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GABA type A receptors (GABAARs) mediate the majority of fast inhibitory
neurotransmission in the central nervous system (CNS). Most prevalent as
heteropentamers composed of two α, two β, and a γ2 subunit, these ligand−gated
ionotropic chloride channels are capable of extensive genetic diversity (α1-6, β1-3, γ1-3,
δ, ε, θ, π, ρ1-3). Part of this selective GABAAR assembly arises from the critical role for
γ2 in maintaining synaptic receptor localization and function. Accordingly, mutations in
this subunit account for over half of the known epilepsy-associated genetic anomalies
identified in GABAARs. Fundamental structure–function studies and cellular pathology
investigations have revealed dynamic GABAAR trafficking and synaptic scaffolding as
critical regulators of GABAergic inhibition. Here, we introduce in vitro and in vivo
findings regarding the specific role of the γ2 subunit in receptor trafficking. We then
examine γ2 subunit human genetic variation and assess disease related phenotypes
and the potential role of altered GABAAR trafficking. Finally, we discuss new-age imaging
techniques and their potential to provide novel insight into critical regulatory mechanisms
of GABAAR function.
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INTRODUCTION

The adult central nervous system (CNS) is critically dependent on fast inhibitory
neurotransmission evoked by GABAA receptors (GABAARs). GABAARs are ligand-gated
ionotropic chloride (Cl−) channels ubiquitously expressed throughout the CNS that play a
fundamental role in restraining and sculpting neuronal activity. Disruptions in GABAAR
dependent neurotransmission leads to insufficient inhibitory effects throughout the brain,
contributing to the pathogenesis of epilepsy, neurodevelopmental disorders, depression,
schizophrenia and stroke (Hines et al., 2012). Activation of GABAARs by the neurotransmitter
GABA induces ion channel opening, Cl− influx, and subsequent membrane hyperpolarization.
These heteropentameric structures are predominantly composed of two α (α1-6), two β

(β1-3), and either a γ (γ1-3) or a δ subunit (Olsen and Sieghart, 2009) (Figures 1A,B).
GABAARs belong to the Cys-loop superfamily of pentameric ligand-gated ion channels (pLGICs)
including strychnine-sensitive glycine receptors, nicotinic acetylcholine (nACh) receptors, and
5-hydroxytryptamine type-3 (5-HT3) receptors. Individual subunits have a common structure
consisting of a large N-terminus extracellular domain (ECD) that participates in endogenous
ligand binding, a transmembrane domain (TM) comprised of four α-helical regions (M1-4) and a
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barely extruding extracellular C-terminus. The M2 region of
the subunits forms the ion channel pore. The hydrophobic
M regions are connected by a small intracellular loop
between M1-M2 and a much larger intracellular domain
(ICD; previously termed intracellular loop) between M3 and
M4 (Sigel and Steinmann, 2012) that mediates interactions
with intracellular proteins critical for receptor trafficking and
synaptic clustering (Figure 1C). Recently, GABAAR structures
for the human β3 homopentamer bound to benzamidine
(Miller and Aricescu, 2014), chimeric α5TM/β3ECD bound
to the neurosteroid allopregnanolone (Miller et al., 2017),
and human α1β2γ2 heteropentamer bound to GABA and
the benzodiazepine site antagonist Flumazenil (Zhu et al.,
2018) were resolved, advancing our growing understanding
of GABAAR molecular architecture. Importantly, nearly all
pLGIC family structural data lacks the large ICD (Nemecz
et al., 2016) (exception 5-HT3 receptor; Hassaine et al., 2014),
leaving functionally relevant information about this region left
undiscovered.

Presynaptic terminal release of GABA onto postsynaptically
clustered GABAARs initiates fast, transient receptor activation. In
contrast, activation of extrasynaptic GABAARs by ambient “spill
over” GABA generates a persistent tonic current (Figure 1D).
Most GABAARs evoking fast synaptic inhibition in the mature
cortex contain α1β2γ2 subunits, although α/β content can vary
widely (Olsen and Sieghart, 2009), prompting a unifying role of
γ2 in synaptic function. Importantly, the benzodiazepine drug
class selectively binds between the interface of a γ2 subunit
and either an α1/2/3/5 subunit to potentiate GABAAR function
and elicit behavioral effects including sedative/hypnotic, anti-
convulsant, myorelaxant, and/or anti-anxiety effects (Vinkers
and Olivier, 2012) (Figures 1A,B). Here we summarize (1)
known molecular interactors and mechanisms regulating γ2
trafficking (2) the importance of this subunit physiologically and
human γ2 genetic variants compromising structure and function
in vitro and in vivo and (3) application of modern imaging
techniques to discover novel insight into synaptic GABAAR
modulation.

γ2 SUBUNIT TRAFFICKING AND
INTERACTORS

Biosynthetic Trafficking and Insertion
During biosynthesis, GABAAR subunits are first assembled in
the endoplasmic reticulum (ER) and then transported to the
Golgi apparatus (Golgi) for further maturation (Figure 2).
Forward trafficking of γ2-GABAARs from the ER is negatively
regulated by Cleft lip and palate transmembrane protein
(CLPTM1) in vitro and in vivo (Figure 2) (Ge et al., 2018).
Overexpressing CLPTM1 reduces surface and synaptic levels of
γ2, resulting in reduced amplitude and frequency of inhibitory
postsynaptic current (IPSC), where the opposite effect is seen
by CLPTM1 knockdown (KD). Importantly, CLPTM1 also
regulates tonic inhibition and interacts with the extrasynaptic
subunits α4 and δ, suggesting this protein non-selectively
binds many GABAAR subtypes. Upon entry into the Golgi,

the γ2 subunit undergoes palmitoylation via the Golgi-specific
DHHC zinc finger enzyme (GODZ; also known as ZDHHC3)
(Keller et al., 2004; Fang et al., 2006). This process is key
for receptor clustering, innervation, and inhibitory strength
in vitro and in vivo (Keller et al., 2004; Fang et al., 2006;
Kilpatrick et al., 2016). GABAAR forward trafficking to the
cell surface depends on the microtubule-dependent molecular
motor kinesins (KIFs) (Figure 2). The KIF21B protein co-
precipitates with the GABAAR γ2 subunit (Labonte et al., 2014).
RNA KD of KIF21B reduces receptor surface levels and the
intensity of extrasynaptic γ2 clusters, but does not affect synaptic
GABAARs levels. Additionally, the KIF5 family plays a critical
role in trans-Golgi to surface GABAAR trafficking (Twelvetrees
et al., 2010). Conditional knockout (KO) of KIF5A in mice
results in deficits of GABAAR plasma membrane levels, epilepsy
phenotypes, and high lethality rate within 21 days postnatal
(Nakajima et al., 2012).

Notably, KIF5A (not KIF5B, KIF5C) selectively interacts with
the GABAAR-associated protein (GABARAP) in vivo (Nakajima
et al., 2012). The well-characterized GABARAP (Figure 2) is
part of the ubiquitin-like protein (UBL) family implicated in
numerous cellular processes (van der Veen and Ploegh, 2012).
GABARAP interacts with GABAAR γ subunits and microtubules,
is heavily localized at the Golgi apparatus and cell surface (Wang
et al., 1999), and overexpression augments GABAAR plasma
membrane levels (Leil et al., 2004). However, GABARAP
KO mice have unhindered distribution of γ2-GABAARs
and gephyrin, suggesting functional redundancy with other
trafficking proteins (O’Sullivan et al., 2005). Some evidence
suggests GABARAP preferentially associates with serine
phosphorylated γ2-GABAARs, while dephosphorylation by
protein phosphatase 1 (PP1) decreases this interaction (Qian
et al., 2011).

A number of GABARAP interacting proteins mediate
GABAAR trafficking or localization (Figure 2). For instance,
increased association with the PDZ domain-containing protein
GRIP is seemingly involved in NMDA receptor-dependent
GABAAR synaptic plasticity (Marsden et al., 2007). The
phospholipase C-related catalytically inactive proteins 1 and 2
(PRIP1/2) and the N-ethylmaleimide-sensitive factor ATPase
(NSF) interact with GABAARs both indirectly via GABARAP
and directly with β subunits (Figure 2) (Kanematsu et al., 2002;
Terunuma et al., 2004; Goto et al., 2005; Mizokami et al., 2007).
NSF is a key component of SNARE-mediated fusion and is
involved in receptor cell surface transit (Chou et al., 2010).
Notably, the γ2 subunit and PRIP share an overlapping binding
site on GABARAP (Kanematsu et al., 2002). PRIP1/2 KO
mice demonstrate diminished benzodiazepine sensitivity and
Zn2+ modulation concurrent with lower plasma membrane
GABAAR expression, consistent with impaired γ2 subunit
trafficking. KO of PRIP-1, the primary brain subtype, leads to
mice displaying an epileptic phenotype that can be successfully
suppressed by diazepam (DZP), but interictal discharges
persist (Zhu et al., 2012). Interestingly, DZP potentiation of
miniature inhibitory postsynaptic currents (mIPSC) remains
unchanged, but baseline and DZP potentiated tonic GABA
current amplitude in PRIP-1 KO neurons was reduced. PRIP-1
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FIGURE 1 | Generic GABAAR structure and subunit topology; and regulatory sites of the γ2 intracellular domain (ICD). (A) GABAAR heteropentamer composed of
αβγ subunits. Binding of the neurotransmitter GABA (yellow circle) at the αβ interface triggers ion channel opening and allows the rapid influx of Cl− and membrane
hyperpolarization in the mature nervous system. (B) Extracellular representation of the most prevalent cortical receptor subtype composed of α1β2γ2 subunits
showing all five subunits contributing to the central ion pore and the general binding sites of GABA (yellow circle) and benzodiazepines (BZs) (red square). BZs bind
at the interface of an α1/2/3/5 and γ subunit. (C) All subunits have a common topology including an extracellular N-terminal domain (ECD), short C-terminal tail, and
four transmembrane regions (M1-4) which compose the transmembrane domain (TM). M2 (blue) contributes to formation of the receptor ion channel pore, while the
ICD between M3 and M4 contains sites of phosphorylation and protein interactions that modulate channel function and/or trafficking. The γ2 L isoform intracellular
domain (ICD = AA 318-404, residue numbering does not include signal peptide) is shown here with identified regulatory sites and regions of protein interaction.
Seven lysine residues (red) contribute to γ2-containing GABAAR ubiquitination and endo-lysosomal targeting in HEK cells, with mutation of three additional lysine
residues needed to block receptor downregulation by E3 ligase RNF34 overexpression (ICD green Ks and K259 in smaller M1-M2 loop not shown in diagram). Note
the γ2L specific K344 residue (brown) has not been tested in ubiquitination studies (D) GABAARs composed of α(1-3)βγ subunits are largely synaptically localized via
gephyrin interactions and contribute to phasic currents, whereas α(4 or 6)βδ receptors are extrasynaptic and generate tonic current.

KO and PRIP1/2 double KO mice show anxiety-related
behaviors and abnormal locomotion related to GABAAR
dysfunction and reduced benzodiazepine sensitivity. Recently
the Rho GTPase Activating Protein 32 (ARHGAP32) isoform
1 (PX-RICS) was shown to form an adaptor complex with
GABARAP and the scaffold proteins 14-3-3ζ/θ to facilitate
γ2-GABAARs forward trafficking via dynein/dynactin and
promote surface expression (Nakamura T. et al., 2016).
KO of PX-RICS in mice generates an Autism Spectrum
Disorder (ASD) phenotype with increased susceptibility
to kainate-induced epileptic seizures, decreased GABAAR
plasma membrane levels, and lowered mIPSC amplitude.
Transgenic overexpression of 14-3-3ζ in mice protects against
neuronal death caused by prolonged seizures (Brennan
et al., 2013). In contrast, 14-3-3ζ mutations or deletions
have been identified in patients with pathology associated
with GABAAR deficits including schizophrenia, autism and

generalized epilepsy (Tenney et al., 2011; Fromer et al., 2014;
Toma et al., 2014).

Synaptic Accumulation and Functional
Regulation
Following insertion at the plasma membrane, γ2-GABAARs
undergo Brownian diffusion until interaction with the inhibitory
postsynaptic scaffolding protein gephyrin causes constraint and
accumulation (Figures 1D, 2). Specifically, GABAAR α1/2/3/5
and β2/3 subunits (at lower affinity) mediate gephyrin-receptor
binding (Tretter et al., 2008, 2011; Mukherjee et al., 2011;
Kowalczyk et al., 2013; Brady and Jacob, 2015). While no direct
interaction between γ2 and gephyrin has been identified, the
synaptic levels of these proteins are intimately tied, shown
by KO studies of gephyrin (Kneussel et al., 1999) and γ2
(Schweizer et al., 2003). Interestingly, chimeric studies indicate
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FIGURE 2 | GABAAR trafficking and key interacting proteins at GABAergic synapses. The process of GABAAR synthesis, assembly and forward trafficking is highly
regulated. Forward trafficking of γ2-GABAARs from the ER is negatively regulated by CLPTM1. Subunits are assembled into pentameric receptors in the
endoplasmic reticulum (ER) where proper folding allows receptors to avoid proteosomal degradation and exit to the Golgi. In the Golgi, palmitoylation of γ subunits
by the palmitoyltransferase GODZ is a key step in promoting forward trafficking to the synapse. GABARAP interacts with γ subunits and microtubules and
overexpression augments receptor plasma membrane levels. PX-RICS forms an adaptor complex with GABARAP to facilitate γ2-GABAARs forward trafficking.
PRIP1/2 and NSF interact with GABAARs both indirectly via GABARAP and directly with β subunits. The kinesin KIF5 is the main microtubule (MT)-dependent motor
transporting inhibitory synapse components although recent work shows KIF21 contributes to extrasynaptic receptor delivery. LH4 forms a complex between γ2 and
NL2. NL2 is central in GABAAR synapse development via its trans-synaptic association with axonal neurexins and also binds gephyrin. GABAARs primarily undergo
clathrin-dependent endocytosis via β and γ subunit interactions with the clathrin-adaptor protein 2 (AP2) complex. Phosphorylation of AP2-interaction motifs within
receptor subunits increases cell-surface receptor levels and enhances GABAAR neurotransmission by reducing AP2 binding to receptors. After internalization,
clathrin-coated vesicles fuse with early endosomes, allowing for subsequent receptor recycling or targeting for degradation in lysosomes. CAML interaction with the
γ2 subunit promotes forward trafficking and recycling. Ubiquitination of GABAAR contributes to lysosomal targeting, with the ubiquitin E3 ligase RNF34 directly
interacting with the γ2 subunit. Protein abbreviations: CAML (calcium-modulating cyclophilin ligand), CLPTM1 (Cleft lip and palate transmembrane protein),
GABARAP (GABAAR - associated protein), GODZ (Golgi-specific DHHC zinc finger enzyme), KIF 5/21 (microtubule-dependent molecular motor kinesins), LH4
(lipoma HMGIC fusion partner-like protein 4), NL2 (neuroligin 2), NSF (N-ethylmaleimide-sensitive factor ATPase), PRIP (phospholipase C-related catalytically inactive
proteins), PX-RICS [Rho GTPase Activating Protein 32 (ARHGAP32) isoform 1], RNF34 (ring finger protein 34 E3 ligase).
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the γ2 M4 is sufficient to cause GABAAR accumulation opposite
GABAergic terminals, while the large ICD of γ2 is necessary
for gephyrin recruitment and rescue of synaptic function in
γ2 KO cultured neurons (Alldred et al., 2005). It is likely
that an indirect interaction occurs between γ2 and gephyrin
across a bridge of other key synaptic proteins. Recently, six
unrelated patients were identified with microdeletions in the
gephyrin gene resulting in a range of neurodevelopmental
deficits including ASD, schizophrenia or epilepsy (Lionel et al.,
2013). The recently discovered GABAAR regulatory Lhfpl
(GARLH) family proteins lipoma HMGIC fusion partner-like
3 and 4 (LH3 and LH4) forms a native complex between γ2
and the transsynaptic protein neuroligin 2 (NL2) (Figure 2)
(Yamasaki et al., 2017). NL2 is central in GABAAR synapse
development via its trans-synaptic association with axonal
neurexins (Sudhof, 2008). Diminishing LH4 levels in culture
and in vivo dramatically reduced γ2-GABAAR and gephyrin
synaptic clustering and inhibitory strength (Davenport et al.,
2017; Yamasaki et al., 2017). Curiously, despite the dramatic
reduction in synaptic inhibition, epilepsy susceptibility or
overt behavioral phenotypes in these mice have yet to be
reported in the constitutive LH4 KO mouse. Importantly,
gephyrin is known to directly bind the intracellular domain
of NL2 (Poulopoulos et al., 2009). Thus γ2 subunit-LH4-NL2-
gephyrin interactions could provide a molecular framework
to support γ2’s role in GABAAR synaptic recruitment and
maintenance.

Synaptic plasticity, or the dynamic modulation of synaptic
output, is heavily influenced by receptor phosphorylation
via altering channel function or receptor trafficking.
Phosphoregulation of γ2 S327 is an important mediator of
GABAAR retention at synapses. Detailed electrophysiology and
in vivo studies have identified the PKCε isoform specifically
phosphorylates the γ2 S327 residue (Figures 1C, 2), ultimately
fine-tuning responsiveness to ethanol and benzodiazepines
(Qi et al., 2007). Additionally, protocols that induce calcium-
entry via glutamate application, strong NMDA receptor
activation, or robust neuronal activity enhance receptor lateral
mobility, decrease synaptic cluster size, and reduce mIPSC
amplitude via the phosphatase calcineurin (CaN) (Bannai
et al., 2009) and dephosphorylation of the γ2 subunit S327
residue (Figures 1C, 2) (Muir et al., 2010). More broadly,
activation of all PKC isoforms by 1 h PMA (PKC activator;
30 nM) treatment decreases surface γ2-GABAAR levels that
can be reversed by specific inhibition of PKCε catalytic activity
in HEK cells and PKCε specific activation reduces GABAAR
current amplitude (Chou et al., 2010). This effect was in part
attributed to changes in GABAAR trafficking occurring though
PKCε association and phosphorylation of NSF. The scaffolding
protein 14-3-3-θ acts as a bridge for the PKCγ isoform to interact
with γ2 in cerebellar Purkinje neurons and N2a cells (Qian
et al., 2012). 14-3-3-θ KD in mice by siRNA microinjection
reduces γ2-GABAAR overall serine phosphorylation, while
KD of 14-3-3-θ or PKCγ reverses the PMA (200 nM, 30 min)
induced upregulation of C cell surface expression in N2a cells.
These apparently conflicting reports on PKC kinase family
modulation highlights the complexity of this signaling pathway

in γ2-GABAAR regulation, with varied effects dependent on the
pharmacological agents used, treatment times, model, and PKC
isoforms.

An important consideration for γ2 subunit regulation is its
presence in a short (γ2S) or long (γ2L) isoform; the γ2L isoform
has 8 additional amino acids (LLRMFSFK) in the large ICD
with the serine site (S343) capable of being phosphorylated
by Protein kinase C (PKC) and Calcium/calmodulin-dependent
protein kinase type II (CaMKII) (Figure 1C) (Whiting et al.,
1990; Moss et al., 1992; McDonald and Moss, 1994). Expression
levels of γ2S remain constant throughout development, while
γ2L levels increase during neuronal maturation (Wang and Burt,
1991). Early in vitro expression studies found that the additional
amino acids in the γ2L subunit may play a role in the response
to diazepam and be critical for ethanol enhancement of GABA
current (Wafford et al., 1991). Both mutation of S343 to a
phosphomimetic aspartate or to non-phosphorylatable valine
resulted in cell surface trafficking of γ2L when expressed alone,
similar to γ2S (Boileau et al., 2010). This work also proposed
an accessory protein role for γ2S as an external modulator
of GABAAR function to confer zinc blockade protection for
receptors. When comparing synaptic clustering of γ2L vs.
γ2S subunit large ICD (partial subunit chimeras) in spinal
cord neurons, postsynaptic γ2L ICD chimera accumulation is
higher, and can be enhanced by PKC activation by phorbol
ester phorbol-12,13-dibutyrate (PDBu) and reversed by mutating
the S343 residue of γ2L (Meier and Grantyn, 2004). The
physiological role of CaMKII direct phosphorylation on γ2 has
not yet been described, although CaMKII is required for a
type of inhibitory long term potentiation (iLTP) in Purkinje
neurons known as rebound potentiation (Kano et al., 1996) and
increased association between the γ2 subunit and GABARAP
(Kawaguchi and Hirano, 2007). CaMKII plays other critical
roles in GABAergic plasticity including promoting receptor
surface levels (Wang et al., 1995; Marsden et al., 2007, 2010;
Saliba et al., 2012) and recruitment of the synaptic scaffold
protein gephyrin, while reducing GABAAR lateral diffusion
(Petrini et al., 2014).

Internalization
Non-synaptic GABAARs on the cell surface are capable
of undergoing internalization (Bogdanov et al., 2006), a
fundamental cellular process that regulates receptor signaling
and function (Figure 2). GABAAR internalization is primarily
clathrin-mediated in concert with GTPase dynamin activity
and the adaptor protein AP2 complex (Kittler et al., 2000),
although clathrin-independent GABAAR endocytosis has been
described (Cinar and Barnes, 2001; Rowland et al., 2006).
AP2 interacts with the ICD of GABAAR β subunits and
the extrasynaptic δ subunit in a phospho-dependent manner
(McDonald et al., 1998; Brandon et al., 2002, 2003; Herring
et al., 2005; Kittler et al., 2005; Smith et al., 2008; Gonzalez
et al., 2012; Smith et al., 2012). The γ2 subunit also contains
two AP2 interaction domains on its ICD, a 12 basic amino
acid region and a classical YGYECL motif (Smith et al., 2008)
(Figure 1C). Phosphorylation at Y365/367 residues within the
YGYECL motif by the non-receptor tyrosine-protein kinases
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Fyn and Src family kinases (Moss et al., 1995; Brandon
et al., 2001; Jurd et al., 2010) reduces AP2 binding, as does
mutation of Y365/7 to phenylalanine (Kittler et al., 2008;
Tretter et al., 2009). Homozygous tyrosine to phenylalanine
(Y365/7F) knock-in mice are developmentally lethal, suggesting
phosphoregulation of these residues is critical for GABAAR
function or trafficking in vivo. Heterozygous Y365/7F knock-
in mutant mice show inhibition of AP2 binding to the γ2
subunit, surface and synaptic accumulation of receptors and
ultimately spatial memory deficits (Tretter et al., 2009). Further
investigation revealed that brain-derived neurotrophic factor
(BDNF) enhances Y365/7 phosphorylation and stabilizes γ2-
containing GABAAR, consistent with heterozygous Y365/7F
mice showing an anti-depressant phenotype in the forced swim
task and tail-suspension test and increased neurogenesis effects
that are resistant to further enhancement by BDNF (Vithlani
et al., 2013).

GABAAR endocytosis can be increased by stimuli of
opposite polarities, either excitotoxic protocols such as in vitro
seizure (Goodkin et al., 2005, 2008; Naylor et al., 2005;
Lorenz-Guertin et al., 2017) and oxygen-glucose deprivation
(OGD) (Arancibia-Carcamo et al., 2009), or by prolonged
inhibition with agonist exposure (Chaumont et al., 2013;
Gutierrez et al., 2014). Internalization is in part regulated by
phosphatase activity under these conditions. For example,
inhibition of CaN or the serine/threonine protein phosphatase
1 (PP1) and 2A (PP2A) reverses a status epilepticus induced
decrease in surface γ2-GABAARs and mIPSC amplitude
(Joshi et al., 2015). Importantly, genetic GABAAR mutants
also affect intracellular trafficking. For instance, the γ2 R82Q
(numbering without signal peptide R43Q) mutation linked to
childhood absence epilepsy and febrile seizures (FS) showed
increased basal receptor endocytosis rates relative to wild-type
(Chaumont et al., 2013). In summary, endogenous signaling
pathways, pharmacological treatments, and pathological stimuli
or genetic variation can modulate GABAAR endocytosis
networks [kinase and phosphatase regulation reviewed in
Lorenz-Guertin and Jacob (2017)].

Recycling/Lysosomal Degradation
Internalized GABAARs can either be recycled back to
the cell surface or targeted for degradation at lysosomes
(Figure 2) (Kittler et al., 2004; Arancibia-Carcamo et al.,
2009). Interaction of the integral membrane protein calcium-
modulating cyclophilin ligand (CAML) with the γ2 subunit
cytoplasmic and fourth transmembrane domain regions
promotes forward trafficking and recycling (Yuan et al.,
2008). Neurons lacking CAML demonstrate diminished
recycling of endocytosed GABAARs and decreased inhibitory
strength. Broad PKC activity is implicated as a negative
regulator of GABAAR recycling activity following internalization
(Connolly et al., 1999). 5-HT2 serotonergic negative modulation
of GABAAR currents is also thought to occur through a
PKC-RACK1 (receptor for activated C kinase) mechanism
(Feng et al., 2001).

Synaptic receptors destined for degradation undergo
ubiquitination of 7 lysine residues within the ICD of the γ2

subunit (Figure 1C) (Arancibia-Carcamo et al., 2009). Lysine to
arginine (K7R) mutation at these ubiquitination sites diminishes
late endosome targeting of receptors in heterologous cells,
and reverses loss of surface receptor clusters following OGD
treatment (Arancibia-Carcamo et al., 2009). The ring finger
protein 34 (RNF34) E3 ligase directly binds the γ2 ICD, co-
immunoprecipitates with γ2 in vivo and can be identified at
inhibitory synapses (Figure 2) (Jin et al., 2014). Interestingly,
the short 14 amino acid motif in the γ2 ICD sufficient for
RNF34 binding is identical to the GODZ binding region
(Figure 1C), and is also highly conserved among the γ subunits.
γ2-GABAAR degradation is accelerated upon overexpression
of RNF34 resulting in smaller GABAAR synaptic clusters
and diminished inhibitory current strength. Proteosomal and
lysosomal inhibitor experiments suggest RNF34 ubiquitination
of γ2 contributes to degradation by both of these pathways
in HEK cells. Notably, co-expression of RNF34 with the γ2
ubiquitin resistant K7R mutant did not inhibit degradation
of this subunit. On the contrary, additional lysine mutations
(K8R, K9R, K10R) were able to prevent downregulation of
γ2 by RNF34, suggesting these residues may be important for
ubiquitination-degradation.

Only a handful of stimuli clearly induce lysosomal degradation
of GABAARs, likely due to the receptor’s crucial role in
maintaining neuronal inhibition and the tight regulation
of receptor surface levels that must therefore occur. Our
lab previously found 24 h benzodiazepine treatment in
cultured hippocampal neurons enhances lysosomal-mediated
degradation of α2-containing receptors (Jacob et al., 2012).
More recently, we identified that a GABAAR antagonist
bicuculline acute seizure model also induces lysosomal targeting
of surface GABAARs in cultured cortical neurons (Lorenz-
Guertin et al., 2017). It is likely that stimulus specific subunit
ubiquitination patterns ultimately dictate receptor fate. This
remains a highly understudied area of research in GABAAR
trafficking.

Proteomics
The network of proteins governing inhibitory synapse clustering,
trafficking, and plasticity are unresolved, as evidenced by
three recent in vivo inhibitory synapse proteomic screenings
utilizing either knock-in mice expressing GFP-tagged α2
subunit (Nakamura Y. et al., 2016), adeno-associated viral
(AAV) expression of fusion proteins including gephyrin
(Uezu et al., 2016), or mice expressing a Thy1-His6-Flag-
YFP-γ2 subunit transgene (Ge et al., 2018). Initial analysis
from these experiments has revealed novel inhibitory protein
constituents including the metabotropic glutamate receptor
subunit mGluR5, the Dbl family GEF Ephexin, metabotropic
GABA B receptor (GABABR) auxiliary subunit KCTD12, and
inhibitory synaptic regulator protein 1 (InSyn1) (Nakamura
Y. et al., 2016; Uezu et al., 2016). Most recently, tandem
affinity purification proteomics revealed the critical GABAAR
forward trafficking component CLPTM1, and two novel
interactors including integral membrane protein 2C (ITM2C)
and Golgi glycoprotein 1 (GLG1) (Ge et al., 2018). Considering
new candidate interactor proteins are identified with slight
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derivations in methodology (140 in Uezu et al., 2016; 149
in Nakamura Y. et al., 2016; 39 additional in Ge et al., 2018),
future investigations will need to both confirm the validity and
importance of these observed proteins in GABAAR function and
modulation.

Genetic Knockdown and Knockout of γ2
in Rodents
Due to the fundamental importance of γ2 GABAAR inhibition
in the CNS, embryonic KO animals die within days of
birth (Gunther et al., 1995). Developmentally delayed KO
of γ2 using a CaMKIICre transgene expression system
results in mice who are phenotypically normal 3 weeks
post-natal, but by week 4 exhibit a rapid decline in health
including epileptic episodes and eventually death (Schweizer
et al., 2003). A large drop in gephyrin immunoreactivity
also occurs coincident with loss of γ2 expression without
changing GABAergic presynaptic innervation as measured
by vesicular inhibitory amino acid transporter (VIAAT)
levels.

Partial KD of brain wide γ2 levels results in impaired
behavior including an enhanced anxious-depressive phenotype
(Crestani et al., 1999; Chandra et al., 2005; Earnheart et al., 2007;
Shen et al., 2010). In addition, heterozygous γ2+/− mice show
defective spine maturation and synaptogenesis (Ren et al., 2015).
Ablating forebrain γ2 expression in embryonic glutamatergic
neurons using homozygous EMX1Cre-induced inactivation also
recapitulated the depressive-anxiety phenotype and reduced
hippocampal neurogenesis similar to total heterozygous γ2
KO mice (Earnheart et al., 2007). In contrast, KD of γ2 in
neurons at post-natal day 13/14 did not affect hippocampal
neurogenesis, but anxiety- and depressive-like behavior still
formed (Shen et al., 2012). Numerous studies have examined
brain-region or cell-type specific γ2 KD or KO describing
circuit specific roles that will not be discussed here (Buhr
et al., 1997; Wingrove et al., 1997; Wulff et al., 2007, 2009;
Lee et al., 2010; Leppa et al., 2011, 2016; Zecharia et al., 2012;
Stojakovic et al., 2018).

Homozygous deletion of γ2L in mice results in near complete
replacement with γ2S subunit (Homanics et al., 1999). When
examining γ2 isoform specific ablation, in vitro findings (refer
to earlier discussion in Synaptic Accumulation and Functional
Regulation) would suggest GABAAR incorporating γ2L vs. γ2S
would incur distinct changes in functional and pharmacological
properties of GABAAR. Yet, this isoform switch did not
result in changed responsiveness to ethanol in behavioral or
electrophysiology experiments, although a mild increase in
anxiety was observed (Homanics et al., 1999). Interestingly,
the γ2L −/− mice did show a modest increase in behavioral
sensitivity and GABAAR affinity for benzodiazepine agonists
(Quinlan et al., 2000). Isoform switching of γ2 in vivo has been
described to occur in response to certain cues such as chronic
intermittent ethanol administration in rats (Petrie et al., 2001;
Cagetti et al., 2003) and in schizophrenic brains of humans
(Huntsman et al., 1998). The relevance of γ2 isoform switching
and predominance to pathophysiology in vivo remains poorly
understood.

HUMAN GENETIC VARIATION OF γ2 AND
PATHOLOGICAL IMPLICATIONS

Pathology Arises From γ2 Genetic
Anomalies in Humans
Amongst all the subunit genes, mutations in GABRG2 encoding
the γ2 subunit are most commonly linked to epileptogenesis
(Macdonald et al., 2012). Indeed, heterozygous γ2 R82Q mutant
mice were one of the first in vivo models for childhood absence
epilepsy, recapitulating a familial mutation phenotype including
onset, behavior, and treatment responsiveness (Tan et al., 2007).
GABRG2 genetic anomalies including missense, nonsense,
frameshift, splice-site, insertion and deletion mutations are
associated with epilepsy phenotypes ranging from mild
FS to moderate generalized tonic-clonic seizures or more
severe disorders such as Dravet syndrome (DS) or epileptic
encephalopathies (further information found in Kang and
Macdonald, 2016). In order to bridge the gap between known
γ2 trafficking mechanisms, identified protein interaction sites
and human pathology, we examined γ2 subunit genetic variation
using the Genome Aggregation Database (gnomAD) (Lek
et al., 2016), a dataset of exome sequence data from 123,136
individuals and whole genome sequencing from 15,496 unrelated
individuals without any severe pediatric disease and their
first-degree relatives. We focused specifically on synonymous
(codon substitutions result in no amino acid sequence change)
and non-synonymous (alter amino acid sequence) mutations.
Although synonymous codon changes were previously labeled
as “silent” mutations and thought to have limited consequences,
recent data indicates these may also impact function and
contribute to disease through effects on cis-regulatory elements,
mRNA structure, and protein expression. Non-synonymous
mutations that result in a stop codon are referred to as
nonsense mutations whereas missense mutations result in the
exchange of one amino acid for another. Non-synonymous
mutations may affect structural and functional properties and
be associated with a disease condition; however, others may
be functionally neutral and not related to a disease phenotype.
Protein domains which show significant diversity in mutations
identify regions of genetic flexibility, while regions with low
allele frequency events (standard threshold of 0.1%) identify
potentially pathogenic mutations that are not evolutionarily
favored (Dudley et al., 2012). In the γ2S isoform, we identified
and plotted the distribution of 104 synonymous and 122 non-
synonymous missense variants (Figure 3A) (Jay and Brouwer,
2016). Five additional non-synonymous variants were found in
the γ2L specific sequence (LLRMFSFK: L377R, R379W, R379Q,
F381L, S382C), while no synonymous variants were identified
(Figure 3A). Of note, there is a third putative γ2 isoform which
appears conserved in humans and primates including the great
apes and old world monkeys but absent in rodents that was not
evaluated here for human genetic variation (ENST00000414552,
Y211 is substituted by W, followed by 40 additional amino acids
in the N-terminal extracellular domain). Overall, the latter half
of the ECD, TM and linker regions showed low levels of missense
variation when compared to synonymous variation (Figure 3A).
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FIGURE 3 | Genetic variation of the γ2 GABAAR subunit in gnomAD vs. genetic epilepsies. (A) The gnomAD dataset (individuals without any severe pediatric
disease or their first-degree relatives) was used to identify a total of 104 control synonymous variants (gray) and 122 missense non-synonymous variants and plotted;
each variant is represented by a lollipop marker that scales with allele frequency. Missense variants were categorized as neutral (blue) or deleterious (orange) through
bioinformatics analysis using PROVEAN and SIFT predictions. Linear representation of the γ2 GABAAR subunit with domains: signal peptide (SP; red); extracellular
N-terminal region (ECD, blue), transmembrane domain including the four transmembrane helical regions (M1-M4, green); small loops between transmembrane
regions (gray); and large intracellular domain between M3-M4 (ICD, purple). The residue numbers correspond to the γ2S sequence (UniProt P18507). The
independent ICD below shows the additional residues present in the γ2L isoform (UniProt P18507-2), and 5 distinct missense variants identified, predicted as neutral
by PROVEAN: L377R, R379W, R379Q, F381L, S382C. (B) Patient epilepsy disease related missense (red) and nonsense variants leading to early stop codons (dark
purple) were compiled as described in Material and Methods and plotted on the linear protein structure. All genetic variant AA residue numbering includes signal
peptide.

We next turned to the patient epilepsy disease case variants
to determine if these are over-represented in similar regions.
Disease case variants were gathered from National Center
for Biotechnical Information (NCBI), ClinVar, and Human
Gene Mutation Databases (HGMD), yielding a total of 49

pathogenic or likely pathogenic mutations including 25 missense,
11 nonsense, 9 frameshift, and 4 intron splice variants. The
distribution of the 36 epilepsy-related missense and nonsense
mutations was mapped across the γ2 subunit protein domains
(Figure 3B). The 11 γ2 nonsense variants resulted in early stop
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codons (X) throughout the following domains: (1) ECD = Q40X,
L91X, R136X, Y180X, G273X; (2) M1 = Y274X (2 unique stop
codon mutant variants), W295X; (3) ICD = Q390X, R425X,
W429X. The 25 γ2 subunit missense mutations showed wider
distribution throughout the ECD, M1-4, M2-M3 linker and ICD
regions. Comparison of the disease-associated and gnomAD
missense variants identified significantly greater percentages of
epilepsy related variants in the M2 and M2-M3 linker regions
(Table 1). In contrast, signal peptide missense mutations were
not found and ICD missense mutations were less prevalent in
epilepsy patients (Table 1).

In the field of medical genomics, identification of potentially
pathological mutations is a significant challenge, prompting
the development of multiple bioinformatics methods to assess
non-synonymous variants. We used the sequence homology-
based genetic analysis bioinformatics programs PROVEAN
(Protein Variation Effect Analyzer) and SIFT (Sorting Intolerant
from Tolerant) to assess non-synonymous variants in the
gnomAD population and predict the effects on γ2 subunit
biological function. Interestingly, 35 of the 122 non-synonymous
gnomAD variants were also predicted to be putatively
damaging/deleterious by both of the two bioinformatics
tools (scoring agreement at 81.9%, Figure 3A, orange colored
variants). Neutral scored non-synonymous variants included
S386P and T388A (aka S355 and T357 phosphorylation sites,
Figure 1C). None of the γ2L isoform missense variants were
predicted by PROVEAN as damaging, although S382C (aka
S343, the PKC/CaMKII phosphorylation site, see earlier Synaptic
Accumulation and Functional Regulation, Figure 1C) was
predicted as possibly damaging by SIFT. Among the gnomAD
population six variants were identified that overlapped the
epilepsy patient missense group (L57F, N79S, M199V, R177Q,
A334T, R363Q): three were predicted as deleterious (N79S,
M199V, A334T) and 3 as neutral (L57F, R177Q, R363Q).
PROVEAN and SIFT bioinformatics analysis of the 25 epilepsy
patient missense variants showed four as neutral (L57F, A106T,
L307V and R363Q), two had conflicting predictions (L74V,
R304K), and all others were scored as damaging. As the
gnomAD population is relatively free from significant clinical
disorders, this implies masking by epistatic genetic interactions,
consistent with phenotypic variability seen in epilepsy patients
and animal epilepsy models. In addition, although in silico
prediction tools show overall robust performance, particularly
when software are used in combination (Leong et al., 2015;
Masica and Karchin, 2016), this suggests pathological variants
can be missed. Improving clinically admissible predictions
from these in silico tools is a current high priority focus in
medical bioinformatics (Masica and Karchin, 2016; Ernst
et al., 2018). To expand our insight into the cellular pathology
underlying the thirty-six patient cases, we next cross-examined
database information (NCBI, ClinVar, HGMD) and the current
literature for disease phenotypic and cellular study based
analysis.

Patient Epilepsy Phenotypes
The most common patient phenotypes associated with nonsense
and missense mutations ranged in severity and included FS,

generalized tonic-clonic seizures (GTCS), GTCS with FS,
genetic epilepsy with FS (GEFS), genetic epilepsy (GE), DS,
and epileptic encephalopathy with severe global developmental
delays (EEDD). FS are a relatively mild pathology which occur
in the presence of fevers and display tonic-clonic seizure activity
in individuals between 6 months and 5 years of age (Boillot
et al., 2015). FS which have prolonged episode duration and
occur past 6 years of age are termed FS+ and are generally
associated with increased risk for developing epilepsy later in
life. Moderate forms of epilepsy include GTCS and GE both
with and without FS, where FS can co-occur with persistent
seizure episodes past childhood and can present intense
seizure activity more commonly known as a “grand mal”
seizure as in the case of GTCS (Johnston et al., 2014; Wang
et al., 2016; Fisher et al., 2017). The most severe phenotypes
reported are DS and EEDD. In particular, DS is subset of
epileptic encephalopathy and is characterized by a wide range
of seizure type activity as well as psychomotor development
delays, ataxia and hyperkinesis emerging between the ages
of 1–4 (Ishii et al., 2014; Fisher et al., 2017). In contrast,
EEDD have broader phenotypic manifestations and deficits
as a result of global neurodevelopmental impairments with
treatment-resistant seizures (Shen et al., 2017). Less common
reported patient phenotypes included myoclonic epilepsy,
absence seizures, complex partial seizures, tonic infantile
spasms, tonic seizures, Rolandic epilepsy, and ASD with
learning difficulties. In vitro studies have been invaluable
in gaining in depth understanding of etiology, cellular
pathology, and functional effects of these epilepsy patient
variants.

γ2 Subunit Disease Case Analysis
In vitro studies on 17 of the γ2 pathogenic variants have revealed
reduced surface expression in 15 cases, in part resulting from ER
retention and trafficking defects (Table 2). The severe disease DS
epilepsy phenotype is associated with three nonsense mutations
(Q40X, R136X, Q390X) and one missense (P302L) mutation
(Table 2). The early occurrence of Q40X and R136X within
the ECD resulted in premature termination codons (PTCs) and
mRNA degradation via nonsense mediated mRNA decay (NMD)
with decreased γ2 protein levels. The introduction of upstream
PTCs limited the availability of trafficable γ2, diminished
overall receptor surface expression and synaptic localization
and resulted in significant GABAergic deficits (Ishii et al.,
2014). Conversely, the Q390X (previously known as Q351X)
mutation occurs in the ICD and escapes NMD but is instead
subject to ubiquitin-proteasome degradation (Kang et al., 2013).
In vitro experiments found Q390X to have comparable mRNA
levels to other late sequence nonsense mutations but dissimilar
protein expression due to different degradation rates. Q390X
displayed a substantially longer half-life as compared to wild-
type γ2 and other nonsense mutant subunits in addition to an
increased ability to oligomerize with and sequester wild-type α

and β subunits. This alternative disruption in receptor trafficking
provides evidence that expressed non-functional truncated
subunits may be modifiers of epilepsy phenotype severity.
Interestingly, P302L was the only missense mutation reported in
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a patient with DS (Hernandez et al., 2017). Of note, this mutation
resides in M2 and contributes to the formation of the ion channel
pore which likely explains its severe phenotype. This is supported
by P302L mutant electrophysiological studies and structural
modeling which suggests a shift in pore activity resulting in slow
activation, low conductance states, and fast desensitization of
GABAAR (Hernandez et al., 2017). In contrast, all six cases of
EEDD were found in patients with missense mutations (A106T,
I107T, P282S, R323W, R323Q, F343L) dispersed throughout
structural domains (ECD, M1 and M2) and exhibited additional
epileptic phenotypes such as GTCS, GEFS, and tonic seizures
(Shen et al., 2017). In fact, the I107T mutation is located
in the ECD which typically tolerates missense mutations as
evidenced by relatively mild phenotypes; however, this mutation
was found to exhibit the most severe cellular pathologies as
compared to other disease variants emphasizing the need to
further investigate these mutations and their ramifications on
cellular processes.

The moderate epileptic phenotype GEFS without co-
occurring conditions was observed in three cases with two
missense (P83S and K328M) and one nonsense (W429X)
variants reported with structural locations in the ECD,
M2-M3 linker, and ICD, respectively (Table 2). P83S was
found to reduce GABA-evoked whole cell currents mainly
through a plasma membrane and trafficking-dependent
manner (Lachance-Touchette et al., 2011; Huang et al., 2014;
Bennett et al., 2017). In contrast, K328M (previously known
as K289M) is found in the short extracellular loop between
the M2-M3 regions and was found to increase receptor
deactivation, implicating this region in receptor kinetic
properties (Macdonald et al., 2012). Conversely, W429X
displayed less drastic protein degradation and subunit
oligomerization pathologies compared to the previously
discussed DS variant Q390X (Wang et al., 2016). The later
downstream incidence of W429X combined with slightly higher
surface expression compared to Q390X may explain the milder
epilepsy phenotype (Sun et al., 2008; Macdonald et al., 2012;
Kang et al., 2013; Wang et al., 2016).

Throughout the reviewed mutations, only two variants
(L57F and N79S) deviated from a pathology associated with
reduced γ2 containing GABAAR plasma membrane levels and
were located in the ECD. L57F was present in an individual
with GE and found to have normal surface and trafficking
characteristics compared to wild-type γ2 receptors; however,
altered current density properties and function were observed
possibly due to minor structural perturbations in the α1-helix
of the ECD (Hernandez et al., 2016). Comparatively, the N79S
mutation was the sole occurrence of GTCS without co-occurring
phenotypes and presented slight but significant impairments
in plasma membrane levels and peak current amplitude
(Huang et al., 2014) suggesting it is more of a susceptibility
variant as opposed to an epilepsy mutation (Shi et al., 2010;
Migita et al., 2013; Huang et al., 2014). Moreover, the resilience
of the ECD is further supported by R82Q (previously known as
R43Q), a well characterized missense mutation associated with
mild phenotypic manifestations like FS and absence seizures with
trafficking deficient pathologies (Macdonald et al., 2012). Overall,
the 13 frameshift and intron splice variant mutations analyzed
were associated with mild phenotypes, though further studies
are needed to elucidate their pathological mechanisms (Table 3).
However, frameshift mutations within the ICD (E402Dfs∗3
generating a stop codon at Y404X critical Src/Fyn phospho
site discussed earlier; and S443delC resulting in an altered and
elongated carboxy terminus with+50 novel AA) were associated
with more moderate-severe phenotypes like GTCS and GEFS+
underscoring the importance for intracellular regulation via the
ICD (Macdonald et al., 2012).

In summary, both deficits in GABAAR surface trafficking
and the functional role of specific γ2 subunit regions are
critical factors modulating phenotypic outcome, with some
missense mutations resulting in phenotypes as severe as nonsense
mutations. Furthermore, expressed non-functional truncated
subunits may be correlated with more severe manifestations and
be modifiers of disease phenotypes. Disease case variants in the
pore lining M2 region showed particularly severe phenotypes,
consistent with the reduced genetic variation in this region in

TABLE 1 | Genetic variation across GABRG2 domains.

Region Residues GnomAD missense (n = 122) Disease-associated missense (n = 25) p-value

# % # %

Signal peptide 1–39 21 17.21 0 0.00 ∗0.025

ECD 40–273 53 43.44 12 48.00 0.8255

M1 274–296 3 2.46 3 12.00 0.0616

M1-M2 loop 297–299 0 0.00 0 0.00 1

M2 300–325 2 1.64 3 12.00 ∗0.0348

M2-M3 loop 326–333 2 1.64 3 12.00 ∗0.0348

M3 334–356 3 2.46 2 8.00 0.2006

ICD 357–443 33 27.05 1 4.00 ∗0.0096

M4 444–466 5 4.10 1 4.00 1

C-Term 467 0 0.00 0 0.00 1

Coordinates based on GABRG2 (GenBank NM_000816.3 transcript variant 2 γ2S, Uniprot P18507). ECD, extracellular amino-terminal domain; M1–M4, transmembrane
regions 1–4; ICD, intracellular domain; C-Term, carboxy-terminus. Fisher’s exact t-test p-values are reported; ∗denotes statistical significance.
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TABLE 3 | Patient frameshift mutations and intron splice variants associated or likely associated with various epilepsy phenotypes.

Region Canonical
sequence
codon

Mutant
sequence

Variant name Mutation
type

Phenotype(s) Function effect(s)

ECD ACT-CCA-AAA
58 59 60

ACA-CAA-AAG P59Qfs∗12 Frame shift Febrile Seizures,
Tonic-Clonic
Seizures

Predicted to undergo NMD (Boillot
et al., 2015).

ECD TTT-GCG-CAA
117 118 119

TTT-TGC-GCA A118Cfs∗6 Frame shift Febrile Seizures Predicted to undergo NMD (Della
Mina et al., 2015).

ECD AAA-GCT-GAT
57 58 59

AAG-CTG-ATG A158Lfs∗13 Frame shift Unknown Predicted to cause loss of normal
protein function either through
protein truncation or NMD. #

ECD CGA-GTG-CTC
177 178 179

CAG-TGC-TCT R177Qfs∗6 Frame shift Childhood
Absence
Epilepsy, Febrile
Seizures

Predicted to cause loss of normal
protein function either through
protein truncation or NMD. #

Intron 4 CTT-AGG-TTG
Int4 Int4 184

CTG-AGG-TTG 549-3T > G Intron
Splice
Variant

Unknown Abnormal gene splicing; in silico
assessment predicts altered protein
function (Reinthaler et al., 2015).

Intron 6 TCC-GTG-AAG
256 Int6 Int6

TCC-GGG-AAG IVS6 + 2T– > G Intron
Splice
Variant

Childhood
Absence
Epilepsy, Febrile
Seizures

Truncation; ER retention; undergo
NMD; decreased surface γ2
subunit levels and GABA-evoked
whole cell currents; and increased
ER stress marker BIP (Kananura
et al., 2002; Tian and Macdonald,
2012).

ECD GGA-GAT-TAT
257 258 259

AGA-GAT-TAT 770-1G > A Intron
Splice
Variant

Suspected to
cause epilepsy

Predicted to cause abnormal gene
splicing and undergo NMD or the
production of an abnormal protein.
#

M3 GTT-TGT-TTC
341 342 343

GTT-TTT-TCA C342Ffs∗50 Frame shift Childhood
Absence
Epilepsy, Febrile
Seizures

Not anticipated to result in NMD
but expected to result in a
truncated protein. #

FproveIntron 8 CAG-GCC-CCT
Int8 377 378

CGG-GCC-CCT 1129-2A > G Intron
Splice
Variant

Childhood
Absence
Epilepsy, Febrile
Seizures

Not anticipated to undergo NMD,
but likely alters RNA splicing and
disrupts protein function. #

ICD ATT-CAA-GAG
397 398 399

ATT-CGA-GAG Q398Rfs∗4 Frame shift Unknown Predicted to cause protein
truncation. #

ICD GAA-GAG-TAC
402 403 404

GAT-TCA-TGA E402Dfs∗3 Frame shift Febrile Seizures,
Temporal Lobe
Encephalopathy,
Generalized
Tonic-Clonic
Seizures, Focal
seizures

Predicted to cause protein
truncation (Boillot et al., 2015). #

ICD TCC-TAT-GCT
443 444 445

TCT-ATG-TCT S443delC Frame shift Genetic Epilepsy
with Febrile
Seizures Plus

Produced elongated peptide with
50 novel amino acids compared to
γ2S; trafficking impairments, ER
retention, decreased surface
expression and whole cell currents
(Tian et al., 2013).

M4 GTC-TCC-TAC
462 463 464

TCT-CCT-ACC V462Sfs∗33 Frame shift Febrile Seizures Predicted to escape NMD and
produce elongated peptide with 32
novel amino acids as compared to
γ2S (Boillot et al., 2015). #

Patient variants are ordered by nucleotide sequence position of GABRG2.
Nucleotides deleted (red) and inserted (green) for each variant are noted.
ECD, extracellular amino-terminal domain; M3-M4, transmembrane regions 3-4; ICD, intracellular domain; NMD, nonsense-mediated mRNA decay; introduction of
downstream premature stop codon following specified number of codons (∗); predicted function from GeneDX (#).
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gnomAD non-synonymous variants. Clearly, in vitro studies
of recombinant receptor trafficking, electrophysiology and
assembly have provided important insight into the underlying
cellular pathology and functional effects of these epilepsy
patient variants. Greater understanding of the consequences of
γ2 genetic variation, both for revealing disease mechanisms
and for GABAAR synaptic plasticity will be gained through
application of innovative imaging methods in the neuronal
context.

LOOKING FORWARD: IMAGING
ADVANCES

Advancing imaging techniques are providing critical insight
into GABAAR trafficking extending beyond basic endo/exocytic
trafficking of receptors. Live-cell imaging using pH-sensitive
GFP (pHluorin) tagged GABAARs subunits and fluorescence
recovery after photobleaching (FRAP) experiments first
identified GABAAR synaptic retention, limiting diffusion
at synaptic release sites, and the crucial role of gephyrin
in this process (Jacob et al., 2005). Receptor subunits with
pHluorin tags have further described GABAAR surface levels
and lysosomal degradation (Jacob et al., 2012; Lorenz-Guertin
et al., 2017) and novel exocytic machinery and insertion sites
of receptors (Gu et al., 2016). The pHluorin-FRAP technique
is often performed in addition to the newer workhorse of
diffusion studies, quantum dot (QD) single-particle tracking.
QD studies have revealed precise quantitative properties
of synaptic and extrasynaptic GABAAR diffusion during
baseline conditions (Renner et al., 2012), excitatory stimulation
(including iLTP) (Bannai et al., 2009, 2015; Muir et al., 2010;
Niwa et al., 2012; Muir and Kittler, 2014; Petrini et al., 2014),
GABAAR agonist and/or drug treatment (Gouzer et al., 2014;
Levi et al., 2015; de Luca et al., 2017), GABAB receptor
activation (Gerrow and Triller, 2014), purinergic (P2x2
receptor) activation (Shrivastava et al., 2011), and changes
in gephyrin or radixin phosphorylation (Hausrat et al., 2015;
Battaglia et al., 2018). Receptor functional regulation by
changes in surface diffusion, perhaps completely independent
of changes in surface levels, represents a paradigm shift
in our basic understanding of synaptic plasticity. Indeed
current studies of human genetic variants in recombinant
systems are unlikely to detect these fundamentally important
properties due to lack of a neuronal context, the appropriate
GABAAR subunit complement, interacting proteins, and general
overexpression problems. For example, QD neuronal studies
of the γ2 K328M disease variant revealed an additional
phenotype of enhanced temperature sensitive receptor
diffusion, likely contributing to the FS pathology in patients
(Bouthour et al., 2012).

To address multiple trafficking questions within a single assay,
our group recently engineered a GABAAR γ2 subunit dual
fluorescent sensor encoding a pHluorin tag and a fluorogen-
activating peptide (FAP) (γ2pHFAP) (Lorenz-Guertin et al.,
2017). FAPs are antibody single chain variable fragments
characterized to selectively bind inorganic dyes with high

specificity and affinity (Szent-Gyorgyi et al., 2008). The dyes
are non-fluorescent until bound by a FAP and individual dyes
have unique characteristics including cell permeability, pH-
sensitivity, fluorescent properties, and in vivo administration
capability (Fisher et al., 2010; Grover et al., 2012; Saunders
et al., 2012; Zhang et al., 2015; He et al., 2016). We have
used the FAP-dye system in neurons to selectively examine cell
surface GABAARs undergoing internalization, early endosomal
accumulation and targeting to late endosomes/lysosomes via
confocal live-imaging (Lorenz-Guertin et al., 2017). Pulse-
labeling γ2pHFAP with cell impermeable dye allows for
detection of surface receptor turnover rates independent of a
change in total GABAAR surface levels, as we demonstrated
using a mild seizure protocol. As more GABAARs subunits
are engineered to express the FAP tag, and additional
unique dyes are synthesized to address specific experimental
questions, the utility of this imaging approach continues to
grow.

Other innovative imaging approaches advancing our
ability to detect changes in GABAAR synaptic plasticity
include optogenetic toolkits for controlling GABAAR
activity (Lin et al., 2014, 2015), spatially regulated GABA
activation using two-photon photolysis (Oh et al., 2016),
proximity ligation assays to measure endogenous protein
interaction (Smith et al., 2014; Tseng et al., 2015; Ghosh
et al., 2016), and super-resolution imaging and other
fluorescent tools to examine inhibitory gephyrin scaffolding
(Gross et al., 2013, 2016; Sigal et al., 2015; Maric et al., 2017;
Pennacchietti et al., 2017). Fluorescence resonance energy
transfer (FRET) techniques have been limitedly applied to
studying GABAAR trafficking or receptor subunit composition
(Ding et al., 2010; Shrivastava et al., 2011), collectively suggesting
imaging techniques will be a rich resource of novel GABAAR
knowledge.

CONCLUSION

In summary, we live in an unprecedented time for understanding
human disease pathology and neurodevelopment through
integration of “big data” on human genetic variation and protein
interaction networks/interactomes, in combination with high
resolution live-imaging approaches. Future efforts to resolve
GABAAR pathologies will benefit from connecting genetic
variants to their cellular mechanisms of pathology within
the complexity of neuronal signaling. Importantly, increased
understanding of surface and intracellular pool regulated
trafficking of GABAAR will provide mechanisms to treat overall
reduced receptor levels in various disease states. Future treatment
of genetic epilepsy syndromes are likely to involve CRISPR-
Cas9 gene editing (Ma et al., 2017), RNA focused REPAIR
editing approaches, or application of improved drugs that act
as chaperones to promote receptor trafficking. The new imaging
based methods described here are particularly likely to show high
utility in both identifying cellular pathology of human GABAAR
genetic variants and for drug screening efforts in a neuronal
context.
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MATERIALS AND METHODS

Data Mining of GABRG2 Genetic
Variation
The prevalence of γ2 subunit non-synonymous and synonymous
variations in gnomAD1, currently a dataset of exome sequence
data from 123,136 individuals and whole genome sequencing
from 15,496 unrelated individuals, was assessed and restricted
to those meeting the “PASS” quality threshold (Lek et al., 2016).
Individuals known to be affected by severe pediatric disease
are not contained in this data set, or their first-degree
relatives. Next “pathogenic” and “likely pathogenic” patient
case variants not present in the gnomAD dataset were
investigated in National Center for Biotechnical Information
variation viewer (NCBIvv)1, ClinVar, and Human Gene Mutation
Databases (HGMD) utilizing the following search parameters:
GRCh37.p13 annotation release 105 assembly and NM_000816.3
(transcript variant 2, γ2S). The search in NCBIvv identified 17
variants (accessed January 2018). The ClinVar search (accessed
February 2018) confirmed 16/17 candidate variants with the
outlier (R323W) having been newly identified in the literature
(Shen et al., 2017)2. In addition to those confirmed, the
ClinVar investigation produced 10 additional mutations. Some
variants identified in ClinVar had associated predicted functions
(submitted by GeneDX genetics company)3. Finally, HGMD
(hgmd2018.1; accessed March 2018) interrogation uncovered
22 disease-causing mutations that were absent from NCBIvv
and ClinVar inquiries4. Using these candidate case variants
and their associated database information, the current literature
was evaluated for disease phenotypic and cellular study based
implications yielding a total of 49 pathogenic or likely pathogenic
mutations including 25 missense, 11 nonsense, 9 frameshift, and
4 intron splice variants. We used lollipops-v.1.3.1 software (Jay
and Brouwer, 2016) to plot the distribution of synonymous,
non-synonymous and disease case mutations in GABRG2 along
a linear γ2S assembly (P18507, ENST00000361925) and a
linear segment representation of the additional eight encoded
amino acids within the ICD in the γ2L isoform (P18507-2,
ENST00000356592). The missense and nonsense disease case
variants studied at the cellular trafficking level were included in
Table 2. The frameshift and intron splice variants were annotated
in Table 3.

1 http://gnomad.broadinstitute.org/transcript/ENST00000361925
2 https://www.ncbi.nlm.nih.gov/clinvar
3 https://www.genedx.com/
4 http://www.hgmd.cf.ac.uk/ac/gene.php?gene=GABRG2

Bioinformatics Tools
PROVEAN (Protein Variation Effect Analyzer5 (Choi et al., 2012)
and SIFT (Sorting Intolerant from Tolerant) algorithms (Hu and
Ng, 2013) are bioinformatics tools which predict whether an
amino acid substitution or indel (insertion or deletion) has an
impact on a protein’s biological function using homology based
genetic analysis. Currently PROVEAN provides scoring via both
PROVEAN and SIFT algorithms. PROVEAN utilizes pairwise
sequence alignment scores to generate pre-computed predictions
at every amino acid position in all human and mouse protein
sequences. Mutations are predicted to be deleterious or tolerant
based on the prediction cutoff value of −2.5: scores smaller
than −2.5 are considered deleterious. Similarly, SIFT predicts
whether the amino acid substitution alter the protein function
based on sequence homology and the physical properties of
amino acids. The intolerant range of SIFT is ≤0.05 for predicted
damaging/deleterious mutations and a score of >0.05 predicts
the tolerant range.
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• gnomAD, http://gnomad.broadinstitute.org/
• ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/
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