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Cortical interneurons play a crucial role in regulating inhibitory-excitatory balance in
brain circuits, filtering synaptic information and dictating the activity of pyramidal cells
through the release of GABA. In the fatal motor neuron (MN) disease, amyotrophic
lateral sclerosis (ALS), an imbalance between excitation and inhibition is an early
event in the motor cortex, preceding the development of overt clinical symptoms.
Patients with both sporadic and familial forms of the disease exhibit reduced cortical
inhibition, including patients with mutations in the copper/zinc superoxide-dismutase-
1 (SOD1) gene. In this study, we investigated the influence of the familial disease-
causing hSOD1-G93A ALS mutation on cortical interneurons in neuronal networks.
We performed whole-cell patch-clamp recordings and neurobiotin tracing from GFP
positive interneurons in primary cortical cultures derived from Gad67-GFP::hSOD1G93A

mouse embryos. Targeted recordings revealed no overt differences in the passive
properties of Gad67-GFP::hSOD1G93A interneurons, however the peak outward current
was significantly diminished and cells were less excitable compared to Gad67-
GFP::WT controls. Post hoc neurite reconstruction identified a significantly increased
morphological complexity of the Gad67-GFP::hSOD1G93A interneuron neurite arbor
compared to Gad67-GFP::WT controls. Our results from the SOD1 model suggest
that cortical interneurons have electrophysiological and morphological alterations that
could contribute to attenuated inhibitory function in the disease. Determining if these
phenomena are driven by the network or represent intrinsic alteration of the interneuron
may help explain the emergence of inhibitory susceptibility and ultimately disrupted
excitability, in ALS.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is the most common and severe form of motor neuron
(MN) disease. It is clinically characterized by selective loss of the upper and lower MNs in the
primary motor cortex and spinal cord, resulting in progressive motor system failure and death
within 3–5 years of diagnosis (Talbot, 2014; Brown and Al-Chalabi, 2017). This currently incurable
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disease is clinically heterogeneous and its etiology remains
unknown. However, accumulating evidence from several clinical
and experimental studies suggests the disease pathogenesis
may center on altered regulation of MN excitability (Turner
and Kiernan, 2012; Clark et al., 2015; Geevasinga et al.,
2016).

In both sporadic and familial forms of ALS, patients have been
found to present with neurophysiological alterations described
as hyperexcitability (Vucic and Kiernan, 2006; Vucic et al.,
2008; Geevasinga et al., 2015). Originating in the motor cortex
and preceding detectable lower MN dysfunction and symptom
onset (Menon et al., 2015), it is proposed that hyperexcitability
enhances the susceptibility of MNs to cell death through
glutamatergic excitotoxicity (Blizzard et al., 2015; Eisen et al.,
2017). In ALS, hyperexcitability likely results from dysfunctional
inhibition exerted by GABAergic interneurons, as well as
intrinsic changes to sodium (Na+) and potassium (K+) channel
function on MNs (Geevasinga et al., 2016; Do-Ha et al., 2018).

Evidence for ion channel dysfunction is highlighted by
a convergent hyperexcitability phenotype in patient-derived
MNs, including TARDBP, C9ORF72 and superoxide-dismutase-
1 (SOD1) mutation carriers (Wainger et al., 2014; Devlin
et al., 2015). TDP-43 and SOD1 ALS rodent models identify
changes in the excitability of MNs prior to symptoms (Fogarty
et al., 2015; Handley et al., 2017). However, more recent
studies recognize progressive alterations in the number and
excitability of interneurons throughout the disease course in
TDP-43 and SOD1 models (Zhang et al., 2016; Clark et al.,
2017; Kim et al., 2017). Clinical imaging studies indicate
loss of inhibitory activity is a common and early feature of
cortical hyperexcitability (Menon et al., 2015), and a key
determinant of clinical disease progression (Shibuya et al.,
2016). As such, there is a growing body of evidence to
suggest dysregulated inhibition, presumably mediated by
cortical interneurons, may drive an excitatory/inhibitory
imbalance in ALS.

Here, we focused on the potential for the familial hSOD1G93A

mutation to influence firing properties and morphology
of cortical interneurons in Gad67-GFP::hSOD1G93A cultures.
Structural alteration of pyramidal neurons is demonstrated in
hSOD1G93A studies (Jara et al., 2012; Fogarty et al., 2016; Saba
et al., 2016), but few studies report changes to the morphological
fine structure of interneurons (Clark et al., 2017). Additionally,
mutant SOD1 is theorized to mediate non-cell autonomous
pathogenicity through perturbed function of multiple cell types
early in development (Kuo et al., 2004; van Zundert et al., 2008;
Martin et al., 2013; Wainger et al., 2014; Devlin et al., 2015). As
such, we hypothesize that the hSOD1G93A mutation can perturb
the excitability and neurite structure of cortical interneurons in
culture.

METHODS

Animals
All procedures were approved by the Animal Ethics Committee
of the University of Tasmania (#A0013586) and conducted

in accordance with the Australian Code of Practice for
the Care and Use of Animals for Scientific Purposes.
Gad67-GFP knock-in transgenic mice (Tamamaki et al.,
2003) express green fluorescent protein (GFP) under the
interneuron-specific Gad67 promoter. High copy number
hSOD1G93A mice were maintained and fully backcrossed
to the C57BL/6 background (Gurney et al., 1994; B6.Cg-
Tg(SOD1G93A)1Gur.J1, Jackson Laboratories, Bar Harbor, ME,
USA).

Cortical Culture Electrophysiology
Primary cortical cultures were prepared by carefully dissecting
individual mouse embryo neocortices to enrich for neurons as
previously described (Brizuela et al., 2015, 2017), with some
modifications. Cells were plated at 3.5 × 104 cells/mm2 for
up to 12 days and genotyped for GFP (Brizuela et al., 2015)
and the hSOD1G93A mutation (Leitner et al., 2009). Whole-cell
voltage and current clamp recordings were performed as
previously described (Brizuela et al., 2015), with minor
modifications. Glass capillaries (impedance 7–9 Ω) were filled
with intracellular solution containing neurobiotin for post hoc
cell identification. Voltage responses to current injection were
recorded from the cell’s resting potential (applying 25 pA
steps for 200 ms from −100 pA to 500 pA). Recordings were
filtered at 5 kHz and sampled at 10 kHz and terminated
when access resistance was ≥15 MΩ. Voltage-gated sodium and
potassium currents were investigated as previously described
(Brizuela et al., 2015). Data was analyzed using the programs
Igor (WaveMetrics, USA) and Axograph (Axograph Scientific,
Australia).

Immunocytochemistry
Cultures were processed for immunocytochemistry as previously
described (Brizuela et al., 2015). Primary antibodies (rat
anti-GFP, 1:3,000, Nacalai tesque, RRID: AB_10013361).
Secondary antibodies (Alexa Fluor anti-rat 488, 1:1,000,
Molecular Probes, RRID: AB_2534074). Neurobiotin-filled
interneurons were labeled with streptavidin-546 and imaged
using a UltraView Spinning disc confocal microscope (Perkin
Elmer) with Velocity Software (Velocity v6 3.0, 2013, Perkin
Elmer).

Morphological Analyses
Cell processes were traced through Z-stack series (5 µm, 0.5 µm
intervals) with NeurolucidaTM (MBF Bioscience, VT, USA)
and assessed using branched structure and sholl analyses with
Neurolucida Explorer 11 (MBF Bioscience). Interneurons that
met electrophysiology inclusion criteria were morphometrically
assessed.

Statistical Analysis
All statistical analysis was performed in GraphPad Prism
(Version 6.0c, GraphPad Software La Jolla, CA, USA). Unless
otherwise stated, comparisons utilized Mann-Whitney tests,
after applying d’Agostino and Pearson’s normality test, results

1http://www.jax.org/strain/004435
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expressed as median with interquartile range. Sholl analysis and
current-frequency relationships used two-way ANOVA. Data
was considered significant at ∗p < 0.05.

RESULTS

Membrane Properties and Reduced
Excitability in Cultured
Gad67-GFP::hSOD1G93A Interneurons
Previous studies have demonstrated that mutant hSOD1G93A can
perturb neuronal excitability during development, which may
contribute to cellular vulnerability in disease (Kuo et al., 2004;
van Zundert et al., 2008; Martin et al., 2013; Wainger et al.,
2014; Devlin et al., 2015). Here, we focus on investigating cortical
interneuron excitability in neuronal culture by examining firing
patterns and membrane properties of interneurons in Gad67-
GFP::hSOD1G93A cultures.

We used whole-cell recordings from multipolar cortical
interneurons to characterize the effect of the hSOD1G93A

mutation on cortical interneuron excitability in the presence of
synaptic currents. Selection of GFP-positive neurons ensured
studied cells were interneurons, with neurobiotin labeling used
for post hoc identification (Figure 1A).We found the hSOD1G93A

mutation significantly affected firing properties of cortical
interneurons, decreasing the number of action potentials (APs;
Figure 1B) in response to 200 ms depolarizing current step
injections at 350pA (Figure 1C; 8.675± 2.752pA for hSOD1G93A,
27.42± 3.888pA forWT; p< 0.05, two-wayANOVA, Bonferroni
post hoc; F(8,47) = 2.305, p = 0.0357, interaction between
genotype and frequency in two-way ANOVA). There was no
significant difference in passive electrophysiological properties,
including the resting membrane potential (RMP; Figure 1D;
−66.5 mv, −67.30 to −63.82 for WT (n = 16) v −63.73,
−68.75 to−58.71 for hSOD1G93A (n = 11), p> 0.05), capacitance
(Figure 1E; 32.50 pF, 27.17–38.20 for WT (n = 16) v 32.00,
25.39–35.89 for hSOD1G93A (n = 11), p > 0.05) and input
resistance (Figure 1F; 463 MΩ, 394.1–652.1 for WT (n = 16) v
378.0, 255.9–513.4 for hSOD1G93A (n = 11), p > 0.05). Further
alterations in excitability were not detected through investigation
of AP characteristics, including the spike threshold (Figure 1G;
−35.24 mv, −41.59 to −31.07 for WT (n = 16) v −33.43,
−36.52 to−29.64 for hSOD1G93A (n= 11), p> 0.05), theminimal
stimulus required to initiate an AP (Figure 1H; rheobase,
150.0 pA, 156.2–186.1 for WT (n = 16) v 187.5, 158.6–206.4 for
hSOD1G93A (n = 11), p > 0.05) and the AP duration (Figure 1I;
5.504 ms, 4.649–7.086 for WT (n = 16) v 6.066, 4.849–7.563 for
hSOD1G93A (n = 11), p > 0.05). However, investigation of
voltage-dependent currents identified a significant decrease in
the peak outward current (Figure 1J; 1.644 nA, 1.524–2.442 for
WT (n = 16) v 1.151, 0.6636–1.624 for hSOD1G93A (n = 11),
p < 0.05), while there was no significant difference in the peak
inward current (Figure 1K; −1.575 nA, −2.691 to −1.207 for
WT (n = 16) v −1.598, −2.214 to −1.273 for hSOD1G93A

(n = 11), p> 0.05). Taken together, this data suggests that cortical
interneurons are less excitable and have decreased peak outward
currents in the presence of the hSOD1G93A mutation.

The Morphology of Cortical Interneurons Is
Changed in Gad67-GFP::hSOD1G93A

Cultures
GABAergic interneurons have dynamic axonal structures that
can alter in response to changes in activity, to modify
post-synaptic targets (Flores and Méndez, 2014). Given the
role of interneuron morphology in shaping inhibition during
development (Huang, 2009; Le Magueresse and Monyer, 2013),
we determined whether there was evidence of changes to the
interneuron neurite arbor in Gad67-GFP::hSOD1G93A cultures.

Interneuron morphology was characterized by tracing the
three-dimensional structure of neurobiotin-filled GFP-positive
interneuron processes in WT and hSOD1G93A cultures. Initial
examination revealed a distinct increase in the complexity
of hSOD1G93A interneurons (Figure 2A). Assessing the
characteristics of the interneuron neurite field with sholl
analysis (intersections per concentric shell placed at 10 µm
radiating outward from the soma), we identified a significant
increase in the number of processes on hSOD1G93A interneurons
at 110–150 µm from the cell soma compared to WT (p < 0.05,
two-way ANOVA, Bonferroni post hoc; F(1,849) = 24.77,
p = 0.0001, main effect of genotype in two-way ANOVA; see
Figure 2B). The distance from the soma also independently
influenced the neurite arbor complexity (F(40,849) = 10.58,
p = 0.0001, main effect of distance in two-way ANOVA). To
investigate the increased complexity of hSOD1G93A interneurons
we next used branched structural analyses. As shown in
Figure 2C, the path length was significantly increased in
hSOD1G93A interneurons (2363 µm, 1914–3020 for WT (n = 20)
v 3380, 2673–4929 for hSOD1G93A (n = 11), p < 0.05). However,
there was also a significant increase in total branch numbers
(Figure 2D; 91.00, 76.65–121.0 for WT (n = 20) v 117.0,
105.1–166.7 for hSOD1G93A (n = 11), p < 0.05) and the highest
order of branches on hSOD1G93A interneurons (Figure 2E; 10.00,
9.77–12.83 for WT (n = 20) v 14.0, 12.16–19.30 for hSOD1G93A

(n = 11), p < 0.05). These results suggest that the presence of
the hSOD1G93A mutation can result in early inhibitory arbor
structural remodeling in cortical networks.

DISCUSSION

This study is the first investigation of changes in the excitability
and neurite arborization of cortical interneurons in neocortical
embryonic cultures from a SOD1 rodent model. The principal
finding is that excitability of cultured cortical interneurons may
be altered by the hSOD1G93A mutation, and that changes to
the complexity of the neurite structure accompany this effect
in vitro. Specifically, attenuation of excitability is supported
by differences in the current-voltage relationship between WT
and hSOD1G93A mouse interneurons, and by the observation
of reduced peak outward currents in hSOD1G93A interneurons.
Interestingly, outward potassium currents are affected in MNs
derived from SOD1 ALS patients (Wainger et al., 2014),
and by mutant SOD1 oligomers (Zhang et al., 2017), which
could account for the changes in the hSOD1G93A cortical
interneurons.
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FIGURE 1 | Electrophysiological characterization of Gad67-GFP positive hSOD1G93A cortical interneurons in vitro. Primary neuronal cultures were prepared from
E15.5 Gad67-GFP::hSOD1G93A embryos as described in “Methods” section. (A) Whole cell patch-clamped interneurons were positive for Gad67-GFP and post hoc
labeled for neurobiotin-streptavidin-546. (B,C) Representative voltage traces (B) and current-spike frequency relationship (C) measured from GFP-positive
interneurons in 12 DIV cortical culture (Gad67-GFP::hSOD1G93A, n = 11 cells from five cultures; Gad67-GFP::WT, n = 16 cells from five cultures; ∗p < 0.05, two-way
ANOVA), error bars show mean ± SEM. (D–K) The active and passive electrophysiological properties of GFP-positive interneurons, including: the resting membrane
potential (RMP; D), capacitance (E), input resistance (F), threshold to fire (G), rheobase (H), action potential (AP) width (I), peak inward current (J) and significantly
decreased peak outward current (K; Gad67-GFP::hSOD1G93A, n = 11 cells from five cultures; Gad67-GFP::WT, n = 16 cells from five cultures; ∗p < 0.05,
Mann-Whitney test). Box-and-whisker plots show the interquartile range.

However, a number of studies highlight increased excitability
of cortical pyramidal neuron populations both in vivo and
in vitro (Pieri et al., 2009; Fogarty et al., 2015), which
could drive changes in the morphological development

of cortical interneurons. The inhibitory neurite arbor can
undergo activity-dependent structural remodeling (Bartolini
et al., 2013; Babij and De Marco Garcia, 2016) and the
level of network activity can produce subtle but significant

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 September 2018 | Volume 12 | Article 328

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Clark et al. Interneurons Affected in fALS-SOD1 Model

FIGURE 2 | Morphological characterization of Gad67-GFP positive hSOD1G93A cortical interneurons in vitro. (A) Representative images of patched interneurons
reconstructed from post hoc neurobiotin-streptavidin labeling in Gad67-GFP::hSOD1G93A and Gad67-GFP::WT cultures. Each concentric circle represents 10 µm,
and each dashed line represents 50 µm from the cell soma. (B) Sholl analysis denoting the morphological complexity of GFP-positive interneurons as measured by
the average number of neurites intersecting with concentric circles placed at 10 µm intervals from the cell soma (Gad67-GFP::hSOD1G93A, n = 11 cells from
five cultures; Gad67-GFP::WT, n = 20 cells from five cultures; ∗p < 0.05, two-way ANOVA), error bars show mean ± SEM. (C–E) Histograms quantifying significantly
increased total neurite path length (µm; C), total branch number (D) and average number of branches (E) of Gad67-GFP::hSOD1G93A interneurons compared to
Gad67-GFP::WT controls (Gad67-GFP::hSOD1G93A, n = 11 cells from 5 cultures; Gad67-GFP::WT, n = 20 cells from five cultures; ∗p < 0.05, Mann-Whitney test).
Box-and-whisker plots show the interquartile range.

changes to interneuron morphology (Schuemann et al.,
2013). Importantly, in networks deprived of activity, cortical
interneurons have been shown to extend collaterals beyond their
normal projection range (Marik et al., 2010). While the data
presented here are correlational not causal, altered structural and
electrophysiological properties of cortical interneurons provide
evidence that hSOD1G93A could disturb the inhibitory/excitatory
balance in developing neuronal networks, early in the disease
pathogenesis.

Previous studies highlight progressive and differential
interneuron involvement in the hSOD1G93A mouse model
(Clark et al., 2017; Kim et al., 2017). In particular, Kim
et al support altered interneuron excitability in hSOD1G93A

models, finding progressive hyperexcitability with disease
progression in vivo (Kim et al., 2017). In the current study
we find evidence for intrinsically hypoexcitability. These
data support a role for the hSOD1G93A mutation in the early
perturbation of inhibitory neuron populations in the disease.
However, to determine the effect on functional inhibition,
future studies should establish if synaptic excitability is changed
to compensate for abnormal firing properties which could
normalize firing rates (Turrigiano, 2008). In addition, further
experimentation will be required to delineate if this is the cause
or consequence of perturbed excitatory neuron excitability in the
disease.

DATA AVAILABILITY

All data generated or analyzed in this study are available from the
corresponding author upon request.

AUTHOR CONTRIBUTIONS

RC performed cortical culturing, genotyping,
immunocytochemistry, data analysis and was a major
contributor in writing the manuscript. MB performed
electrophysiology and data analysis. CB, MB and TD contributed
to experimental design, drafting and editing of manuscript. All
authors read and approved the final manuscript.

FUNDING

This work was supported by the Stanford Family Motor
Neuron Disease Collaboration Grant (#D0023678) and the
Betty Laidlaw Motor Neuron Disease Research Grant (#BLP17),
Motor Neuron Disease Research Institute of Australia; the
Tasmanian Masonic Centenary Medical Research Foundation
(#D0019780); Motor Neuron Disease Research Institute of
Australia PhD Scholarship (C0021191); the Select Foundation
Fellowship (#D0020742); Australian Research Council
Discovery Early Career Research Award (#DE170101514)
and the Broadreach Holdings Post-doctoral Medical Research
Fellowship.

ACKNOWLEDGMENTS

We authors would like to thank Profs. John Bekkers (Australian
National University) andNobuaki Tamamaki (Kyoto University)
for access to Gad67-GFP mice. We thank our colleagues
Dr. Kaylene Young and Dr. Kimberley Pitman, and in particular
Dr. Katherine Lewis for manuscript feedback.

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 September 2018 | Volume 12 | Article 328

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Clark et al. Interneurons Affected in fALS-SOD1 Model

REFERENCES

Babij, R., and De Marco Garcia, N. (2016). Neuronal activity controls the
development of interneurons in the somatosensory cortex. Front. Biol. 11,
459–470. doi: 10.1007/s11515-016-1427-x

Bartolini, G., Ciceri, G., and Marin, O. (2013). Integration of GABAergic
interneurons into cortical cell assemblies: lessons from embryos and adults.
Neuron 79, 849–864. doi: 10.1016/j.neuron.2013.08.014

Blizzard, C. A., Southam, K. A., Dawkins, E., Lewis, K. E., King, A. E., Clark, J. A.,
et al. (2015). Identifying the primary site of pathogenesis in amyotrophic lateral
sclerosis—vulnerability of lower motor neurons to proximal excitotoxicity.Dis.
Model. Mech. 8, 215–224. doi: 10.1242/dmm.018606

Brizuela, M., Blizzard, C. A., Chuckowree, J. A., Dawkins, E., Gasperini, R. J.,
Young, K. M., et al. (2015). The microtubule-stabilizing drug
Epothilone D increases axonal sprouting following transection injury
in vitro. Mol. Cell. Neurosci. 66, 129–140. doi: 10.1016/j.mcn.2015.
02.006

Brizuela, M., Blizzard, C. A., Chuckowree, J. A., Pitman, K. A., Young, K. M.,
and Dickson, T. (2017). Mild traumatic brain injury leads to decreased
inhibition and a differential response of calretinin positive interneurons
in the injured cortex. J. Neurotrauma 34, 2504–2517. doi: 10.1089/neu.
2017.4977

Brown, R. H., and Al-Chalabi, A. (2017). Amyotrophic lateral sclerosis. N. Engl.
J. Med. 377, 162–172. doi: 10.1056/NEJMra1603471

Clark, R. M., Blizzard, C., and Dickson, T. (2015). Inhibitory dysfunction in
amyotrophic lateral sclerosis: future therapeutic opportunities. Neurodegener.
Dis. Manag. 5, 511–525. doi: 10.2217/nmt.15.49

Clark, R. M., Blizzard, C. A., Young, K. M., King, A. E., and Dickson, T. C.
(2017). Calretinin and Neuropeptide Y interneurons are differentially altered
in the motor cortex of the SOD1G93A mouse model of ALS. Sci. Rep. 7:44461.
doi: 10.1038/srep44461

Devlin, A. C., Burr, K., Borooah, S., Foster, J. D., Cleary, E. M., Geti, I., et al. (2015).
Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS
mutations are dysfunctional despite maintaining viability. Nat. Commun.
6:5999. doi: 10.1038/ncomms6999

Do-Ha, D., Buskila, Y., and Ooi, L. (2018). Impairments in motor neurons,
interneurons and astrocytes contribute to hyperexcitability in ALS:
underlying mechanisms and paths to therapy. Mol. Neurobiol. 55, 1410–1418.
doi: 10.1007/s12035-017-0392-y

Eisen, A., Braak, H., Del Tredici, K., Lemon, R., Ludolph, A. C., and Kiernan, M. C.
(2017). Cortical influences drive amyotrophic lateral sclerosis. J. Neurol.
Neurosurg. Psychiatry 88, 917–924. doi: 10.1136/jnnp-2017-315573

Flores, C. E., and Méndez, P. (2014). Shaping inhibition: activity dependent
structural plasticity of GABAergic synapses. Front. Cell. Neurosci. 8:327.
doi: 10.3389/fncel.2014.00327

Fogarty, M. J., Mu, E. W., Noakes, P. G., Lavidis, N. A., and Bellingham, M. C.
(2016). Marked changes in dendritic structure and spine density precede
significant neuronal death in vulnerable cortical pyramidal neuron
populations in the SOD1G93A mouse model of amyotrophic lateral
sclerosis. Acta Neuropathol. Commun. 4:77. doi: 10.1186/s40478-016-
0347-y

Fogarty, M. J., Noakes, P. G., and Bellingham, M. C. (2015). Motor
cortex layer V pyramidal neurons exhibit dendritic regression, spine
loss, and increased synaptic excitation in the presymptomatic hSOD1G93A

mouse model of amyotrophic lateral sclerosis. J. Neurosci. 35, 643–647.
doi: 10.1523/JNEUROSCI.3483-14.2015

Geevasinga, N., Menon, P., Nicholson, G. A., Ng, K., Howells, J., Kril, J. J.,
et al. (2015). Cortical function in asymptomatic carriers and patients
with C9orf72 amyotrophic lateral sclerosis. JAMA Neurol 72, 1268–1274.
doi: 10.1001/jamaneurol.2015.1872

Geevasinga, N., Menon, P., Özdinler, P. H., Kiernan, M. C., and Vucic, S.
(2016). Pathophysiological and diagnostic implications of cortical
dysfunction in ALS. Nat. Rev. Neurol. 12, 651–661. doi: 10.1038/nrneurol.
2016.140

Gurney, M., Pu, H., Chiu, A., Dal Canto, M., Polchow, C., Alexander, D. D.,
et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn
superoxide dismutase mutation. Science 264, 1772–1775. doi: 10.1126/science.
8209258

Handley, E. E., Pitman, K. A., Dawkins, E., Young, K. M., Clark, R. M., Jiang, T. C.,
et al. (2017). Synapse dysfunction of layer V pyramidal neurons precedes
neurodegeneration in amousemodel of TDP-43 proteinopathies.Cereb. Cortex
27, 3630–3647. doi: 10.1093/cercor/bhw185

Huang, Z. J. (2009). Activity-dependent development of inhibitory synapses and
innervation pattern: role of GABA signalling and beyond. J. Physiol. 587,
1881–1888. doi: 10.1113/jphysiol.2008.168211

Jara, J. H., Villa, S. R., Khan, N. A., Bohn, M. C., and Ozdinler, P. H. (2012).
AAV2 mediated retrograde transduction of corticospinal motor neurons
reveals initial and selective apical dendrite degeneration in ALS.Neurobiol. Dis.
47, 174–183. doi: 10.1016/j.nbd.2012.03.036

Kim, J., Hughes, E. G., Shetty, A. S., Arlotta, P., Goff, L. A., Bergles, D. E.,
et al. (2017). Changes in the excitability of neocortical neurons in a mouse
model of amyotrophic lateral sclerosis are not specific to corticospinal
neurons and are modulated by advancing disease. J. Neurosci. 37, 9037–9053.
doi: 10.1523/JNEUROSCI.0811-17.2017

Kuo, J. J., Schonewille, M., Siddique, T., Schults, A. N., Fu, R., Bär, P. R.,
et al. (2004). Hyperexcitability of cultured spinal motoneurons from
presymptomatic ALS mice. J. Neurophysiol. 91, 571–575. doi: 10.1152/jn.00
665.2003

Le Magueresse, C., and Monyer, H. (2013). GABAergic interneurons shape the
functionalmaturation of the cortex.Neuron 77, 388–405. doi: 10.1016/j.neuron.
2013.01.011

Leitner, M., Menzies, S., and Lutz, C. (2009). Working with ALS mice: Guidelines
for Preclinical Testing and Colony Management. Bar Harbor, ME: Prize4Life
and The Jackson Laboratory.

Marik, S. A., Yamahachi, H., McManus, J. N., Szabo, G., and Gilbert, C. D. (2010).
Axonal dynamics of excitatory and inhibitory neurons in somatosensory
cortex. PLoS Biol. 8:e1000395. doi: 10.1371/journal.pbio.1000395

Martin, E., Cazenave, W., Cattaert, D., and Branchereau, P. (2013). Embryonic
alteration of motoneuronal morphology induces hyperexcitability in the
mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 54, 116–126.
doi: 10.1016/j.nbd.2013.02.011

Menon, P., Kiernan, M. C., and Vucic, S. (2015). Cortical hyperexcitability
precedes lower motor neuron dysfunction in ALS. Clin. Neurophysiol. 126,
803–809. doi: 10.1016/j.clinph.2014.04.023

Pieri, M., Carunchio, I., Curcio, L., Mercuri, N. B., and Zona, C. (2009).
Increased persistent sodium current determines cortical hyperexcitability in
a genetic model of amyotrophic lateral sclerosis. Exp. Neurol. 215, 368–379.
doi: 10.1016/j.expneurol.2008.11.002

Saba, L., Viscomi, M. T., Caioli, S., Pignataro, A., Bisicchia, E., Pieri, M., et al.
(2016). Altered functionality, morphology and vesicular glutamate transporter
expression of cortical motor neurons from a presymptomatic mouse model of
amyotrophic lateral sclerosis.Cereb. Cortex 26, 1512–1528. doi: 10.1093/cercor/
bhu317

Schuemann, A., Klawiter, A., Bonhoeffer, T., andWierenga, C. J. (2013). Structural
plasticity of GABAergic axons is regulated by network activity and GABAA
receptor activation. Front. Neural Circuits 7:113. doi: 10.3389/fncir.2013.
00113

Shibuya, K., Park, S. B., Geevasinga, N., Menon, P., Howells, J., Simon, N. G.,
et al. (2016). Motor cortical function determines prognosis in
sporadic ALS. Neurology 87, 513–520. doi: 10.1212/wnl.000000000
0002912

Talbot, K. (2014). Amyotrophic lateral sclerosis: cell vulnerability or
system vulnerability? Epidemiology 224, 45–51. doi: 10.1111/joa.
12107

Tamamaki, N., Yanagawa, Y., Tomioka, R., Miyazaki, J., Obata, K., and Kaneko, T.
(2003). Green fluorescent protein expression and colocalization with calretinin,
parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J. Comp.
Neurol. 467, 60–79. doi: 10.1002/cne.10905

Turner, M. R., and Kiernan, M. C. (2012). Does interneuronal dysfunction
contribute to neurodegeneration in amyotrophic lateral sclerosis?
Amyotroph. Lateral Scler. 13, 245–250. doi: 10.3109/17482968.2011.
636050

Turrigiano, G. G. (2008). The self-tuning neuron: synaptic scaling of excitatory
synapses. Cell 135, 422–435. doi: 10.1016/j.cell.2008.10.008

van Zundert, B., Peuscher,M. H., Hynynen,M., Chen, A., Neve, R. L., Brown, R. H.
Jr., et al. (2008). Neonatal neuronal circuitry shows hyperexcitable disturbance

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 September 2018 | Volume 12 | Article 328

https://doi.org/10.1007/s11515-016-1427-x
https://doi.org/10.1016/j.neuron.2013.08.014
https://doi.org/10.1242/dmm.018606
https://doi.org/10.1016/j.mcn.2015.02.006
https://doi.org/10.1016/j.mcn.2015.02.006
https://doi.org/10.1089/neu.2017.4977
https://doi.org/10.1089/neu.2017.4977
https://doi.org/10.1056/NEJMra1603471
https://doi.org/10.2217/nmt.15.49
https://doi.org/10.1038/srep44461
https://doi.org/10.1038/ncomms6999
https://doi.org/10.1007/s12035-017-0392-y
https://doi.org/10.1136/jnnp-2017-315573
https://doi.org/10.3389/fncel.2014.00327
https://doi.org/10.1186/s40478-016-0347-y
https://doi.org/10.1186/s40478-016-0347-y
https://doi.org/10.1523/JNEUROSCI.3483-14.2015
https://doi.org/10.1001/jamaneurol.2015.1872
https://doi.org/10.1038/nrneurol.2016.140
https://doi.org/10.1038/nrneurol.2016.140
https://doi.org/10.1126/science.8209258
https://doi.org/10.1126/science.8209258
https://doi.org/10.1093/cercor/bhw185
https://doi.org/10.1113/jphysiol.2008.168211
https://doi.org/10.1016/j.nbd.2012.03.036
https://doi.org/10.1523/JNEUROSCI.0811-17.2017
https://doi.org/10.1152/jn.00665.2003
https://doi.org/10.1152/jn.00665.2003
https://doi.org/10.1016/j.neuron.2013.01.011
https://doi.org/10.1016/j.neuron.2013.01.011
https://doi.org/10.1371/journal.pbio.1000395
https://doi.org/10.1016/j.nbd.2013.02.011
https://doi.org/10.1016/j.clinph.2014.04.023
https://doi.org/10.1016/j.expneurol.2008.11.002
https://doi.org/10.1093/cercor/bhu317
https://doi.org/10.1093/cercor/bhu317
https://doi.org/10.3389/fncir.2013.00113
https://doi.org/10.3389/fncir.2013.00113
https://doi.org/10.1212/wnl.0000000000002912
https://doi.org/10.1212/wnl.0000000000002912
https://doi.org/10.1111/joa.12107
https://doi.org/10.1111/joa.12107
https://doi.org/10.1002/cne.10905
https://doi.org/10.3109/17482968.2011.636050
https://doi.org/10.3109/17482968.2011.636050
https://doi.org/10.1016/j.cell.2008.10.008
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Clark et al. Interneurons Affected in fALS-SOD1 Model

in a mouse model of the adult-onset neurodegenerative disease amyotrophic
lateral sclerosis. J. Neurosci. 28, 10864–10874. doi: 10.1523/JNEUROSCI.1340-
08.2008

Vucic, S., and Kiernan, M. C. (2006). Novel threshold tracking techniques suggest
that cortical hyperexcitability is an early feature of motor neuron disease. Brain
129, 2436–2446. doi: 10.1093/brain/awl172

Vucic, S., Nicholson, G. A., and Kiernan, M. C. (2008). Cortical hyperexcitability
may precede the onset of familial amyotrophic lateral sclerosis. Brain 131,
1540–1550. doi: 10.1093/brain/awn071

Wainger, B. J., Kiskinis, E., Mellin, C., Wiskow, O., Han, S. S., Sandoe, J., et al.
(2014). Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis
patient-derived motor neurons. Cell Rep. 7, 1–11. doi: 10.1016/j.celrep.2014.
03.019

Zhang, Y., Ni,W., Horwich, A. L., and Kaczmarek, L. K. (2017). AnALS-associated
mutant SOD1 rapidly suppresses KCNT1 (Slack) Na+-activated K+ channels
in aplysia neurons. J. Neurosci. 37, 2258–2265. doi: 10.1523/JNEUROSCI.3102-
16.2017

Zhang, W., Zhang, L., Liang, B., Schroeder, D., Zhang, Z. W., Cox, G. A., et al.
(2016). Hyperactive somatostatin interneurons contribute to excitotoxicity in
neurodegenerative disorders. Nat. Neurosci. 19, 557–559. doi: 10.1038/nn.4257

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer SG and the handling Editor declared their shared affiliation.

Copyright © 2018 Clark, Brizuela, Blizzard and Dickson. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 September 2018 | Volume 12 | Article 328

https://doi.org/10.1523/JNEUROSCI.1340-08.2008
https://doi.org/10.1523/JNEUROSCI.1340-08.2008
https://doi.org/10.1093/brain/awl172
https://doi.org/10.1093/brain/awn071
https://doi.org/10.1016/j.celrep.2014.03.019
https://doi.org/10.1016/j.celrep.2014.03.019
https://doi.org/10.1523/JNEUROSCI.3102-16.2017
https://doi.org/10.1523/JNEUROSCI.3102-16.2017
https://doi.org/10.1038/nn.4257
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

	Reduced Excitability and Increased Neurite Complexity of Cortical Interneurons in a Familial Mouse Model of Amyotrophic Lateral Sclerosis
	INTRODUCTION
	METHODS
	Animals
	Cortical Culture Electrophysiology
	Immunocytochemistry
	Morphological Analyses
	Statistical Analysis

	RESULTS
	Membrane Properties and Reduced Excitability in Cultured Gad67-GFP::hSOD1G93A Interneurons
	The Morphology of Cortical Interneurons Is Changed in Gad67-GFP::hSOD1G93A Cultures

	DISCUSSION
	DATA AVAILABILITY
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES


