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Gap junctions are channels that physically connect adjacent cells, mediating the
rapid exchange of small molecules, and playing an essential role in a wide range
of physiological processes in nearly every system in the body, including the nervous
system. Thus, altered function of gap junctions has been linked with a plethora of
diseases and pathological conditions. Being able to measure and characterize the
distribution, function, and regulation of gap junctions in intact tissue is therefore essential
for understanding the physiological and pathophysiological roles that gap junctions play.
In recent decades, several robust in vitro and in vivo methods have been developed
for detecting and characterizing gap junctions. Here, we review the currently available
methods with respect to invasiveness, signal-to-noise ratio, temporal resolution and
others, highlighting the recently developed chemical tracers and hybrid imaging systems
that use novel chemical compounds and/or genetically encoded enzymes, transporters,
channels, and fluorescent proteins in order to map gap junctions. Finally, we discuss
possible avenues for further improving existing techniques in order to achieve highly
sensitive, cell type-specific, non-invasive measures of in vivo gap junction function with
high throughput and high spatiotemporal resolution.
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INTRODUCTION

Multicellular organisms rely on cell-cell communication to coordinate a wide range of
physiological processes and maintain homeostasis. Most organisms have evolved a rich diversity
of mechanisms to achieve this communication, including long-distance signaling through the
release, and binding of hormones (Ansar Ahmed et al., 1985; Giustina and Veldhuis, 1998; Meier
and Gressner, 2004), spatially confined synaptic transmission between two neurons (Krnjevic,
1974; Pereda, 2014), and gap junctional coupling between neighboring cells (Kumar and Gilula,
1996; Sohl et al., 2005; Mese et al., 2007). In the central nervous system, billions of neurons are
intermingled and communicate with each other through a specialized structure called the synapse,
forming a complex signaling network. Although synapses are predominantly chemical in nature,
with neurotransmitters released from the presynaptic terminal and sensed by the postsynaptic
neuron via surface receptors, gap junction–based electrical synapses are also widely distributed,
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and play an essential role in regulating both the development and
function of the nervous system (Pereda, 2014).

Gap junctions, composed of connexins in vertebrates and
innexins in invertebrates, are intercellular channel complexes
between connected cells (Kumar and Gilula, 1996; Phelan
et al., 1998). Pannexins are vertebrate homologs to the innexins
(Baranova et al., 2004), form hemi-channels connecting cytosol
and extracellular space (D’hondt et al., 2009), and could
mediate gap junctional connection in cells when overexpressed
(Bruzzone et al., 2003; Vanden Abeele et al., 2006; Lai et al.,
2007; Ishikawa et al., 2011), although their in vivo role in
forming functional gap junction is unclear (Sosinsky et al.,
2011). Ions and other small molecules with a molecular mass
up to approximately 1 to 2 kDa can freely diffuse through
gap junctions (Loewenstein, 1981; Kumar and Gilula, 1996;
Neijssen et al., 2005). Thus, signals such as action potentials
can propagate directly between gap junction–coupled neurons,
resulting in virtually no delay in signal transmission (Furshpan
and Potter, 1957;Bennett and Zukin, 2004); in contrast, signal
transmission via a chemical synapse has a delay on the order
of milliseconds (Katz and Miledi, 1965; Sabatini and Regehr,
1996). Gap junctions therefore allow organisms to respond
extremely rapidly under certain conditions, for example in the
escape reflex in crayfish (Antonsen and Edwards, 2003) and
the retina’s response to visual stimuli in vertebrates (Bloomfield
and Volgyi, 2009). Gap junctions are also expressed in glial
cell types, including astrocytes (Wallraff et al., 2004), microglia
(Garg et al., 2005), oligodendrocytes and Schwann cells (Nualart-
Marti et al., 2013), and insect blood-brain barrier glial cells
(Speder and Brand, 2014), which is essential for the buffering
of ions and transmitters, inflammatory response, myelination
and neural stem cell proliferation. Gap junctions also connect
glia and neurons (Dobrenis et al., 2005; Meng et al., 2016).
Given their highly varied and important roles, it is therefore
not surprising that malfunctions in gap junctions can disrupt
communication among neurons and glia, thus giving rise to
a variety of diseases and neurological disorders, including
hereditary deafness (Martinez et al., 2009), uncorrelated motor
neuron firing (Personius et al., 2007), and Charcot-Marie-Tooth
disease (Kleopa, 2011).

Extensive studies of gap junctions in the nervous system
have been carried out by various research groups over the past
few decades; the expression of gap junction forming subunits
were detected by northern blot (Paul et al., 1991; White et al.,
1992), RT-PCR (Wrenzycki et al., 1996; Xia et al., 1998), western
blot (Stauffer, 1995; Giepmans and Moolenaar, 1998), and
immunohistochemistry (Beyer et al., 1989; Dermietzel et al.,
1989). In this review, we focus on functional methods that can
detect gap junctional coupling, first briefly summarizing current
approaches relying on electrophysiological recording, tracer-
based assays, and hybrid methods using genetic tools (Figure 1),
mainly focusing on recently developed imaging methods. We
summarize the performance and properties of these methods,
including their invasiveness, throughput, feasibility, sensitivity,
spatial resolution, and temporal resolution (Table 1). As new
in vivo methods are being developed, new features of gap
junction regulation will likely be revealed, yielding important new

insights into the role that gap junctions play in both health and
disease.

ELECTROPHYSIOLOGICAL RECORDING

Gap junctional coupling can be measured using dual-electrode
whole-cell current-clamp recordings (Furshpan and Potter,
1959). This method requires two microelectrodes; one electrode
is used to inject current into one cell, and the other electrode
is used to measure the resulting change in membrane potential
in a connected neighboring cell. Because the two cells are
electrically coupled, current injection leads to a change in the
membrane potential of both cells (Figure 1A). Alternatively,
dual-electrode whole-cell voltage clamp can also be used to
measure gap junctional coupling; in this configuration, inducing
a change in membrane potential between the two cells drives
an electrical current through the gap junctions (Spray et al.,
1979). Electrophysiological recording has millisecond resolution,
picoampere current detection sensitivity, and the ability to
measure conductance and rectification, both of which are
important properties of electrical synapses in neurons. However,
this method has obvious limitations, including the need for
relatively high technical expertise, specialized equipment, high
invasiveness due to disruption of the cell membrane integrity,
relatively low throughput, and one-off recording. Moreover, this
method by itself cannot discriminate distinct cell types, which
is particularly problematic given the heterogeneous nature of
the nervous system. In addition, the recordings are usually
performed at the cell body, which does not take into account the
subcellular localization of gap junctions, particularly in neurons
and other cell types with complex morphology.

TRANSFER OF TRACERS

To assay the gap junction communications, tracers including
fluorescent dyes, and bioactive small molecules can be introduced
to one cell or a group of cells. The diffusion of tracers from the
primary targeted cells to other connected cells reflects the gap
junctional couplings.

Microinjection of the Tracer
The injection of a tracer, followed by measuring its transfer, is
usually the first step in identifying the location and morphology
of cells within a tissue. Because small molecules can pass
freely through gap junctions, the diffusion of an injected small
tracer molecule can be used to measure gap junctional coupling
between cells (Figure 1B). With respect to the study of gap
junction–mediated communication, the most commonly used
fluorescent dye is Lucifer Yellow, with a molecular weight
of 457 Da (Stewart, 1978), and the most commonly used
bioactive small molecule is biocytin, with a molecular weight
of 372 (Horikawa and Armstrong, 1988). The transfer (i.e.,
diffusion) of an injected tracer to neighboring cells can be
observed either directly (in the case of a fluorescent dye) or
post hoc using immunohistochemistry (in the case of a bioactive
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FIGURE 1 | Schematic overview of the currently available methods for studying gap junctions. The principle behind each method is shown schematically on the left
with a radar graph on the right that summarizes its corresponding performance index (e.g., sensitivity, throughput, resolution) in arbitrary units ranging from 0 to 4.
Further details are provided in the text. FRAP, fluorescence recovery after photobleaching; LAMP, local activation of a molecular fluorescent probe; PLE, porcine liver
esterase; Pept2, peptide transporter 2; βALA, AMCA-labeled dipeptides β-Ala-Lys; ChIEF, an engineered version of a channelrhodopsin.

TABLE 1 | Overview of the methods used to probe gap junctional communication.

Property/characteristic

Method Sensitivity Throughput Ease of
implementation

Genetic
access

Temporal
resolution

Spatial
resolution

Invasiveness

Dual-electrode recording + ++ Two cells each time Technically
demanding

No Milliseconds Cellular level Invasive

Injection of tracers + Limited number of cells Technically
demanding

No 5–20 min Cellular level Invasive

Scrape loading of tracers + Dozens of cells Relatively easy No 2 min Cellular level Invasive

FRAP + Dozens of cells High-power laser No ∼50 s Cellular level Photo damage

LAMP + + Dozens of cells Relatively easy No ∼200 s Cellular level Non-invasive

PLE-ester + Dozens of cells Relatively easy Yes Hours Cellular level Non-invasive

Pept2-βALA + Dozens of cells Relatively easy Yes Hours Cellular level Non-invasive

Patch clamp-Pado + + Limited number of cells Technically
demanding

Yes Sub-second Cellular level Invasive

Patch clamp-ChIEF + ++ Limited number of cells Technically
demanding

Yes Milliseconds Cellular level Invasive

FRAP, fluorescence recovery after photobleaching; LAMP, local activation of a molecular fluorescent probe; PLE, porcine liver esterase; Pept2, peptide transporter 2;
βALA, AMCA-labeled dipeptides β-Ala-Lys; ChIEF, an engineered version of a channelrhodopsin.

small molecule). The tracers used in these experiments are not
membrane-permeable, thereby reducing non-specific diffusion
through the cell membrane. This method is technically easier to
perform compared to electrophysiology, which requires multiple

electrodes and a sophisticated recording setup. However, it still
lacks cell type specificity, requires the microelectrode, and the
dye diffusion is irreversible, thus preventing the ability to study
gap junctions repeatedly in the same cells. Moreover, the injection
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process requires either mechanical pressure or iontophoresis, and
immunohistochemistry takes a relatively long time, thus reducing
both the temporal resolution and the throughput.

Scrape Loading of the Tracer
In addition to the one-by-one injection, the tracer can be
introduced into a large population of cells via the scrape (McNeil
et al., 1984). Cultured cells in one layer are incubated with
gap junction-permeable but cell membrane impermeable dyes
as mentioned above and are scraped by a needle or a scalpel.
Dye molecules therefore get into wounded cells, and can further
diffuse to adjacent cells that are intact but coupled with the
scraped cells by gap junctions (Figure 1C; el-Fouly et al., 1987).
The scrape loading/dye transfer method is the easiest one to
implement among all methods discussed here. Because of its
simplicity, gap junctional communications were evaluated using
this method in many cell types, including fibroblasts (Azzam
et al., 2001), germ cells in testis (Decrouy et al., 2004), and
astrocytes (Giaume and McCarthy, 1996). The limitations of this
method include that it is mostly effective in adherent cells and
therefore mainly applied in cultured cells or tissue slices in vitro.
The scraping procedure in conjunction of cell fixation protocol
offers qualitative rather than quantitative data for gap junctional
connections.

Fluorescence Redistribution/Recovery
After Photobleaching (FRAP)
To overcome the high invasiveness and technical expertise
associated with microelectrode-based methods, Wade et al.
(1986) developed the gap-FRAP technique (Figure 1D), an
all-optical strategy used to study gap junctions. Rather than
injecting fluorescent molecules into individual cells, cultured cells
are incubated with membrane-permeable fluorescein-AM; upon
entering the cell, the ester bond is hydrolyzed by intracellular
esterases, leaving the hydrophilic fluorescein molecule trapped
within the cell (Rotman and Papermaster, 1966). After an
intense focused laser is used to bleach the fluorescein in one
cell, the bleached fluorescein molecules and the unbleached
fluorescein molecules in neighboring cells diffuse through the
gap junctions, leading to the recovery of fluorescence in the
original bleached cell. Compared to the methods described above,
FRAP is less invasive and easier to perform. Importantly, this
method provides both qualitative and quantitative information
regarding the strength of the gap junctions, which is reflected by
the kinetics of fluorescence recovery (Lee et al., 1995; Soroceanu
et al., 2001). This method also provides satisfactory temporal
resolution, as the photobleaching can be performed extremely
rapidly using a high-power laser (Lippincott-Schwartz et al.,
2003). One potential drawback of FRAP is that the intense
laser illumination may damage the cell. In addition, in order
to quantitatively characterize the FRAP kinetics which reflect
the strength of the gap junctional communication, the recovery
event needs to be monitored until the fluorescence recover to
the plateau, which takes much longer time than the half-time
for recovery (Lippincott-Schwartz et al., 2003). This requirement
makes FRAP not suitable for measuring very fast dynamics

of the gap junctions as can be done by electrophysiological
recording (Abbaci et al., 2008). Finally, similar to tracer tracking
methods, FRAP by itself lacks cell type specificity, constraining its
application mainly to homogenous cell cultures.

Local Activation of a Molecular
Fluorescent Probe (LAMP)
To avoid potential phototoxicity associated with photobleaching
while still leaving the cell intact, Dakin et al. (2005) developed
LAMP, which uses the caged fluorescent dye NPE-HCCC2-AM
(Figure 1E; Zhao et al., 2004). After the cell is loaded as described
above for NPE-HCCC2-AM, UV illumination is used to uncage
NPE-HCCC2 in specific cells and release HCCC2, which has a
molecular weight of 450 Da and emits blue fluorescence. The
uncaged HCCC2 can then diffuse to neighboring cells connected
via gap junctions. In a sense, LAMP is a combination between
FRAP and tracer tracking in that it generates a fluorescent signal
(the “tracer”) in one cell and then tracks the movement of the
tracer through gap junctions, while maintaining cell integrity.
In this respect, LAMP has the combined advantages of both
methods in that it is non-invasive, provides quantitative data,
and has relatively high temporal resolution. In addition, LAMP
allows for multicolor imaging, as the uncaging of NPE-HCCC2
requires a small pulse of UV light and is therefore compatible
with fluorescent indicators in the visible spectrum (Dakin et al.,
2005; Dakin and Li, 2006; Abbaci et al., 2008). This method can be
improved further by incorporating caged fluorescent molecules
with higher uncaging efficiency and a more penetrable red-shifted
emission spectrum. Unfortunately, LAMP still requires loading
of an exogenous dye, which limits its applications in in vivo
preparations. Moreover, uncaging of NPE-HCCC2 is irreversible,
making it less suitable for studying the dynamics of gap junctions
repeatedly over a prolonged period of time.

HYBRID APPROACHES COMBINED
WITH GENETIC TOOLS

In order to obtain more cell type-specific information, genetically
encoded proteins can be incorporated into the method being
used to map gap junctions; this is particularly important for
studying gap junctions in a specific cell population within the
heterogeneous central nervous system.

Esterase-Ester Pair
This enzyme-substrate pair has been used successfully to map
gap junctions (Figure 1F). The enzyme is expressed in specific
cell types; the substrate, which is water-soluble, membrane-
permeable, unaffected by endogenous enzymes but catalyzed
by the ectopically expressed enzyme, is able to diffuse through
gap junctions. One example of this approach is the highly
selective esterase-ester pair developed by Tian et al. (2012).
In this approach, they synthesized a series of esters that
fluoresce upon hydrolysis, and identified one substrate (called
“substrate 6”) that was stable in several different cell types in
a range of species, including flies, rodents, and humans. They
also identified porcine liver esterase (PLE) (Lange et al., 2001)
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as the most potent at catalyzing the hydrolysis of substrate
6 and used the PLE-substrate 6 pair to map the distribution
of gap junctions. PLE hydrolyzes substrate 6 to produce a
fluorescent product, and the diffusion of this fluorescent product
causes fluorescence in the cells that were connected via gap
junctions to the PLE-expressing cells (Figure 1F). Thanks to
genetic manipulation, this strategy provides higher cell type
specificity using a relatively simple approach. The bio-specificity
of substrate 6 ensures that this strategy can be used in a
wide variety of organisms and cell types; however, it is still
possible that endogenous esterases can cause a non-specific
background signal under certain conditions. Thus, the system
can be optimized by modifying the PLE enzyme and/or the
substrate, or by identifying a more bioorthogonal enzyme-
substrate pair (Sletten and Bertozzi, 2009; Ritter et al., 2015).
At the same time, robust control experiments (for example,
using knockout models) are an essential step in testing for
non-specific background due to endogenous enzymes (Qiao
and Sanes, 2015). Another drawback of this method is the
relatively low temporal resolution, which requires up to 30 min
of incubation in the substrate, thereby limiting its value in terms
of studying the dynamics and regulation of gap junctions (Tian
et al., 2012). In addition, this method has only been tested
in cultured cell lines, and its feasibility in primary cells (e.g.,
neurons and cardiomyocytes) and in vivo applications has not
been investigated.

Transporter-Substrate Pairs
An alternative strategy is to use a transporter-substrate pair
in which a genetically encoded transporter is expressed in one
cell, which then transports a fluorescent substrate into the
cytoplasm; diffusion of the fluorescent substrate to neighboring
cells indicates the presence and distribution of gap junctions.
In 2015, Qiao and Sanes reported the use of human Pept2
(a peptide transporter) (Biegel et al., 2006) and the AMCA-
labeled dipeptide β-Ala-Lys (βALA, the substrate) (Dieck et al.,
1999) as a strategy for mapping gap junctions (Figure 1G; Qiao
and Sanes, 2015). Using this innovative tool, they successfully
mapped functional gap junctions in cultured HEK293 cells
and quantified the diffusion properties of βALA, which reflects
the strength of the gap junctions. Taking advantage of the
CreER system and sparse labeling in Pept2 knockout mice, they
then confirmed the presence of gap junctional communication
between J-RGCs (a subset of retinal ganglion cells) and amacrine
cells in the mouse retina (Bloomfield and Volgyi, 2009; Hoshi
and Mills, 2009; Volgyi et al., 2009), and they demonstrated
the presence of gap junctions in horizontal cells. Importantly,
the authors also characterized the light-dependent electrical
coupling of horizontal cells by mapping the pattern of gap
junctional communication before and after illumination with
light (Xin and Bloomfield, 1999). Thus, the Pept2-βALA pair
provides a powerful tool for mapping the distribution and
strength of gap junction connectivity both in cultured cells
and in an ex vivo retinal preparation. On the other hand,
a clear drawback associated with this method is that the
temporal resolution (which is on the order of hours) is not

sufficient to track the dynamics of the strength of gap junction
connections.

Genetically Encoded Fluorescent
Sensors/Optogenetics Combined With
Patch-Clamp Recording
Genetically encoded fluorescent sensors provide another means
to map gap junctions by monitoring the concentration change
of a chemical during diffusion through gap junctions. In
2016, Kang and Baker reported the development of a novel
genetically encoded fluorescent sensor called Pado, which can
be used to track the diffusion of protons through gap junctions
(Figure 1H; Kang and Baker, 2016). Pado is a dual-function
protein created by fusing an engineered voltage-gated proton
channel from Clonorchis sinesis with a pH-sensitive fluorescent
protein (Super Ecliptic pHluorin 227A, or SE227A) (Jin et al.,
2012). To demonstrate proof-of-principle, Kang and Baker
expressed Pado in HEK293 cells, then used the whole-cell
patch-clamp technique to depolarize one cell. The change in
voltage opened the voltage-gated proton channels, facilitating the
efflux of protons from the cell and creating an electrochemical
gradient between this cell and neighboring cells connected
via gap junctions. Protons then diffused from the neighboring
cells down this electrochemical gradient, and the change in
SE227A fluorescence was detected in both the clamped cell and
the adjacent cells. While this method is promising, the data
should be taken carefully and some calibrations allowing for
quantitative analysis should be performed. A similar strategy
utilizing a hybrid calcium indicator Calcium Green FlAsH
could also enable detection of gap junctional couplings, by
monitoring the intercellular propagation of calcium waves in
gap junction coupled cells (Tour et al., 2007). Given that
Calcium Green FlAsH needs to be applied exogenously, further
improvements can be achieved by using pure genetically
encoded calcium indicators such as GCaMP6 (Chen et al.,
2013).

Given the electrical properties of gap junctions, optogenetics
is yet another useful tool for mapping gap junctions, as an
electrical signal generated by light-activated channelrhodopsins
(Nagel et al., 2003, 2005) can propagate to coupled cells
and be detected using patch clamp. Recently, Wang et al.
(2014) combined an improved version of the channelrhodopsin
ChIEF (Lin et al., 2009) with electrophysiology in order to
map gap junction connections in the Drosophila olfactory
system (Figure 1I). They performed patch-clamp recordings
on cholinergic projection neurons (mPNs) while expressing
ChIEF in mediolateral antennocerebral tract projection neurons
(mIPNs) labeled by Mz699-Gal4 (Ito et al., 1997). Applying
blue laser illumination to the mIPNs induced depolarization of
some mPNs; this effect was not altered by the nicotinic receptor
antagonist mecamylamine but was sensitive to the shakB2

mutation (which affects innexin-8) (Thomas and Wyman, 1984;
Phelan et al., 1996; Zhang et al., 1999; Song and Tanouye, 2006),
leading to the conclusion that mPNs and mIPNs are electrically
coupled. The finding that blocking cholinergic receptors had no
effect on the mIPN-mPN coupling indicates that when using
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this tool, it is important to distinguish chemical and electrical
synapses using genetics and/or pharmacology, as ChIEF induced
depolarization of presynaptic neurons can drive postsynaptic
responses in both chemical and electrical synapses. Moreover,
unlike the dual-electrode whole-cell patch-clamp technique, the
ChIEF-based method is unidirectional and cannot be used to
identify rectifying gap junctions. To overcome this limitation, a
light-gated chloride pump such as the Halorhodopsin isolated
from Natronomonas (NpHR) (Han and Boyden, 2007; Zhang
et al., 2007) can be used to hyperpolarize the presynaptic
terminal, thereby reversing the direction of the current across the
electrical synapse.

Compared to previous methods, these two strategies
(exemplified by Pado and ChIEF) do not require an exogenously
applied substrate, which simplifies the experimental protocol
and makes them more feasible for use in in vivo applications.
In addition, because they have relatively faster kinetics (on the
order of milliseconds to seconds), these methods can be used to
collect repeated measurements, which is essential for studying
the dynamics of the strength of gap junctional connections at
high temporal resolution. On the other hand, these approaches
require the use of glass micropipettes, reducing their throughput.
Moreover, one needs to block chemical synapses when using
ChIEF to detect electrical synapses, which may alter the normal
state of the nervous system.

PERSPECTIVES

Gap junctions play an extremely important role in mediating
cell-cell communication, and their distribution and dynamics
are essential for maintaining normal physiological function
and homeostasis. Although researchers have been able to link
genetic mutations with these conditions, identifying precisely

which cell populations are affected by these mutations has been
far more difficult. In a more physiological context, single-cell
transcriptomics has revealed that both neurons and glia are
more heterogeneous than previously believed (Lake et al., 2016;
Tasic et al., 2016). In addition, connexins and innexins are
encoded by multiple genes, giving rise to a wide diversity of
gap junctions. For example, the mouse and human genomes
contain 20 and 21 connexin-encoding genes, respectively (Sohl
and Willecke, 2003), and the Caenorhabditis elegans and
Drosophila melanogaster genomes contain 25 and 8 innexin-
coding genes, respectively (Starich et al., 2001; Stebbings et al.,
2002). Therefore, investigating the function of gap junctions in
distinct cell types and in an isoform-specific manner remains
extremely challenging. To overcome these challenges, new
methods providing improved genetic specificity, high spatial
resolution, and functionally relevant temporal resolution are
urgently needed. Ideally, these methods should be non-invasive
and technically simple to perform, thereby facilitating their use in
in vivo applications, allowing researchers to study gap junctions
in a more physiological setting.

In principle, using genetically encoded tools provides a
possible solution. For example, the PLE-ester and Pept2-βALA
strategies discussed above eliminate the need to manually
manipulate the cells with glass pipettes, while providing
the advantages associated with fluorescence imaging (Tian
et al., 2012; Qiao and Sanes, 2015). On the other hand, the
patch-clamp–based Pado and ChIEF strategies provide faster
kinetics and do not require an exogenous substrate, making
the background signal easier to control by regulating the
expression level (Wang et al., 2014; Kang and Baker, 2016).
However, each of these methods includes a non-genetically
encoded component (e.g., an exogenous substrate or whole-cell
patch-clamp recording), which have inherent limitations as
discussed above.

FIGURE 2 | A proposed ideal optogenetics-based system for mapping gap junctions. (A) The principle behind the proposed optogenetics-based system shown on
the left with its theoretical performance index on the right, similar to Figure 1. (B) A proposed multiplex, optogenetic system for mapping gap junction using two
pairs of bio-orthogonal generators and reporters and its application in an intact tissue with heterogeneous cell types.
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The vast majority of genetically encoded methods used to
date are based on the diffusion of target molecules such as
esters, ions, peptides, or synthetic dyes through gap junctions.
In each case, the electrochemical gradient that drives this
diffusion is generated exogenously (e.g., by patch clamp, tracer
introduction, or substrate application), and the chemical transfer
is usually detected using fluorescent probes. Thus, we can
summarize the entire system as consisting of a “generator” and
a “reporter”; the generator produces the electrochemical gradient
between coupled cells, and the reporter reports the transfer of
molecules through the gap junctions (Figure 2A). In a system
comprised exclusively of genetically encoded optogenetics-based
components, both the generator and the reporter would be
proteins (e.g., a light-activated channel or transporter and a
fluorescent sensor). In this idealized system, the generator would
be controlled by light and would use the cel’s endogenous ions
or chemicals to generate the electrochemical gradient, and the
reporter would sense the change in concentration and change
its fluorescence intensity. This non-invasive optogenetics-based
system could be used to control and image a large number
of cells simultaneously, and the background fluorescence could
be minimized greatly by controlling the expression of the
generator and reporter. More importantly, multicolor imaging
could be achieved—at least in theory—by using a combination
of generators with non-overlapping action wavelengths and/or

reporters with non-overlapping excitation and emission spectra
(Figure 2B). Given the wide range of clear benefits associated
with this approach, genetically encoded optogenetics represents
one of the most promising strategies for studying gap junctions
in the future.
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