
of biosynthesis and turnover of the neurotransmitters glutamate and GABA.
Front. Endocrinol. 4:102. doi: 10.3389/fendo.2013.00102

Schweinhuber, S. K., Meßerschmidt, T., Hänsch, R., Korte, M., and Rothkegel, M.
(2015). Profilin isoforms modulate astrocytic morphology and the motility
of astrocytic processes. PLoS One 10:e0117244. doi: 10.1371/journal.pone.
0117244

Shapiro, D. L. (1973). Morphological and biochemical alterations in foetal rat
brain cells cultured in the presence of monobutyryl cyclic AMP. Nature 241,
203–204. doi: 10.1038/241203a0

Simard, M., and Nedergaard, M. (2004). The neurobiology of glia in the context
of water and ion homeostasis. Neuroscience 129, 877–896. doi: 10.1016/j.
neuroscience.2004.09.053

Singh, S. K., Fiorelli, R., Kupp, R., Rajan, S., Szeto, E., Lo Cascio, C., et al.
(2016). Post-translational modifications of OLIG2 regulate glioma invasion
through the TGF-β pathway. Cell Rep. 16, 950–966. doi: 10.1016/j.celrep.2016.
06.045

Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar
formation. Trends Neurosci. 32, 638–647. doi: 10.1016/j.tins.2009.08.002

Srinivasan, R., Lu, T. Y., Chai, H., Xu, J., Huang, B. S., Golshani, P., et al. (2016).
New transgenic mouse lines for selectively targeting astrocytes and studying
calcium signals in astrocyte processes in situ and in vivo.Neuron 92, 1181–1195.
doi: 10.1016/j.neuron.2016.11.030

Steffen, A., Stradal, T. E. B., and Rottner, K. (2017). Signalling pathways controlling
cellular actin organization.Handb. Exp. Pharmacol. 233, 321–353. doi: 10.1007/
164_2016_35

Stellwagen, D., andMalenka, R. C. (2006). Synaptic scaling mediated by glial TNF-
α. Nature 440, 1054–1059. doi: 10.1038/nature04671

Stogsdill, J. A., Ramirez, J., Liu, D., Kim, Y. H., Baldwin, K. T., Enustun, E.,
et al. (2017). Astrocytic neuroligins control astrocyte morphogenesis and
synaptogenesis. Nature 551, 192–197. doi: 10.1038/nature24638

Stokum, J. A., Kurland, D. B., Gerzanich, V., and Simard, J. M. (2015).
Mechanisms of astrocyte-mediated cerebral edema. Neurochem. Res. 40,
317–328. doi: 10.1007/s11064-014-1374-3

Stolt, C. C., Lommes, P., Sock, E., Chaboissier, M. C., Schedl, A., and Wegner, M.
(2003). The Sox9 transcription factor determines glial fate choice in the
developing spinal cord. Genes Dev. 17, 1677–1689. doi: 10.1101/gad.259003

Stork, T., Sheehan, A., Tasdemir-Yilmaz, O. E., and Freeman, M. R. (2014).
Neuron-Glia interactions through the heartless fgf receptor signaling pathway
mediate morphogenesis of Drosophila astrocytes. Neuron 83, 388–403.
doi: 10.1016/j.neuron.2014.06.026

Sultana, S., Sernett, S. W., Bellin, R. M., Robson, R. M., and Skalli, O. (2000).
Intermediate filament protein synemin is transiently expressed in a subset
of astrocytes during development. Glia 30, 143–153. doi: 10.1002/(sici)1098-
1136(200004)30:2<143::aid-glia4>3.0.co;2-z

Tan, Z., Liu, Y., Xi, W., Lou, H. F., Zhu, L., Guo, Z., et al. (2017). Glia-derived ATP
inversely regulates excitability of pyramidal and CCK-positive neurons. Nat.
Commun. 8:13772. doi: 10.1038/ncomms13772

Tatsumi, K., Okuda, H., Morita-Takemura, S., Tanaka, T., Isonishi, A., Shinjo, T.,
et al. (2016). Voluntary exercise induces astrocytic structural plasticity in
the globus pallidus. Front. Cell. Neurosci. 10:165. doi: 10.3389/fncel.2016.
00165

Theodosis, D. T. (2002). Oxytocin-secreting neurons: a physiological model of
morphological neuronal and glial plasticity in the adult hypothalamus. Front.
Neuroendocrinol. 23, 101–135. doi: 10.1006/frne.2001.0226

Theodosis, D. T., Piet, R., Poulain, D. A., and Oliet, S. H. R. (2004).
Neuronal, glial and synaptic remodeling in the adult hypothalamus: functional
consequences and role of cell surface and extracellular matrix adhesion
molecules. Neurochem. Int. 45, 491–501. doi: 10.1016/j.neuint.2003.11.003

Tsai, H., Li, H., Fuentealba, L. C., Molofsky, A. V., Taveira-Marques, R.,
Zhuang, H., et al. (2012). Regional astrocyte allocation regulates CNS
synaptogenesis and repair. Science 337, 358–362. doi: 10.1126/science.1222381

Van Horn, M. R., Strasser, A., Miraucourt, L. S., Pollegioni, L., and Ruthazer, E. S.
(2017). The gliotransmitter d-serine promotes synapse maturation and axonal
stabilization in vivo. J. Neurosci. 37, 6277–6288. doi: 10.1523/JNEUROSCI.
3158-16.2017

Wanner, I. B., Anderson, M. A., Song, B., Levine, J., Fernandez, A., Gray-
Thompson, Z., et al. (2013). Glial scar borders are formed by newly proliferated,
elongated astrocytes that interact to corral inflammatory and fibrotic cells
via STAT3-dependent mechanisms after spinal cord injury. J. Neurosci. 33,
12870–12886. doi: 10.1523/JNEUROSCI.2121-13.2013.

Warth, A., Mittelbronn, M., and Wolburg, H. (2005). Redistribution of the water
channel protein aquaporin-4 and the K+ channel protein Kir4.1 differs in
low- and high-grade human brain tumors. Acta Neuropathol. 109, 418–426.
doi: 10.1007/s00401-005-0984-x

Frontiers in Cellular Neuroscience | www.frontiersin.org 16 August 2018 | Volume 12 | Article 261

https://doi.org/10.1006/excr.1998.4224
https://doi.org/10.1073/pnas.95.20.11981
https://doi.org/10.1038/jcbfm.2013.30
https://doi.org/10.1083/jcb.201610102
https://doi.org/10.15252/embj.201694700
https://doi.org/10.1038/s41467-017-00384-z
https://doi.org/10.1038/s41467-017-00384-z
https://doi.org/10.1523/JNEUROSCI.2696-11.2011
https://doi.org/10.1002/glia.20876
https://doi.org/10.1242/jcs.206433
https://doi.org/10.1016/j.devcel.2014.10.026
https://doi.org/10.1016/j.devcel.2014.10.026
https://doi.org/10.1016/j.cell.2015.09.026
https://doi.org/10.1016/j.cell.2015.09.026
https://doi.org/10.1111/j.1460-9568.1993.tb00963.x
https://doi.org/10.1242/jcs.02680
https://doi.org/10.1083/jcb.201206010
https://doi.org/10.1210/en.2010-1435
https://doi.org/10.1210/en.2010-1435
https://doi.org/10.1242/jcs.003913
https://doi.org/10.1371/journal.pone.0110668
https://doi.org/10.3389/fendo.2013.00102
https://doi.org/10.1371/journal.pone.0117244
https://doi.org/10.1371/journal.pone.0117244
https://doi.org/10.1038/241203a0
https://doi.org/10.1016/j.neuroscience.2004.09.053
https://doi.org/10.1016/j.neuroscience.2004.09.053
https://doi.org/10.1016/j.celrep.2016.06.045
https://doi.org/10.1016/j.celrep.2016.06.045
https://doi.org/10.1016/j.tins.2009.08.002
https://doi.org/10.1016/j.neuron.2016.11.030
https://doi.org/10.1007/164_2016_35
https://doi.org/10.1007/164_2016_35
https://doi.org/10.1038/nature04671
https://doi.org/10.1038/nature24638
https://doi.org/10.1007/s11064-014-1374-3
https://doi.org/10.1101/gad.259003
https://doi.org/10.1016/j.neuron.2014.06.026
https://doi.org/10.1002/(sici)1098-1136(200004)30:2<143::aid-glia4>3.0.co;2-z
https://doi.org/10.1002/(sici)1098-1136(200004)30:2<143::aid-glia4>3.0.co;2-z
https://doi.org/10.1038/ncomms13772
https://doi.org/10.3389/fncel.2016.00165
https://doi.org/10.3389/fncel.2016.00165
https://doi.org/10.1006/frne.2001.0226
https://doi.org/10.1016/j.neuint.2003.11.003
https://doi.org/10.1126/science.1222381
https://doi.org/10.1523/JNEUROSCI.3158-16.2017
https://doi.org/10.1523/JNEUROSCI.3158-16.2017
https://doi.org/10.1523/JNEUROSCI.2121-13.2013.
https://doi.org/10.1007/s00401-005-0984-x
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Schiweck et al. Astrocyte Morphology in Health and Disease

Watkins, S., Robel, S., Kimbrough, I. F., Robert, S. M., Ellis-Davies, G.,
and Sontheimer, H. (2014). Disruption of astrocyte-vascular coupling and
the blood-brain barrier by invading glioma cells. Nat. Commun. 5:4196.
doi: 10.1038/ncomms5196

Wilhelmsson, U., Bushong, E. A., Price, D. L., Smarr, B. L., Phung, V., Terada, M.,
et al. (2006). Redefining the concept of reactive astrocytes as cells that remain
within their unique domains upon reaction to injury. Proc. Natl. Acad. Sci.
U S A 103, 17513–17518. doi: 10.1073/pnas.0602841103

Wilhelmsson, U., Li, L., Pekna, M., Berthold, C. H., Blom, S., and Eliasson, C.
(2004). Absence of glial fibrillary acidic protein and vimentin prevents
hypertrophy of astrocytic processes and improves post-traumatic regeneration.
J. Neurosci. 24, 5016–5021. doi: 10.1523/JNEUROSCI.0820-04.2004

Winchenbach, J., Düking, T., Berghoff, S. A., Stumpf, S. K., Hülsmann, S.,
Nave, K.-A., et al. (2016). Inducible targeting of CNS astrocytes in Aldh1l1-
CreERT2 BAC transgenic mice. F1000Res. 5:2934. doi: 10.12688/f1000research.
10509.1

Windrem, M. S., Osipovitch, M., Liu, Z., Bates, J., Chandler-Militello, D., Zou, L.,
et al. (2017). Human iPSC glial mouse chimeras reveal glial contributions
to schizophrenia. Cell Stem Cell 21, 195.e6–208.e6. doi: 10.1016/j.stem.2017.
06.012

Winkler, U., Hirrlinger, P. G., Sestu, M., Wilhelm, F., Besser, S., Zemljic-
Harpf, A. E., et al. (2013). Deletion of the cell adhesion adaptor protein vinculin
disturbs the localization of GFAP in Bergmann glial cells. Glia 61, 1067–1083.
doi: 10.1002/glia.22495

Witcher, M. R., Kirov, S. A., and Harris, K. M. (2007). Plasticity of perisynaptic
astroglia during synaptogenesis in the mature rat hippocampus.Glia 55, 13–23.
doi: 10.1002/glia.20415

Wolfes, A. C., and Dean, C. (2018). Culturing in vivo-like murine astrocytes using
the fast, simple, and inexpensive AWESAM protocol. J. Vis. Exp. 131:e56092.
doi: 10.3791/56092

Woo, J., Im, S.-K., Chun, H., Jung, S.-Y., Oh, S.-J., Choi, N., et al. (2017).
Functional characterization of resting and adenovirus-induced reactive
astrocytes in three-dimensional culture. Exp. Neurobiol. 26, 158–167.
doi: 10.5607/en.2017.26.3.158

Wu, C., Asokan, S. B., Berginski, M. E., Haynes, E. M., Sharpless, N. E.,
Griffith, J. D., et al. (2012). Arp2/3 is critical for lamellipodia and response to
extracellular matrix cues but is dispensable for chemotaxis. Cell 148, 973–987.
doi: 10.1016/j.cell.2011.12.034

Zhang, L., Zhang, S., Yao, J., Lowery, F. J., Zhang, Q., Huang, W. C.,
et al. (2015). Microenvironment-induced PTEN loss by exosomal microRNA
primes brain metastasis outgrowth. Nature 527, 100–104. doi: 10.1038/nature
15376

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Schiweck, Eickholt and Murk. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 17 August 2018 | Volume 12 | Article 261

https://doi.org/10.1038/ncomms5196
https://doi.org/10.1073/pnas.0602841103
https://doi.org/10.1523/JNEUROSCI.0820-04.2004
https://doi.org/10.12688/f1000research.10509.1
https://doi.org/10.12688/f1000research.10509.1
https://doi.org/10.1016/j.stem.2017.06.012
https://doi.org/10.1016/j.stem.2017.06.012
https://doi.org/10.1002/glia.22495
https://doi.org/10.1002/glia.20415
https://doi.org/10.3791/56092
https://doi.org/10.5607/en.2017.26.3.158
https://doi.org/10.1016/j.cell.2011.12.034
https://doi.org/10.1038/nature15376
https://doi.org/10.1038/nature15376
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

	Important Shapeshifter: Mechanisms Allowing Astrocytes to Respond to the Changing Nervous System During Development, Injury and Disease
	INTRODUCTION
	DEVELOPMENT: HOW TO BECOME A STAR
	WHAT STARS ARE MADE OF AND WHAT KEEPS THEM IN SHAPE
	Microtubules
	Intermediate Filaments
	The Actin Cytoskeleton

	A STARRING ROLE FOR ASTROCYTES AT SYNAPSES
	The Dynamic Cytoskeleton in PAPs

	STARS WITH SENSITIVE FEET
	FROM STARS TO SCARS
	Dealing With Insults
	Stars in Disease
	Microtubule Activity in Scar-Forming Astrocytes
	Intermediate Filaments in Glial Scarring
	The Actin Cytoskeleton During Astrogliosis

	CONCLUDING REMARKS
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES


