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The adult subventricular zone (SVZ) of the mammalian brain contains neural progenitor
cells (NPCs) that continuously produce neuroblasts throughout life. These neuroblasts
migrate towards the olfactory bulb where they differentiate into local interneurons. The
neurogenic niche of the SVZ includes, in addition to NPCs and neuroblasts, astrocytes,
ependymal cells, blood vessels and the molecules released by these cell types. In the
last few years, microglial cells have also been included as a key component of the SVZ
neurogenic niche. Microglia in the SVZ display unique phenotypic features, and are more
densely populated and activated than in non-neurogenic regions. In this article we will
review literature reporting microglia-NPC interactions in the SVZ and the role of this
bilateral communication in microglial function and in NPC biology. This interaction can
take place through the release of soluble factors, extracellular vesicles or gap junctional
communication. In addition, as NPCs are used for cell replacement therapies, they
can establish therapeutically relevant crosstalks with host microglia which will also be
summarized throughout the article.

Keywords: neurogenic niche, neural progenitor cells, microglia, paracrine communication, gap junctions,
extracellular vesicles, subventricular zone

INTRODUCTION

Microglia are the resident immune cells in the central nervous system (CNS). They comprise a
population of about 5%–20% of glial cells, from which they differ, among other properties, in
their embryonic origin. While macroglial cells derive from the ectoderm, microglia derive from
myeloid progenitors in the yolk sac that invade the CNS during development (Ginhoux et al.,
2010, 2013). Microglial cells play important roles both in health and disease. In the healthy CNS,
microglia exhibit a ramifiedmorphology withmultiple fine processes that continuously survey their
surrounding microenvironment. If a pathological stimulus appears, as a result of any type of injury
or disease, microglial cells acquire an activated phenotype in which their morphology changes
towards an hypertrophic or ameboid-like appearance and their functional behavior is consequently
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altered (Kreutzberg, 1996; Hanisch and Kettenmann, 2007;
Ransohoff and Perry, 2009). The main function classically
attributed to activatedmicroglia is the phagocytosis of pathogens,
degenerating cells or debris. However, microglia perform other
functions in the activated state such as removal of dysfunctional
synapses (synaptic stripping; Kettenmann et al., 2013) or
regulation of synaptic plasticity (Stellwagen and Malenka, 2006).
As part of the activation routine, microglial cells secrete
reactive oxygen species, cytokines and growth factors which
in turn influence the pathological process and the subsequent
regeneration (Kreutzberg, 1996; Bessis et al., 2007; Hanisch and
Kettenmann, 2007; Ransohoff and Perry, 2009). Nowadays, it
is well accepted that surveillant microglia, in addition to their
monitoring role in the healthy CNS, can also influence neuronal
structure and function contributing to the correct maintenance
of neural circuits (Wake et al., 2009; Bechade et al., 2013).

Interestingly, microglial cells in the two adult neurogenic
niches, the subventricular zone (SVZ) and the dentate gyrus
of the hippocampus, display special features with respect to
microglial cells of non-neurogenic niches. First, microglia are
more densely populated in these two neurogenic regions (Mosher
et al., 2012), and, second, they exhibit a more activated phenotype
than in non-neurogenic regions (Goings et al., 2006). These
data point to additional relevant roles of microglia in the
control of adult neurogenesis, a complex process that involves
the proliferation of neural stem and neural progenitor cells
(NPCs) and their subsequent migration, differentiation and
functional integration into pre-existing circuitry. Previous data
have demonstrated that microglia is involved in hippocampal
neurogenesis through the phagocytosis of newborn cells that
do no integrate into the existing circuits and become apoptotic
(Sierra et al., 2010). In this review we will focus on the role of
microglia in SVZ neurogenesis.

The SVZ Neurogenic Niche
The SVZ lines the walls of the lateral ventricles (LVs) and
contains neural stem cells which are known as type B cells
(Doetsch et al., 1999). They are located under the layer of
ependymal cells lining the ventricle and share features of
astrocytes and of immature progenitors (Kriegstein and Alvarez-
Buylla, 2009). Some of them have a short apical process with
a single primary cilium projected towards the cerebrospinal
fluid (CSF) in the LV, and also a basal process that contacts
blood vessels (BVs) of the SVZ plexus (Mirzadeh et al., 2008;
Figure 1). This strategic location allows type B cells to receive
signals from the CSF and from the blood. Eventually, type B
cells form transit-amplifying NPCs (type C cells) in asymmetric
divisions, which, in turn, divide to give rise to neuroblasts
(type A cells; Doetsch et al., 1997, 1999; García-Verdugo et al.,
1998). Newly-formed neuroblasts migrate in chains towards the
olfactory bulb along the rostral migratory stream (Lois et al.,
1996; Alvarez-Buylla and García-Verdugo, 2002). During this
tangential migration, neuroblasts are outlined by BVs, which
serve as a physical substrate for the migration (Snapyan et al.,
2009; Whitman et al., 2009), and by astrocytes, which release
soluble factors involved in the control of migration. Some of
these factors are vascular endothelial growth factor (VEGF;

Bozoyan et al., 2012), glutamate (Platel et al., 2010) or melanoma
inhibitory activity protein (Mason et al., 2001). Factors released
by endothelial cells of the delimiting BVs (e.g., brain-derived
neurotrophic factor), and by migrating neuroblasts (e.g., Slit1),
also facilitate this journey towards the olfactory bulb (Snapyan
et al., 2009; Kaneko et al., 2010). Once in the olfactory bulb, these
immature neurons differentiate into GABAergic interneurons
of the granular and the periglomerular layers (Whitman and
Greer, 2007). In addition, SVZ type B cells can also generate
oligodendrocyte precursors that contribute to the maintenance
of the oligodendrocyte population in the neighboring corpus
callosum, striatum and fimbria-fornix (Menn et al., 2006;
Gonzalez-Perez et al., 2009).

Microglia in the SVZ
In addition to ependymal cells, BVs, type B, type C and type
A cells, microglial cells have also been considered to be an
essential component of the SVZ neurogenic niche, where they
locate in close contact with type B cells (Gonzalez-Perez et al.,
2012), neuroblasts and transit-amplifying cells (Solano Fonseca
et al., 2016) and also make direct contact with the vascular
plexus within the niche (Solano Fonseca et al., 2016; Figure 1).
Interestingly, microglia in the SVZ display a unique phenotype
characterized by specific morphology (enlarged cell somata, few

FIGURE 1 | Schematic representation of the subventricular zone (SVZ)
neurogenic niche. The niche is located underneath the ependymal cells (in
orange) lining the lateral ventricle (LV). It is constituted by type B neural stem
cells (in blue, B) which can activate and generate type C neural progenitor
cells (NPCs; in green, C) that proliferate rapidly and generate type A
neuroblasts (in red, A). Type B cells extend a short apical process to contact
the cerebrospinal fluid (CSF) and a long basal process that terminate on blood
vessels (BVs). Astrocytes (in pale blue) contact BVs, ependymal cells and type
C cells and surround migrating neuroblasts towards the olfactory bulb.
Microglial cells (in gray) contact type A, type B and type C cells and also BVs.
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and thick processes), low expression of purine receptors, low
expression of common microglial markers such as Iba1 and
CD68 (Ribeiro Xavier et al., 2015; Xavier et al., 2015) and
the release of a distinct set of cytokines (Ribeiro Xavier et al.,
2015; Solano Fonseca et al., 2016). Therefore, microglia in the
SVZ are well positioned to influence NPCs behavior and are
also clearly distinguished both antigenically and morphologically
from microglia in other brain regions which may confer them
specific properties and putative roles in the control of SVZ
neurogenesis as will be addressed in this review.

INTERACTIONS BETWEEN NEURAL
PROGENITOR CELLS AND MICROGLIA IN
THE SUBVENTRICULAR ZONE
NEUROGENIC NICHE

Soluble Factors Released by Microglia
That Modulate Subventricular Zone
Neurogenesis
A beneficial role of microglia in SVZ neurogenesis was initially
supported by in vitro studies on SVZ-derived neural stem cells
co-cultured with microglia or grown in conditioned media from
microglia. In a study published in 2003, Aarum et al. reported
that soluble factors released from microglial cells direct the
migration of SVZ NPCs and increase the proportion of new
neurons in SVZ embryonic and adult cultures (Aarum et al.,
2003). Few years later, Walton et al. (2006) demonstrated in an
adherent culture system, that factors secreted by microglia are
essential for neuroblast generation from SVZ-derived NPCs.

The first report showing a physiological role of microglia in
SVZ neurogenesis in vivo was provided by Shigemoto-Mogami
et al. (2014). They demonstrated that activated microglia

accumulating in the early postnatal rat SVZ with an amoeboid
morphology secrete interleukin-1β (IL-1β), IL-6, tumor necrosis
factor-α (TNFα) and interferon-γ (IFNγ) and that these
cytokines enhance neurogenesis and oligodendrogenesis
cooperatively (Table 1). The combinations and concentrations
of these factors optimal for neurogenesis or oligodendrogenesis
were determined in in vitro studies in which they demonstrated
that IL-1β and IFN-γ specifically promote neurogenesis
whereas IL-1β and IL-6 are important for oligodendrogenesis
(Shigemoto-Mogami et al., 2014). Activated microglia of the
early postnatal SVZ also produce insulin-like growth factor-1
(IGF-1), but this factor was not involved in the promotion of
postnatal SVZ neurogenesis (Shigemoto-Mogami et al., 2014).
Rather, IGF-1 promotes the exit of neuroblasts from the SVZ to
the rostral migratory stream (Hurtado-Chong et al., 2009). It is
interesting to note that the effect of microglia in the promotion
of neurogenesis is produced in the early postnatal period, when
microglia display mainly an amoeboid morphology and reach
their maximum levels before decreasing to adult numbers and
adopting a resting ramified morphology (Shigemoto-Mogami
et al., 2014).

Microglia residing in the adult SVZ are also critical for the
survival of newly-generated neuroblasts and for their migration
towards the olfactory bulb, and the cytokines IL-4, IL-6 and
IL-10 are probably involved in these functions (Ribeiro Xavier
et al., 2015; Table 1). It is important to highlight that, unlike
microglia in the hippocampus, SVZmicroglia do not phagocytate
neuroblasts, quite the contrary, they provide trophic support to
induce their survival (Ribeiro Xavier et al., 2015). Phagocytosis
of apoptotic cells is mediated by purinergic ‘‘find me, eat me’’
signals (Koizumi et al., 2007). This is important since purine
activity within the SVZ/rostral migratory stream is considerable
(Mishra et al., 2006; Lin et al., 2007). Interestingly, microglia

TABLE 1 | Soluble factors released by microglia in the subventricular zone (SVZ) in physiological and in pathological conditions.

Soluble factors
released by
microglia

Condition Effect on subventricular zone
neurogenesis

Direct relation to the released
soluble factors

Reference

IL-1β

IL-6
TNF-α
IFN-γ

Early postnatal subventricular
zone

Physiological conditions

Increase neurogenesis and
oligodendrogenesis

Demonstrated in vivo Shigemoto-Mogami et al. (2014)

IL-4
IL-6
IL-10

Adult subventricular zone

Physiological conditions

Support of neuroblast survival
and migration

Not evidenced Ribeiro Xavier et al. (2015)

IL-1β

IL-6
TNF-α
TGF-β

Aged subventricular zone

Physiological conditions

Decline neurogenesis Not evidenced Solano Fonseca et al. (2016)

TGF-α Ischemia Increase NPC proliferation and
neuronal differentiation

Demonstrated ex vivo Choi et al. (2017)

IGF-1 Stroke Increase proliferation and
neuronal differentiation

Not evidenced Thored et al. (2009)

VEGF Hypoxia Promote oligodendrogenesis Demonstrated in vitro Bain et al. (2013)
Undetermined Demyelination Promote oligodendrogenesis Demonstrated in vivo Naruse et al. (2018)

Abbreviations: IL, interleukin; IGF-1, insulin-like growth factor-1; NPC, neural progenitor cell; TGF, transforming growth factor; TNF, tumor necrosis factor; VEGF, vascular
endothelial growth factor.
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in the SVZ and in the rostral migratory stream show very low
expression of purinergic receptors which allows them to avoid
inappropriate activation in response to locally active purines that
might result in undesired phagocytosis of neuroblasts before they
reach the olfactory bulb (Ribeiro Xavier et al., 2015). Once in
the olfactory bulb, where the final differentiation of neuroblasts
occurs, microglia are indeed involved in the phagocytosis of
adult-born neuron in an afferentation-dependant way (Denizet
et al., 2017). Therefore, the phagocytic activity of microglia
participates in the shaping of networks in which new neurons are
being incorporated in the existing circuitry, such as hippocampus
or the olfactory bulb.

SVZ microglia undergo phenotypic changes during aging
that are associated to a progressive decline in neurogenesis
(Solano Fonseca et al., 2016). These are characterized by changes
in morphology, increased expression of Iba1 and CD68 and
enhanced release of cytokines such as IL-1β, IL-6, TNFα and
transforming growth factor-β (TFG-β; Table 1). Any of those
cytokines, alone or in combination, could be involved in the
decline in SVZ neurogenesis of aged animals although their
direct link was not demonstrated in the mentioned study
by Solano Fonseca et al. (2016). This is striking since some
of these cytokines released by activated microglia showed
neurogenic effects in the postnatal period, as mentioned earlier
(Shigemoto-Mogami et al., 2014). The environmental context
of the neurogenic niche can determine the mode of activation
of microglial cells. Microglial cells can release different set of
cytokines depending on the activation state but also, the same
cytokines can be pro- or anti-neurogenic depending on their
concentration and on their interactions with other niche cell
types. For instance, TNFα induce an increase in proliferation
of NPCs in culture at a low concentration (1 ng/ml) whereas it
causes apoptosis at high concentrations (Bernardino et al., 2008).

In pathological situations, factors secreted by activated
microglia might also influence neurogenesis in the SVZ.
Some examples are shown in Table 1. Choi et al. (2017)
demonstrated that transforming growth factor-α (TGF-α),
released by M2 phenotype microglia after ischemic stroke, is one
of the main factors that stimulates proliferation and neuronal
differentiation of SVZ neural stem cells. Thored et al. (2009)
showed that IGF-1 produced by activated microglia was probably
responsible for the supportive role of microglia in neurogenesis
after stroke. The release of VEGF by astrocytes and microglia
after episodes of neonatal hypoxia-ischemia has been associated
to the promotion in oligodendrogenesis in the SVZ (Bain et al.,
2013). In a model of focal demyelination of the corpus callosum,
undetermined soluble factors released upon microglia activation
induce an increase in the generation of new oligodendrocytes
from NPCs of the SVZ (Naruse et al., 2018).

Microglia are also involved in the increase in hippocampal
neurogenesis associated to some pathological events such as
status epilepticus (Choi et al., 2008; Ali et al., 2015) or
adrenalectomy (Battista et al., 2006). IncreasedNPC proliferation
in pilocarpine-induced status epilepticus depends on the
secretion of IGF-1 by activated microglia (Choi et al., 2008)
whereas TGF-β accounts for the promotion in neurogenesis
found in adrenalectomized animals (Battista et al., 2006).

However, activation of microglia by lipopolysaccharide inhibits
hippocampal neurogenesis via soluble factors that include IL-6
(Ekdahl et al., 2003; Monje et al., 2003). Again, all these data
support the idea that activated microglial cells are not pro-
or anti-neurogenic per se, but the balance between pro- and
anti-inflammatory secreted molecules influences the final effect
of this activation.

Therefore, microglia in the SVZ are phenotypically unique,
intervene in the control of neurogenesis during the life stages,
and promote neurogenesis or oligodendrogenesis in different
types of brain damage. Although we are beginning to understand
some of the mechanisms involved in the microglial control
of neurogenesis, we are still far to understand the precise
role of microglia in regulating SVZ neurogenesis during tissue
homeostasis and pathological conditions.

Interactions Mediated by the
Fractalkine/CX3CR1 System
Fractalkine is a chemokine expressed by healthy neurons
that binds to a specific receptor exclusively expressed by
microglia, the CX3C chemokine receptor 1 (CX3CR1; Harrison
et al., 1998). Neuronal fractalkine, acting on microglial
CX3CR1, suppresses excessive microglial activation and
provides microglia with a more neuroprotective phenotype
(Cardona et al., 2006; Ransohoff et al., 2007). However,
actions mediated by fractalkine/CX3CR1 signaling are not
always linked to neuroprotective properties, with reports
showing neuroprotective effects in stroke (Donohue et al.,
2012) or in epilepsy (Roseti et al., 2013) and others showing
neurotoxicity (Dénes et al., 2008; Xu et al., 2012). Specifically in
the hippocampal neurogenesis, the increase in fractalkine levels
is associated with a neuroprotective phenotype of microglia
in which they stimulate neurogenesis (Vukovic et al., 2012).
Conversely, loss of function of CX3CR1 leads to an increase
in microglial activation and in IL-1β levels which induce a
decrease in hippocampal neurogenesis (Bachstetter et al., 2011).
Therefore fractalkine/CX3CR1 signaling between neurons and
microglia is important for tuning the neurogenic process in the
hippocampus (Bachstetter et al., 2011). However, no evidences
have been reported so far for a precise role of fractalkine and
microglial CX3CR1 in the SVZ neurogenesis, although it has
been reported that in the olfactory bulb, the target region for
SVZ-formed neuroblasts, the lack of CX3CR1 does not affect
either microglial status or neurogenesis (Reshef et al., 2014).

CX3CR1 expression by microglial cells in the SVZ has
been used to characterize specific features of microglia in
this region (Ribeiro Xavier et al., 2015; Xavier et al., 2015).
Surprisingly, common used markers for microglia such as
Iba1 and CD68 only partially co-localize with CX3CR1-
expressing cells in the SVZ (Ribeiro Xavier et al., 2015). It is
well accepted that microglial phenotype is heterogeneous within
the CNS and it varies according to the microenvironment in
which microglia reside (reviewed in Olah et al., 2011). Therefore,
the specific antigen expression and morphology of microglia
in the SVZ reflects the influence of discrete signals from this
neurogenic niche. This fact must be taken into account since
some reported microglial-derived effects in the SVZ could have
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been underestimated by the use of these common markers that
do not identify the total microglial population.

Bilateral Communication Through
Extracellular Vesicles
In addition to signals mediated by cytokines, growth factors,
neurotransmitters and hormones, a novel type of intercellular
messenger involved in the regulation of NPC self-renewal
and differentiation has been identified recently: extracellular
vesicles (Bátiz et al., 2016; Morton et al., 2018). According
to their size, composition and subcellular origin, extracellular
vesicles can be divided into apoptotic bodies, microvesicles
and exosomes (Raposo and Stoorvogel, 2013; Kowal et al.,
2014). Secreted extracellular vesicles can act as local signals
(paracrine communication) or travel through biological fluids
(CSF, blood). They contain proteins, lipids and miRNAs that
target specific mRNAs to inhibit, in most cases, their translation.
Indeed, epigenetic control of fate determination of NPCs by
miRNAs is an emerging field of study (Lattanzi et al., 2013;
Wakabayashi et al., 2014; Åkerblom et al., 2015; Tsan et al., 2016).
Therefore, as a consequence of the release of the extracellular
vesicle content, recipient cells can modify their phenotype
and/or physiology modulating cellular processes as relevant
as proliferation, differentiation and survival (Mittelbrunn and
Sánchez-Madrid, 2012; Cocucci and Meldolesi, 2015). Cells
from the SVZ neurogenic niche secrete and/or are target of
exosomes and other extracellular vesicles (reviewed in Bátiz
et al., 2016). Specifically, it has been recently demonstrated that
neonatal NPCs of the SVZ generate and release extracellular
vesicles containing miRNAs that are targeted to microglia to
regulate their physiology and morphology (Morton et al., 2018).
Extracellular vesicle uptake by microglia is associated with a
shift to a reduced complexity in morphology and an enhanced
cytokine release, most notably IL-6 and IFN-γ (Morton et al.,
2018). These cytokines are involved in neonatal neurogenesis,
as mentioned before (Shigemoto-Mogami et al., 2014), so we
cannot rule out the possibility that the activation state and the
specific release of cytokines of microglia in the neonatal SVZ was
dependent on the uptake of NPC-derived extracellular vesicles.
These findings provide a novel signaling pathway between NPCs
and microglia in the SVZ with important impact on the shape of
the SVZ in physiological and in pathological conditions.

Gap Junctions Between Subventricular
Zone Neural Progenitor Cells and Microglia
NPCs from the SVZ express the gap junction proteins connexin
43 (Cx43), Cx45 and Cx26 (Freitas et al., 2012; Khodosevich et al.,
2012; Talaverón et al., 2015). Indeed, SVZ-derived NPCs form
gap junctions at homocellular and heterocellular levels in vitro
(Talaverón et al., 2015) and in vivo (Menezes et al., 2000; Marins
et al., 2009; Lacar et al., 2011). With respect to microglia, there is
controversy on whether they express gap junction proteins and
on their functionality. Dobrenis et al. (2005) reported connexin
expression by microglial cells and also their ability to form gap
junctions with neurons in culture. In line with this, we have
identified Cx43 positive profiles in microglial cells in the lesioned

brain (Talaverón et al., 2014). Besides, NPCs co-cultured with
microglia form functional gap junctions, as measured by Lucifer
Yellow dye transfer (Talaverón et al., 2015). Other authors have
shown in vivo that microglia form gap junctions in response to
inflammatory stimuli such as cytokines or bacterial pathogens
(Eugenín et al., 2001; Garg et al., 2005). However, the existence
of functional microglial coupling ex vivo has been questioned
by other authors. Wasseff and Scherer (2014) failed to detect
dye transfer between microglia and any other cell type neither
in the normal brain nor in pathological conditions. Microglia
associated to glioma cells did not form functional gap junctions
either, according to the experiments performed by Richter et al.
(2014). The discrepancy between these findings might rely on
the type of dye used to demonstrate the functional coupling. It
must be taken into account that gap junction permeability varies
according to the connexin isoform that constitutes the channel
(Harris, 2007) so that interactions between the dye and the
connexin pores can determine which dye can permeate and how
well. Most studies reporting functional coupling in microglia
used Lucifer Yellow to demonstrate the intercellular transfer
(Eugenín et al., 2001; Dobrenis et al., 2005; Garg et al., 2005;
Shaikh et al., 2012; Sáez et al., 2013; Talaverón et al., 2015).
Dobrenis et al. (2005) also evidenced functional gap junctions in
microglia by electrical coupling. The two articles showing a lack
of gap junctional communication in microglia used alternative
dyes such as sulforhodamine 101 (Wasseff and Scherer, 2014) or
byocitin (Richter et al., 2014). They probably did not use Lucifer
Yellow because their experiments were performed in transgenic
mice in which the enhanced green fluorescent protein (Egfp)
gene is knocked into the Cx3cr1 locus so that microglia cells
express EGFP and the EGFP emission spectrum is similar to the
Lucifer Yellow one.

Interestingly, and in relation to the extracellular vesicle-
mediated communication mentioned before, a new mechanism
of exosome delivery that involves Cx43 has been recently
described. Cx43 facilitates the docking of exosomes to target
cells through a process that may lead the formation of gap
junction-like structures, capable of transferring exosomal cargo
into the cell directly through the channel pore (Soares et al.,
2015). Therefore, it is possible that Cx43 expression identified
in microglial cells was associated to gap-junction like structures
formed with exosomes rather than or in addition to gap junctions
formed with other cell types.

To sum up, a complex bilateral dialog is established between
NPCs and microglia in the SVZ, which varies with age and with
pathological conditions. NPCs control microglial activity and in
turn, the state of the SVZ microglia determines whether they
support or impair neurogenesis.

SUBVENTRICULAR ZONE-DERIVED
NEURAL PROGENITOR CELLS IN CELL
THERAPY: INTERACTIONS WITH HOST
MICROGLIA

Neuronal degeneration and death are the underlying feature
of most neurological diseases. Thus, replacement of cell loss
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has become a promising strategy as a therapeutic approach
for neurodegenerative diseases. This cell replacement can be
achieved by in vivo recruitment of endogenous cells or by
transplantation of exogenous cells (Saha et al., 2012; Grade
and Götz, 2017). Specifically, embryonic or adult NPCs are
considered an adequate cell source for neural transplantation in
different models of brain injuries (Lindvall et al., 2004; Daniela
et al., 2007; Grade and Götz, 2017). In this section we will focus
on the use of NPCs derived from the postnatal and adult SVZ
for transplantation in different types of brain injury (Hicks et al.,
2007; Cusimano et al., 2012; Morado-Díaz et al., 2014; Carelli
et al., 2016; Koutsoudaki et al., 2016). As it happened with other
stem cells, the beneficial effects attributed to the SVZ-derived
NPC implants are not only associated with the ability to
generate new neurons or glial cells in the host tissue but with
other neuroprotective bystander capacities such as neurotrophic
support, immunomodulation or the stimulation of endogenous
repair mechanisms (Ourednik et al., 2002; Pluchino et al., 2005;
Lee et al., 2007; Morado-Díaz et al., 2014). In this regard, it is
important to note that most described neuroprotective actions
of NPCs in cell therapy are exerted when they remain in an
undifferentiated state, in which they are able to produce a
milieu of neuroprotective molecules at the site of the tissue
damage (i.e., immunomodulatory substances, neurotrophic
growth factors or stem cell regulators). Remarkably, these
molecules are constitutively expressed by NPCs for maintaining
tissue homeostasis both during development and in adult life
(Li and Xie, 2005).

Interactions of Implanted NPCs With Host
Microglial Cells Mediated by Soluble
Factors
Mosher et al. (2012) demonstrated that SVZ-derived NPCs
induce an increase in the microglial population in the implant
site with respect to vehicle injected animals. Talaverón et al.
(2014) also reported an increase in the activated microglial
population in animals lesioned by axotomy and implanted with
NPCs from the SVZ. A possible explanation for the increase
in microglia around the grafted NPCs might be attributed
to factors released by the NPCs that induce proliferation
and activation of microglia, and VEGF is a good candidate,
since it is produced by NPCs and it attracts and activates
microglia (Mosher et al., 2012; Morado-Díaz et al., 2014;
Talaverón et al., 2014; Figure 2). In turn, microglia activated
by undifferentiated NPCs may acquire a neuroprotective
phenotype which can contribute to the beneficial effects of the
grafting.

In line with this, combined transplantation of SVZ-derived
NPCs with a T cell-based vaccination instructed microglial cells
towards a tissue-protective phenotype in which they produce
brain-derived neurotrophic factor and Noggin (Ziv et al., 2006).
However, non-vaccinated animals injected with NPCs did not
show significant effects on microglial activation compared to
animals injected with vehicle (Ziv et al., 2006), which differs from
the data described above showingmicroglial activation associated
to NPC implants (Mosher et al., 2012; Talaverón et al., 2014).
This difference might be explained according to the method of

NPC grafting. Ziv et al. (2006) performed intracerebroventricular
injections of NPCs and evaluated the microglial response in
the lesioned spinal cord whereas the experiments by Mosher
et al. (2012) and Talaverón et al. (2014) were carried out with
NPCs injections directly into the brain parenchyma and the
microglial response was analyzed in the site of lesion and NPC
injection.

Wu et al. (2014) have recently demonstrated that NPCs
induce neuronal survival in organotypic brain slice cultures and
that this effect depends on microglial activation. Co-culturing
NPCs with the brain slices switched the microglial phenotype
from a detrimental to a protective one: the expression of
pro-inflammatory factors was decreased in microglial cells
whereas the expression of anti-inflammatory factors, IGF-1 and
surface molecules associated with neuroprotective phenotype
(CX3CR1 and TREM2, receptor expressed on myeloid cells-2)
was increased (Wu et al., 2014; Figure 2).

Grafted NPCs and Host Microglia Also
Communicate Through Extracellular
Vesicles
NPCs implanted in brain lesions can release extracellular vesicles
containing proteins, DNAs, RNAs and miRNAs with which
they modulate the immune response in the brain (Cossetti
et al., 2012, 2014; Pluchino and Cossetti, 2013; Figure 2). In
addition, microglia are also able to release, upon activation,
extracellular membrane vesicles containing IL-1β or molecules
involved in sphingolipid metabolism (MacKenzie et al., 2001;
Bianco et al., 2005; Antonucci et al., 2012). This important
mechanism by which NPCs may propagate some of their
immune modulatory activities represents a considerable advance
in understanding the different levels of interactions established
between implanted NPCs and the host immune system and
points to a novel dimension to the therapeutic applications
of NPCs in regenerative medicine. The administration of
NPC-derived extracellular vesicles could mitigate limitations and
safety concerns associated to the transplantation of NPCs.

Gap Junctional Communication Between
Grafted NPCs and Host Microglia
Grafted NPCs and host microglia can also communicate via gap
junctions. In animals lesioned by axotomy and implanted with
NPCs, gap junctions were detected at the ultrastructural level in
grafted NPCs and, occasionally in some microglial cells within
the lesion site (Talaverón et al., 2014). In addition, Cx43-positive
profiles were identified between NPCs and host microglia
(Talaverón et al., 2014; Figure 2). NPCs implanted focally at
the level of the severely contused mouse spinal cord were also
identified to interact with phagocytic cells via gap junctional
coupling. This was associated to a significant reduction of
‘‘classically activated’’ (M1-like) infiltrating macrophages and, in
turn, promotion of healing of the injured spinal cord (Cusimano
et al., 2012). These findings provide a new mechanism for
grafted NPCs-host microglia/macrophage communication that
can be important for the direct transmission of neuroprotective
or glioprotective factors.
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FIGURE 2 | Schematic representation of different cell signaling pathways involved in the interaction between grafted NPCs and host microglia in the injured brain.
Paracrine signaling with the release of soluble factors from SVZ-derived NPCs (in green) and microglia (in gray). Direct molecule interchange mediated by gap
junctional communication can also occur between microglia/macrophages and grafted NPCs. In addition, extracellular vesicles (orange circles) can be released by
NPCs and by microglia with the possibility to deliver bioactive molecules such as mRNAs, miRNAs and proteins. The delivery can be carried out in different ways: (i)
by endocytosis of the vesicle; (ii) by activation of surface receptors; and (iii) by membrane fusion or by a Cx43-dependent mechanism. Abbreviations: BDNF, brain
derived-neurotrophic factor; Cx43, connexin 43; IGF-1, insulin-like growth factor 1; VEGF, vascular endothelial growth factor.

INTERACTIONS BETWEEN
GLIOMA-INITIATING CELLS AND
MICROGLIA

Glioblastoma multiforme (GBM) is the most common and
malignant tumor of the CNS. The cellular origin of these
tumors remains unknown. While earlier data proposed that
GBM originate from normal glial cells, recent research has
shown that they may arise from neural stem cells located in
the SVZ (reviewed in Capdevila et al., 2017). A typical feature
of glioma cells is that they are surrounded by microglia and
macrophages (Sarkar and Yong, 2014) with which they are able
to interact. The bilateral dialog established between glioma-
initiating cells and microglia involves similar mechanisms than
those described between SVZ-derived NPCs and microglia,

i.e., release of soluble factors or extracellular vesicles as it will be
mentioned below.

Microglia/macrophage are able to infiltrate in the tumor mass
in response to chemoattractive cytokines released by the tumor,
such as colony-stimulating factor (Imai and Kohsaka, 2002),
fractalkine (Held-Feindt et al., 2010), and VEGF (Forstreuter
et al., 2002). There is a positive correlation between the
degree of microglia/macrophage infiltration in the tumor and
the histological grade of malignancy as well as with the
number of glioma-initiating cells. In line with this, the receptor
for fractalkine, CX3CR1, is upregulated in glioma microglia
(Held-Feindt et al., 2010). Patients with an allelic variant of
CX3CR1 show reduced microglial infiltration and increased
survival (Rodero et al., 2008) which suggests that microglial
infiltration in the tumor contributes to its progression.
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Indeed, infiltrated microglia/macrophages enhance GBM
cells’ invasion by degrading the extracellular matrix (Markovic
et al., 2005). Besides, immune functions of microglia in the
tumor mass are inhibited by the glioma cells and instead,
microglia adopt a tumor-promoting phenotype characterized
by the release of trophic and angiogenic factors that support
the tumor growth (Sarkar and Yong, 2014). Attempts have
been made to induce a microglia antineoplastic phenotype
and counteract the tumor-promoting phenotype in order to
reduce the glioma-initiating cell growth and invasiveness. For
example, systemic administration of amphotericin B has been
shown to induce an increase in the immune functions of
microglia and consequently to reduce the growth of the glioma-
initiating cells (Sarkar et al., 2014). Also, the knock-down
of VEGF in myeloid cells reduce the pro-tumorigenic effects
of microglia/macrophages and attenuates glioma progression
(Osterberg et al., 2016).

Recent reports have shown that one of the mechanisms by
which the tumor cells manipulate microglia to instruct a tumor-
supportive phenotype is through the release of extracellular
vesicles containing specific miRNAs, mRNAs and encoded
proteins (de Vrij et al., 2015; van der Vos et al., 2016). Again, this
mechanism stands out as a crucial way of interaction between
microglia and progenitor cells. Targeting extracellular vesicles
released by glioma cells is indeed emerging as a new therapeutic
strategy to combat the GBM (Rooj et al., 2016).

CONCLUDING REMARKS

NPCs proliferate and differentiate depending on the composition
of the cellular and molecular niche in which they are immersed.
Microglia, as cellular components of the SVZ niche, can

be a source of molecules that modulate the cell cycle and
fate of adjacent NPCs. Microglial activation status in turn
depends on factors released by NPCs and by other cell
components of the niche, and varies with age and with
pathology. NPCs and microglia establish a bilateral dialog in
the SVZ, through paracrine-, gap junctional- and extracellular
vesicles-mediated communication. This crosstalk seems to be
essential for maintaining a precise control of neurogenesis
in healthy and in pathological conditions. Interactions taking
place between grafted NPCs and microglia from the host also
play a role in shaping the host microenvironment to reduce
tissue damage and/or enhance endogenous repair mechanisms.
Glioma-initiating cells of GBMs, which resemble NPCs of the
SVZ, and surrounding microglia, also establish a complex dialog
by which microglia infiltrate into the tumor and support its
growth. The analysis of possible differences in the bilateral
communication between NPCs-microglia in the SVZ, that
instructs microglia towards an adequate tuning of the neurogenic
process, and GBM-microglia, that instructs microglia towards a
tumor-supportive phenotype, could provide important cues on
the mechanisms of control of stem cell proliferation and survival.
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