
fncel-12-00447 November 23, 2018 Time: 10:38 # 1

REVIEW
published: 26 November 2018

doi: 10.3389/fncel.2018.00447

Edited by:
Peter S. Steyger,

Oregon Health & Science University,
United States

Reviewed by:
Victor Shing Chi Wong,

Weill Cornell Medicine – Cornell
University, United States
Francisco F. De-Miguel,

Universidad Nacional Autónoma
de México, Mexico

*Correspondence:
Kyle E. Miller

kmiller@msu.edu
Daniel M. Suter

dsuter@purdue.edu

Received: 13 September 2018
Accepted: 07 November 2018
Published: 26 November 2018

Citation:
Miller KE and Suter DM (2018) An

Integrated Cytoskeletal Model
of Neurite Outgrowth.

Front. Cell. Neurosci. 12:447.
doi: 10.3389/fncel.2018.00447

An Integrated Cytoskeletal Model
of Neurite Outgrowth
Kyle E. Miller1* and Daniel M. Suter2,3,4,5*

1 Department of Integrative Biology, Michigan State University, East Lansing, MI, United States, 2 Department of Biological
Sciences, Purdue University, West Lafayette, IN, United States, 3 Purdue Institute for Integrative Neuroscience, Purdue
University, West Lafayette, IN, United States, 4 Bindley Bioscience Center, Purdue University, West Lafayette, IN,
United States, 5 Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States

Neurite outgrowth underlies the wiring of the nervous system during development
and regeneration. Despite a significant body of research, the underlying cytoskeletal
mechanics of growth and guidance are not fully understood, and the relative
contributions of individual cytoskeletal processes to neurite growth are controversial.
Here, we review the structural organization and biophysical properties of neurons to
make a semi-quantitative comparison of the relative contributions of different processes
to neurite growth. From this, we develop the idea that neurons are active fluids, which
generate strong contractile forces in the growth cone and weaker contractile forces
along the axon. As a result of subcellular gradients in forces and material properties,
actin flows rapidly rearward in the growth cone periphery, and microtubules flow forward
in bulk along the axon. With this framework, an integrated model of neurite outgrowth is
proposed that hopefully will guide new approaches to stimulate neuronal growth.

Keywords: active matter, actin, axonal elongation, axonal transport, dynein, growth cone, microtubule, non-
muscle myosin II

INTRODUCTION

Neurite outgrowth is essential for wiring the nervous system during development and regeneration
following trauma or disease (Suter and Miller, 2011; Kulkarni and Firestein, 2012; Budday et al.,
2014; Hilton and Bradke, 2017; Stoeckli, 2018). Despite a significant body of research conducted
over the last three decades, the underlying mechanisms of axonal growth and guidance are not
fully understood, especially at the interface of dynamics and mechanics (Suter and Miller, 2011;
Leterrier et al., 2017). Quoting Benford’s Law of Controversy, “Passion is inversely proportional
to the amount of real information available” (Benford, 1980), we are excited to bring together
quantitative data acquired by many labs to develop a mechanical model of neurite growth. The
strength of this approach is that because forces can be mathematically integrated, the relative
contributions of different processes can be impartially considered in a single framework. We begin
this review by discussing the structural organization of neurons focusing on the actin and MT
cytoskeleton. We then briefly summarize recent studies on the biophysics of growth cones and
axons and use this perspective to discuss the cell biology of actin and MT dynamics, cellular
adhesions, molecular force generation, and cytoskeletal cross-linkers. In the last sections, we discuss
some of the “controversial” findings in this field in light of a more integrated model of neurite
growth. Throughout this review, we develop the idea that neurons are active fluids, which generate

Abbreviations: EB, end-binding proteins; MT, microtubule; NGF, nerve growth factor; NMII, non-muscle myosin II.
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strong contractile forces in the growth cone and weaker
contractile forces along the axon through multiple interacting
processes (O’Toole et al., 2015; de Rooij et al., 2018). As a result of
subcellular gradients in forces, viscosity, and substrate adhesions,
actin flows rapidly rearward in the growth cone periphery, and
MTs flow forward in bulk along the axon (Athamneh et al., 2017).
From this, a picture emerges that a growth cone is much like
a migrating cell coupled to the cell body by the axon, much
like “a leukocyte on a leash” (Pfenninger, 1986). Forces and
cytoskeletal dynamics in the growth cone control its advance,
while the axon acts to restrain and support growth cone motility.
The significant difference of the present to previous models is that
the growth cone advances as a coherent structure and pulls the
adjacent axon forward, instead of elongating by the assembly of
MTs at the tip of the axon (Dent and Gertler, 2003; Cammarata
et al., 2016; Blanquie and Bradke, 2018). We conclude this
review by touching on the implications of this updated model for
developing approaches to promote rapid axonal elongation.

NEURONAL STRUCTURE

The Structure of the Growth Cone
The highly motile structure at the tip of growing axons
and dendrites is called the growth cone. Its key function in
establishing the complex neuronal networks in the nervous
system was recognized by Ramón y Cajal over 100 years ago.
The two most critical cytoskeletal proteins involved in neurite
outgrowth and guidance are actin filaments and MTs. Here, we
briefly summarize their organization and dynamics including
assembly, translocation, stabilization, and turnover to develop a
foundation for understanding the mechanical process of neurite
outgrowth. Several excellent reviews of these processes have
been published recently (Coles and Bradke, 2015; Kapitein and
Hoogenraad, 2015; Cammarata et al., 2016; Letourneau, 2016;
Matamoros and Baas, 2016; Voelzmann et al., 2016; Omotade
et al., 2017); therefore, we will not cover them in detail here.

The growth cone is usually divided into three morphologically
and functionally distinct cytoplasmic regions: (1) the peripheral
domain, which is made up by filopodia and intervening
lamellipodial veils; (2) the transition zone; and (3) the
central domain, which is rich in various organelles including
mitochondria (Figure 1). F-actin is the predominant cytoskeletal
structure in the peripheral domain and transition zone, and
at least four different subpopulations of F-actin structures are
recognized in the growth cone. In the periphery, polarized
bundles of 15–20 actin filaments provide the core structure of
filopodia (Figure 1B), fingerlike protrusions that dynamically
explore the environment for guidance information (Lewis and
Bridgman, 1992; Davenport et al., 1993; Korobova and Svitkina,
2008; Gallo, 2013). The lamellipodia (Figure 1B) between the
filopodia are filled with a dense, branched F-actin network, whose
constant turnover drives the forward movement of the growth
cone (Lewis and Bridgman, 1992; Small et al., 2002; Mongiu et al.,
2007). The third subtype of F-actin structures are the transverse
actin arcs that surround the central domain and control its shape
as well as the distribution of MTs (Schaefer et al., 2002, 2008;

FIGURE 1 | Overview of the neurite and growth cone. (A) Phase contrast
image of an Aplysia bag cell neuron. (B) Schematic of the neuronal growth
cone depicting different cytoplasmic regions and cytoskeletal structures.
Adapted from O’Toole et al. (2015) with permission from Elsevier.

Zhang et al., 2003). Lastly, the fourth F-actin structure is the
dynamically rearranging intrapodia or ruffles in the transition
zone (Rochlin et al., 1999), which recently have been suggested
to promote traction force generation by buffering developing
adhesion sites from the effects of retrograde flow (Buck et al.,
2017).

The F-actin structures in the peripheral domain and transition
zone are highly dynamic and turnover within a few minutes.
Actin assembly occurs at the plus ends of filaments at filopodial
tips and along the leading edge of lamellipodia to push the
plasma membrane forward (Mallavarapu and Mitchison, 1999;
Shahapure et al., 2010; Amin et al., 2012; Craig et al., 2012; Van
Goor et al., 2012; Lee et al., 2013; Figure 2). Following assembly,
F-actin moves by a process referred to as “retrograde actin flow,”
which is mainly dependent on NMII (Medeiros et al., 2006).
Lastly, actin filaments are disassembled in the transition zone by
ADF/ cofilin (Marsick et al., 2010; Flynn et al., 2012; Omotade
et al., 2017) and other proteins such as gelsolin (Lu et al., 1997).
G-actin is transported to the leading edge to complete the cycle
(Lee et al., 2013). As will be discussed below in more detail, a
major function of these processes is to generate the forces needed
for MT advance.

The Structure of the Axon
Actin in the Axon
Whereas a significant body of literature has described the
organization and dynamics of F-actin in the neuronal growth
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FIGURE 2 | An integrated cytoskeletal model of neurite outgrowth. (A) Summary of the mechanisms, structures/proteins, and functions reviewed in the manuscript.
(B) A diagram of the interrelationship between the structures. (C) Overview of significant sources of internal force generation; arrows pointing together indicate a
contractile force dipole, a line with arrowheads on each end represents an extensile force dipole. The length of the arrows (or pairs of arrows) gives a relative
indication of the force associated with each process. (D) Traction forces exerted on the substrate; the length of the arrows indicates relative magnitude. (E) Flow
map, arrow length indicates relative velocity. The force and velocity vectors are shown over a blurred image of the underlying structure to give a sense of relative
location.
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cone, less is known about the details of the F-actin cytoskeleton
in the axon. Nonetheless, due to the recent developments in
super-resolution microscopy, this is now rapidly changing with
the recognition of actin rings, waves, trails, and patches (Roy,
2016; Leterrier et al., 2017; Papandreou and Leterrier, 2018).
Of particular relevance to neuronal mechanics are actin ring
structures in axons, which are capped at the plus ends by adducin
and spaced at roughly 190 nm intervals by spectrin (Xu et al.,
2013; Zhong et al., 2014; D’Este et al., 2015; Papandreou and
Leterrier, 2018). While the function of the rings is still being
determined, there are several lines of evidence suggesting that
they play a key role in axonal mechanics along with the axonal
actin cortex. In particular, spectrin is essential for maintaining the
structural integrity of axons by resisting the stresses and strains
arising from body motion (Hammarlund et al., 2007; Krieg
et al., 2017). Likewise, NMII and adducin have an overlapping
periodicity with the actin rings (Leite et al., 2016; Berger et al.,
2018), and regulate axonal diameter (Leite et al., 2016; Fan
et al., 2017). Since actin and NMII also drive axonal contraction
and retraction (Joshi et al., 1985; Tofangchi et al., 2016), the
actomyosin cortex appears to produce contractile forces both
circumferentially and longitudinally along the length of the axons
(Figure 3).

Whereas early models of actin rings proposed short filaments
of ∼ 20 nm arranged in a circle (Xu et al., 2013), the length
of these actin filaments (Jones and Svitkina, 2016) and their
directionality remain unclear (Berger et al., 2018). In particular,
electron microscopy has indicated that the cortical axonal actin
is a random or weakly ordered meshwork of filaments with a
length of roughly 1.5 µm (Hirokawa, 1982; Bearer and Reese,
1999; Leterrier et al., 2017). In addition, longer longitudinal actin
structures with a mean length of 9 µm called trails (Ganguly
et al., 2015) have been observed in many super-resolution
studies (D’Este et al., 2015; Leite et al., 2016). Reconciling
the observations of periodicity, a meshwork like organization,
and NMII-driven contraction suggests the possibility that actin
is a weakly ordered meshwork (Figure 3) that has periodic
differences in density in mature axons that appear as rings. As

FIGURE 3 | The axonal actin cortex as a weakly ordered meshwork.
Hypothetical interactions of axonal NMII filaments with actin and spectrin in a
weakly organized meshwork. Myosin filament reprinted from Niederman and
Pollard (1975) with permission from Elsevier.

NMII filaments are ∼ 300 nm long (Billington et al., 2013), they
may wrap around the axon to generate a circumferential force
(Berger et al., 2018), and span or lie diagonally between rings to
generate a longitudinal force (de Rooij et al., 2018; Mutalik et al.,
2018). In parallel, NMII filaments interconnecting trails (Ganguly
et al., 2015) may generate forces that are propagated over long
distances. This supports a speculative mechanistic hypothesis for
the observations that axons, away from the growth cone, generate
a net contractile force of ∼0.6 nN (O’Toole et al., 2015), NMII
drives axonal contraction and retraction (Wylie and Chantler,
2003; Gallo, 2006; Myers et al., 2006; Brown et al., 2009; Tofangchi
et al., 2016; Mutalik et al., 2018), and NMII generates contractile
forces that control axonal diameter (Fan et al., 2017). As structure
and function are intertwined, bridging the gap between the super-
resolution imaging, electron microscopy, and biophysical studies
seems likely to be a fruitful direction for investigations aimed at
understanding neuronal mechanics.

MT Polarity and Length During Axonal Elongation
In combination with F-actin, MTs are essential for axonal
elongation and growth cone guidance (Coles and Bradke, 2015;
Kapitein and Hoogenraad, 2015; Letourneau, 2016). Like actin
filaments, MTs are polarized structures with polymerization
occurring at their plus ends by the addition of tubulin dimers.
In higher organisms, the majority of MTs have their plus ends
oriented toward the axonal terminal, whereas dendrites exhibit
a more mixed polarity (Baas et al., 1988; Yau et al., 2016). MT
polarity is critical for the polarized organization of neurons, as
it underlies the directional transport of proteins and organelles
(Maday et al., 2014; Leterrier et al., 2017), the establishment
of axon vs. dendrite identity (Rolls and Jegla, 2015), and the
generation of forces through MT sliding (Jakobs et al., 2015;
Kapitein and Hoogenraad, 2015; Kahn and Baas, 2016; de Rooij
et al., 2017; Lu and Gelfand, 2017). As development progresses,
MT polarity in neuronal processes becomes more ordered (van
Beuningen et al., 2015). In lower organisms, such as Drosophila
and C. elegans, dendritic MTs initially have a mixed polarity,
which transitions to a nearly uniform minus ends out orientation
(Maniar et al., 2011; Hill et al., 2012). Likewise in axons, the
polarity of MTs increases over time. As an example in rat cortical
neurons initially∼80% of the MTs point toward the growth cone,
but in mature axons nearly all do so (Baas et al., 1989; Yau et al.,
2016; Figure 4).

In parallel to these changes in MT polarity, there are dramatic
changes in the length and number of MT during development.
Building on classic electron microscopy studies (Chalfie and
Thomson, 1979; Bray and Bunge, 1981; Burton, 1987; Yu and
Baas, 1994), a recent analysis in C. elegans provides new insights
in how MTs are added to growing axons and its impact on
organelle transport (Yogev et al., 2016). Using an innovative
image analysis approach, the authors quantified the number,
length and spacing of MTs in specific axons of in living worms.
They achieved this by correlating the intensities of single MTs
with the intensity of tubulin-GFP along the axon to determine
the beginning and end of individual MTs. This approach has the
advantages over electron microscopy in that data can be collected
rapidly without time-consuming sample preparations and that
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FIGURE 4 | Microtubule polarity and length increase during axonal outgrowth.
(A) Initial growth cone with the arrows representing the length and orientation
of MTs. (B) During neurogenesis, MT sliding adds new short MTs with mixed
orientations. (C) As axons elongate polarity and MT length increase, while
sliding and MT number decrease.

MT dynamics can be observed directly. Examining the length
and distribution of MTs from an early larval stage to adulthood,
average MT length doubled from about 4 to 8 µm, and the
number of MT per cross-section increased at a similar rate. Over
this same time, axonal length increased by a factor of 3.5 as
the result of body growth. Somewhat surprisingly the spacing
between adjacent MT minus ends, a measure of MT density,
remained constant. As body growth causes axons to lengthen by
stretching (Smith, 2009; O’Toole and Miller, 2011; Loverde and
Pfister, 2015) it is tempting to speculate that as axons stretch,
the spacing between the minus ends of MTs already in the axon
increases, and new MTs are added in the gaps. Since the density
of MT minus ends remains constant through development,
the increase in the number of MTs per cross-section may be
accounted for by the increase in MT length.

These data complement, but differ somewhat from
earlier work using electron microscopy in vertebrates. In
hippocampal neurons during the process when a minor stage
3 process (length ≤ 20 µm) transitions into a stage 3 axon
(length ≥ 50 µm), MT length is short (∼ 4 µm), and increased
axonal length is associated with a rise in the number of MTs
and not their average length (Yu and Baas, 1994). In contrast,
going from a stage 3 axon to stage 4 axon, there is a large drop
in the number of MTs and increase in MT length. Likewise,
as axons mature over weeks to months, MT length reaches
hundreds of µm and their number declines both in vitro and
in vivo (Bray and Bunge, 1981; Burton, 1987). Keeping in mind
that C. elegans development occurs over a few days and the
study from Shen’s group focused on a period where axons were
lengthening (Yogev et al., 2016), a general picture emerges.
Early in the process of neurite outgrowth, axonal lengthening is

associated with an increase in MT number and an increase in
the average or the range of MT lengths. In vertebrates, this is
followed by a substantial increase in MT length and drop in MT
number (Figure 4). These observations provide a foundation for
understanding neurite outgrowth since MT length and number
are tightly linked to sliding and the addition of MTs to growing
axons.

MT TRANSPORT AND NEURITE
GROWTH

MT Sliding in Neuritogenesis
Microtubule sliding is essential for adding and removing MTs
from neurites (Lu and Gelfand, 2017; Rao and Baas, 2018). It
involves the rapid transport of short polymers (less than 10 µm
long) by kinesin-1 and dynein. Kinesin-1 based sliding drives
the initial growth of a neurite from the cell body in a process
called neurite initiation (Lu et al., 2013). The mechanism involves
the coupling of anti-parallel MTs via the motor domain and
a second MT binding domain located close to the C-terminus
(Winding et al., 2016). As kinesin-1 walks toward the plus end
of one MT, it slides the two MTs apart. While sliding is critical
for initiation, its involvement in growth once axons reach a
length greater than 10–50 µm is less clear; it drops by 50 fold
as axons extend over the course of 16 h in Drosophila (Lu et al.,
2013). One reason for this decline is that kinesin-1 based sliding
appears to require that MT have an anti-parallel configuration,
but axonal MTs are predominantly parallel (del Castillo et al.,
2015b). Somewhat ironically, the generation of parallel arrays of
MTs is mediated by dynein based sliding (del Castillo et al., 2015b;
Rao and Baas, 2018). As the motor domain of dynein walks along
short MTs, it pushes those that point with their plus end toward
the cell body out of the axon. In addition to these changes in
polarity, the length of MTs increases as axons mature (Figure 4).
Because longer MTs have a higher probability of becoming cross-
linked with the cytoskeletal array, sliding is also inhibited (Craig
et al., 2017). Somewhat surprisingly, the best-characterized class
of proteins that suppress MT sliding are the mitotic kinesins:
kinesin-5, kinesin-6 (i.e., Pavarotti), and kinesin-12 (Lin et al.,
2012; Del Castillo et al., 2015a; Rao and Baas, 2018). What they
appear to have in common is that they bundle parallel arrays of
MTs instead of driving motion. Bringing the ideas of MT polarity,
length, and sliding together, a picture emerges that during the
initial process of neurite initiation and outgrowth, MTs are short
and often have an anti-parallel configuration. Together these
allow robust sliding of short MTs that initially increases the
number of MTs in the axon. Over time, dynein slides anti-parallel
MTs out of the axon, MT length increases, proteins that suppress
MT sliding are activated, and MT sliding declines.

Regarding the elongation that follows neuritogenesis, the
contribution of MT sliding is less clear. While essentially no
rapid sliding has been observed in Drosophila axons after this
stage (Lu et al., 2013), there are many studies in vertebrate
neurons reporting that it occurs in long axons (Wang and Brown,
2002; He et al., 2005); this includes our recent work where
we analyzed MT motion using fluorescent speckle microscopy
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(Athamneh et al., 2017). As our interest is to quantify the
contributions that multiple processes make to elongation, we
reviewed the data from several key papers and compared it with
our findings (Athamneh et al., 2017). This analysis suggested
that MT sliding supports the addition of enough MTs to support
the extension of the axon at a rate of a few microns per hour
(Athamneh et al., 2017), yet axons often extend at much higher
rates (i.e., ∼ 25 µm/h in our study). A caveat with this analysis
is that a recent paper indicates that much higher levels of MT
sliding can occur (Rao et al., 2017). Whether this is due to the use
of better markers to track MT motion, the observation of tubulin
transported by the endosomal pathway (Chang et al., 1999), or is
a function of where and when transport is observed will require a
more systematic analysis.

In contrast to MT sliding, analysis of bulk MT transport as
we will discuss indicates that it can fully account for the forward
movement of MTs needed for growth cone advance. An idea that
we favor is that the force generating mechanisms that initially
drive robust sliding during neuritogenesis are used to power
bulk advance in growing axons (Roossien et al., 2014; Kahn
and Baas, 2016). An essential future direction will be to extend
the groundbreaking work on MT sliding to test the biophysical
contributions of the mitotic kinesins, kinesin-1, and dynein in the
mechanics of axonal elongation.

Axons Elongate Through Bulk Transport
of MTs
Whether MTs move in bulk or are stationary relative to the
substrate has been debated for roughly 40 years (Hoffman and
Lasek, 1975; Bamburg et al., 1986; Baas, 1997; Hirokawa et al.,
1997; O’Toole et al., 2008a). It stirs passions because it underlies
our fundamental understanding of how axons elongate. While
some of the earlier MT labeling studies showed clear evidence of
MT translocation during axonal elongation (Reinsch et al., 1991),
others did not (Lim et al., 1990; Okabe and Hirokawa, 1990).
Roughly a decade ago, while investigating fast mitochondrial
transport (Miller and Sheetz, 2004), one of the co-authors noted
that ‘docked’ mitochondria, i.e., stably bound to MTs, actin
filaments, and neurofilaments (Sheng and Cai, 2012), were not
stationary relative to the substrate. Using kymographs to track
their motion over long periods indicated that they moved in
a coherent manner consistent with bulk MT flow (Miller and
Sheetz, 2006). To test if mitochondria move through or with
the axon, the motion of beads bound to the outside of the
axon and axonal branch points were tracked (Lamoureux et al.,
2010). As beads and branch points moved in a pattern similar
to mitochondria, this suggested that the cytoskeletal framework
moved forward as a whole. In parallel, studies in Aplysia growth
cones indicated that MTs also undergo forward translocation
in the growth cone central domain during adhesion-mediated
neurite advance (Lee and Suter, 2008; Schaefer et al., 2008).
Quite strikingly, while the prevalent model was that MT assembly
drove elongation, 80% of the advance of MTs was accounted
for by translocation. To test if bulk motion was an artifact of
tissue culture, docked mitochondria were followed in vivo in
intact Drosophila embryos. As seen in vitro, they advanced in

tandem with the growth cone (Roossien et al., 2013). While
these different approaches in several model systems suggested
that bulk MT motion accounts for elongation, they were in part
indirect: docked mitochondria are not MTs, and the advance of
MTs in response to a bead attached to the surface of a growth
cone does not reflect axonal elongation. The critical experiment
to directly track the bulk motion of MTs in freely growing
neurites using fluorescent speckle microscopy was needed to
test that hypothesis that bulk MT motion accounted for axonal
elongation.

To address this question, the co-authors recently collaborated
to track the motion of docked mitochondria, MTs, and the
overall motion of cytoplasmic material in both rapidly growing
chick and Aplysia neurites (Athamneh et al., 2017). This study
intended to answer several critical questions: (1) What is
the relationship between MT translocation, MT assembly, and
neurite elongation; (2) Is the fundamental process of axonal
elongation conserved between species? Moreover, (3) is the
motion of docked mitochondria a reliable marker for the motion
of MTs? The clear answers from these experiments were that MTs
advance in bulk at the same average rate as growth cones, the
process of elongation is highly conserved, and the bulk motion
of docked mitochondria and MTs is highly correlated.

Does MT Advance Drive Axonal
Elongation?
The strong correlation between bulk MT transport and axonal
elongation raises the question of whether bulk MT transport
drives elongation. One of the authors’ recent in vitro study in
Aplysia growth cones provides insights into this problem and
addresses the question of why Aplysia growth cones are much
larger than those of other species (Ren and Suter, 2016). When
Aplysia neurons are plated on poly-L-lysine-coated coverslips,
they initially extend several short neurites that have relatively
small growth cones, which rapidly expand to the well-known
large fan-shaped growth cones of 100 µm in diameter (Figure 5).
After the initial process of extension, the leading edge of the
growth cone slowly advances at a rate of 1–5 µm/h, but the neck
of the growth cone stays in position. At this point, growth cone
advance mainly reflects an increase in the size of the growth cone
rather than translocation. Over time, the width of the axon is
relatively constant, but the growth cone becomes dramatically
larger (Figure 5). Based on the change of growth cone area, a large
amount of cytoskeletal and organelle mass is being added to the
growth cone with only little net advance. Although MTs were not
imaged in this study, it has previously been shown that both MT
assembly and forward translocation occur in these large growth
cones that exhibit minimal net advance (Schaefer et al., 2002;
Lee and Suter, 2008). This phenomenon is not unique to Aplysia.
When Xenopus growth cones rapidly advance, MTs translocate
forward, there are relatively few MTs in the growth cone, and they
tend to be splayed. When growth cones pause spontaneously,
bulk MTs advance continues, and this is paired with MT looping
and accumulation (Tanaka and Kirschner, 1991; Tanaka et al.,
1995). Likewise, in chick sensory neurons when growth cones
pause either spontaneously or when the growth cone is held in
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FIGURE 5 | Mass addition to the growth cone does not drive axonal elongation. Differential interference contrast images of Aplysia bag cell neuronal growth cone
immediately after cell plating (left), 2 h later (middle), and 7 h later (right). Scale bar: 10 mµm. Reprinted from Ren and Suter (2016) with permission from Hindawi.

position using a towing needle, a dramatic increase in the number
of mitochondria in the growth cone occurs as the result of bulk
translocation (Miller and Sheetz, 2006; O’Toole et al., 2015).
The observation that bulk transport occurs during growth cone
pauses suggests it does not drive elongation. In doing so, these
observations raise the question, ‘What is the relationship between
bulk transport and elongation?’

In our fluorescent speckle microscopy analysis of MT motion,
we found that on average there is a one to one correlation between
bulk MT transport and the average rate of growth cone advance
(Athamneh et al., 2017). Nonetheless, we do not interpret this
correlation as indicating that bulk transport causes elongation.
Looking at the regression of axonal MT velocity and growth cone
velocity in both chick and Aplysia neurons (Athamneh et al.,
2017), the rates of bulk advance only rarely matches the rate
of growth cone advance over 10-min intervals. For example,
there are cases where the growth cone is stationary, but bulk
advance occurs at 25 µm/h; likewise, there are equal numbers
of cases where the converse occurs. As growth cone velocity
is characterized by alternating periods of retractions, pauses,
and advances, a picture emerges that growth cones go through
cycles, where they rapidly advance, deplete the material in the
growth cone and relieve compression on MTs. When pauses
occur, material accumulates, and MT compression occurs (Rauch
et al., 2013). This suggests that the primary role of bulk transport
is delivering material to the growth cone. While this is likely
a critical step in the cycle needed for sustained outgrowth, the
process of growth cone advance over short timescales appears
to be more tightly linked to whether the transition zone and
peripheral domain move forward. In the next section, we develop
a biophysical understanding of elongation that considers the
interplay between forces generated by actin, MTs, and the plasma
membrane that control this process.

FORCE AND MOTION

The Biophysical Properties of Neurons
Understanding neurite outgrowth requires a detailed
knowledge of the biophysical properties of neurons

(Suter and Miller, 2011; Franze et al., 2013). Neurons from
different species significantly differ in their biophysical properties
and levels of force production, respectively (Spedden and Staii,
2013; Athamneh and Suter, 2015). Several approaches have been
developed to measure elasticity, viscosity, and force generation in
neurons. Particularly valuable tools have been glass microneedles
(Bray, 1984; Lamoureux et al., 1989; Suter et al., 1998; Bernal
et al., 2007; Athamneh et al., 2015; O’Toole et al., 2015) and more
recently microelectromechanical (MEMs)-based force sensors
(Siechen et al., 2009; Rajagopalan and Saif, 2011). Typically
their bending constants or stiffness values are determined first
(Lamoureux et al., 2011), and then forces are measured and
applied by optically measuring the amount of bending and
controlling their position. Complementing these are innovative
approaches using atomic force microscopy (Xiong et al., 2009;
Betz et al., 2011; Athamneh et al., 2015), magnetic tweezers
(Kilinc et al., 2014; Grevesse et al., 2015), fluid flow (Bernal et al.,
2010), vibration of the axon (Garate et al., 2018), FRET-based
fluorescent force sensors (Krieg et al., 2014), traction force
microscopy (Chan and Odde, 2008; Koch et al., 2012), and
laser tweezers (Cojoc et al., 2007; Shahapure et al., 2010; Amin
et al., 2013). With these techniques, it is well established that
axons behave as solid-like materials in response to transient
forces applied for less than 10 s (Bernal et al., 2007; Betz et al.,
2011), yet as fluids in response to constant forces applied for
tens of minutes (Zheng et al., 1991; O’Toole et al., 2008a, 2015).
Depending on the type of neuron, axons generate a net tension
between 0.5 and 4 nN (Athamneh and Suter, 2015) that requires
actin, ATP expenditure, and myosin activity (Dennerll et al.,
1988; Lamoureux et al., 1989; Bernal et al., 2007; Tofangchi
et al., 2016). Balancing contraction by actomyosin, MTs bear
compressive forces which may be generated in part by dynein
(Dennerll et al., 1988; Roossien et al., 2014) and MT assembly
(Figure 6). While detailed measurements are essential for
quantifying neuronal mechanics, it is equally important to
have a theoretical framework to place these observations into
context. For example, if one views neurons as solid-like materials,
while constant forces generate ‘pre-stress,’ they do not lead to
continuous motion needed to account for bulk MT motion.
Likewise, simple fluid-like models of neurons fail to capture
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FIGURE 6 | Neuronal force balance. Strong contractile forces by NMIIB and
NMIIC at the leading edge pull the transition zone and central domain forward.
These forces are countered by NMIIA in the axon and assisted by extensile
forces generated through dynein mediated sliding of MTs and MT assembly.
Axonal elongation occurs when the traction forces that pull the transition zone
forward are higher than the net contractile forces generated in the axon.
Arrows represent forces.

the solid-like behavior of neurons needed to understand injury
arising from a traumatic impact. Reconciling the paradoxical
behaviors of neurons requires the adoption of more sophisticated
models that are at the cutting edge of soft matter physics.

Are Neurons Active Fluids?
The mechanical behavior of cells is controlled by structures and
processes that are far from thermodynamic equilibrium (Prost
et al., 2015). While the study of such systems once was beyond
the bounds of conventional physics, a new field has emerged
called active gel or active matter physics that considers the
influence of internal force generation on mechanics (Marchetti
et al., 2013). The unique properties of active matter systems are
that they spontaneously generate motion and re-organization of
the material. While our focus is on the neuronal cytoskeleton,
the theory developed in this field is relevant to flocking, vibrating
granules, and microorganisms in suspension (Kumar et al., 2014;
Lopez et al., 2015). The mathematics that describes active fluids
are complex as they are typically expressed using tensor calculus
and consider changes in local orientation, thermodynamics,
stress, strain, and motion over time and space (Marchetti et al.,
2013; Prost et al., 2015). To explain active matter modeling of the
cytoskeleton simply in words, the working assumptions are that
it is a Maxwell fluid, similar to Silly Putty, which contains ‘force
dipoles’ (i.e., motors that can pull material together and/or push it
apart) (Callan-Jones and Julicher, 2011; Prost et al., 2015). When
the cytoskeletal elements are aligned, long-distance gradients in
stress and motion occur over space and time. Building on this,
one of the co-authors have described axons as active Maxwell
fluids with the equation (Eq. 1),

ε̇ =
σExt + σInt

η
+

σ̇Ext + σ̇Int

E
; η = Eτ (1)

where the strain rate (ε̇ ) is equal to the constant stress (σ = force
/ area) arising from both external and external sources divided
by viscosity (η), plus the change in stress over time (σ̇) divided
by the Young’s modulus (E) (de Rooij et al., 2017). Importantly,

viscosity and elasticity are related by a time constant (τ) which
is in the range of seconds to minutes in cells (Julicher et al., 2007;
Betz et al., 2011; Purohit, 2015). Over periods significantly shorter
than τ cells behave like solids, while at longer times they act as
fluids (O’Toole et al., 2015).

A concrete way to imagine the cytoskeleton as an active
Maxwell fluid is to consider it as a system of rods that are highly
cross-linked by dynamic springs (de Rooij et al., 2017). τ is related
to the Kon and Koff rates that describe the binding and unbinding
of the cross-links, E is related to the spring constants of the
cross-linkers and rods, and viscosity is an emergent property. By
emergent property, we mean that the system is at a given time
point a solid with a modulus of E, but flows as a fluid because
the cross-links are dynamic as described by τ. When the system is
under stress, motion occurs because the unbinding and rebinding
of cross-linkers dissipates energy and gives rise to ‘permanent’
deformation. In turn, the generation of internal forces by motors
occurs by linking ATP consumption to the shortening of cross-
linked springs. In essence, when a motor undergoes a power
stroke, it is converted from a long to a short spring (de Rooij
et al., 2017). This length change generates tension, which pulls
materials together.

The utility of a model is based on how well it reflects observed
behavior. This raises the question ‘Do axons behave as active
Maxwell fluids?’ There are several lines of evidence that suggest
so. Bernal’s group (Bernal et al., 2007) demonstrated that over
short times (<10 s), axons behave like solids and actively generate
forces. In contrast over minutes to hours, there is a steady rate
of actin retrograde flow in the growth cone (Betz et al., 2011)
coupled with a continuous bulk forward advance of material
along the axon (O’Toole et al., 2015; Athamneh et al., 2017). The
study by Betz et al. (2011) is notable in that it was the first to apply
principles of active fluids to understand growth cone mechanics.
We also would like to highlight the application of these principles
for modeling the retrograde flow of Aplysia growth cones (Craig
et al., 2012) and bulk motion during neurite outgrowth (O’Toole
et al., 2008a; Recho et al., 2016).

While there is broad agreement that actin in the growth cone
is an active fluid (Betz et al., 2011; Craig et al., 2012; Recho et al.,
2016), whether axonal MTs are as well has a more complicated
history. In the first well-articulated biophysical model for axonal
elongation (Dennerll et al., 1989), axonal MTs where modeled as a
viscoelastic solid (i.e., a spring in series with a spring and dashpot
in parallel), capped with a fluid-like dashpot at the growth cone.
While this system as a whole is a viscoelastic fluid, the axon
was considered a viscoelastic solid. The justification for this
arose from suggestions that MTs are stationary along the axon,
while new MTs are dynamically assembled and disassembled in
response to forces at the growth cone (Bamburg et al., 1986;
Heidemann, 1990). While there have been numerous models that
treat axons as solids, typically referencing (Dennerll et al., 1989),
more recent studies suggest that axons internally stretch like a
fluid (O’Toole et al., 2008a, 2015). This idea is supported by the
fact that mixtures of MTs and kinesin behave as active fluids (Wu
et al., 2017), MTs slide as single filaments (Lu and Gelfand, 2017;
Rao and Baas, 2018), axons take up slack (Tofangchi et al., 2016),
and growth cone retracts back to the cell body in a fluid-like
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manner when adhesion to the substrate is disrupted (O’Toole
et al., 2015). To put this shifting view of axonal mechanics in
perspective, while two of the founders of the field of neuronal
mechanics, Dennis Bray and Steven Heidemann, once favored
the idea of a solid-like axon, they now support the view they are
fluid-like structures (Heidemann and Bray, 2015). In summary,
the available evidence strongly indicates that axons and the MT
arrays contained within them act as fluids during the process
of neurite outgrowth. By adopting a model of neurons as active
Maxwell fluids, the study of axonal elongation can advance to
a state where the relative contributions of diverse mechanisms,
over a broad range of time scales, can be considered and related
in a unified model (de Rooij et al., 2017, 2018; de Rooij and Kuhl,
2018).

Forces in Series
A major challenge in cell mechanics is relating specific force
measurements, typically made by probing the outside of cells,
with the profile of subcellular force generation within a cell (Park
et al., 2010; Canovic et al., 2014). Whereas it is intuitive that
parallel forces sum (e.g., consider two people pushing a box),
how forces combine in series as is the case of an axon attached
to a growth cone, is rarely discussed. It is well documented that
neurons generate traction forces on the order of 1 nN, and it is
typically assumed that growth cones are the primary site of force
generation. However, does this mean that growth cones generate
1 nN of force? To better understand this, one the co-authors
systemically considered the problem of how forces interact in
series (O’Toole et al., 2015). Without going into the details of its
derivation, the equation that describes the relationship between
net force and the forces generated in the axon and growth cone is
given by Eq. 2.

FNet = FGC
ηAxon

ηGC + ηAxon
+ FAxon

ηGC

ηGC + ηAxon
. (2)

Here, we have a model where the neuron has two compartments
that can have different viscosities (η) and levels of internal force
generation (F). On one end, the axon is attached to a fixed point,
and on the other, the growth cone is affixed to a means to measure
net force. If we assume for the moment that the viscosity in both
regions is the same, the net force is equal to the average force. For
example, if forces were only generated in the growth cone, the
net force would be equal to half of that. An intuitive explanation
for why this occurs is that when no forces are generated in the
axon, contraction occurs in the growth cone. Since this motion
is coupled with the dissipation of forces through viscosity, the
force measured externally is reduced. This equation implies that
the measured net force provides little information about the site
and magnitude of internal force generation; just because a growth
cone pulls on the substrate, does not mean it is the primary site of
force generation.

The theory outlined in Eq. 2 lead us to ask where are forces
generated in neurons and what is their magnitude. In thinking
about neurons are active fluids, it became clear that when the
local internal forces are equal to the external forces, the local
region neither expands or contracts (O’Toole et al., 2015). Using
towing needles attached to the growth cone to systematically

vary the external force while monitoring subcellular strain rate
by tracking docked mitochondria, we found the contractile force
across the central domain to be 2 nN, while along the axon
it was 0.6 nN. In turn, the average net force for the chick
sensory neuron as a whole was 1.3 nN. Because the net force
was close to the average of the forces in the two regions, this
suggests the viscosity of the rear of the growth cone (which
contains MTs in the central domain surrounded by actin arcs)
is similar to the viscosity of the axon (which is composed of
axonal MTs surrounded by an actin cortex) (Figure 2B). In
addition, it makes clear that the traction forces measured at the
growth cone (Chan and Odde, 2008; Koch et al., 2012) are a
complex function of the subcellular profile of force generation
(Figure 6).

The second implication of this model is that net traction
forces generated by neurons are likely independent of the
whether axons elongate or not. Combining Eqs. 1 and 2, the
rate the axon lengthens is determined by the difference in
forces generated in the growth cone and axon, divided by the
viscosity of the axon. While fast elongation could be paired
with high levels of force generation in the growth cone as
the result of clutch engagement, it could also result from low
levels of force generation in the axon (Figure 2). The study by
Hyland looked carefully at the correlation between net traction
force and the rate of elongation (Hyland et al., 2014). They
found, in essence, no strong correlation and noted that the
highest traction forces were often generated by the slowest
growing neurons. As we will develop below, we think the
reason for this is that Rho selectively leads to the activation of
NMIIA along the axon, which generates a contractile force that
opposes growth cone advance (Figures 2C, 6). This suggests
that it is more critical to consider the subcellular pattern of
force generation rather than the total force. In discussing these
results, Hyland et al. (2014) pointed out that it was paradoxical
that there was no strong correlation between traction forces
and outgrowth rate, yet there is a strong correlation between
externally applied forces and elongation. Based on one of the
author’s recent modeling study (de Rooij et al., 2018), we think
a possible explanation is that external forces directly cause the
axon to stretch or contract as a compartment. In contrast,
in neuronal cultures traction force arises from the balance
of forces between the axon and growth cone. Thus, higher
traction forces do not necessarily equate to faster elongation
(Figure 6).

In conclusion, a key determinate of whether axons elongate,
stall or retract appears to be the gradient in the force profile
from the axon across the growth cone (Figure 2C). When the
levels of force generation in the axon and growth cone are
similar, high traction forces will be produced, but the material
will not flow forward. In turn, if the level of contractile forces is
higher in the axon than in the growth cone, retraction occurs.
Only when the levels of force generation are higher in the
growth cone than the axon, material flows forward (Figure 6).
A secondary and related idea is that viscosity controls the rate
of material flow (O’Toole et al., 2008a). In general, changes that
decrease viscosity without altering forces will lead to faster rates
of elongation and retraction, whereas inhibiting the dynamics of
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cytoskeletal elements or increasing the number or the stability
of cross-linkers will have the reverse effect (de Rooij et al., 2017,
2018).

Axons Elongate at the Rate of Transition
Zone Advance
With this background on neurons as active materials in mind, we
can now return to the question of the relationship between bulk
MT transport and growth cone advance. Combining estimates
of subcellular forces generation (O’Toole et al., 2015) with a
detailed analysis of MT motion in growing neurites (Athamneh
et al., 2017) provides a comprehensive picture of subcellular force
generation and motion (Figures 2C,E). Far from the growth cone
(>200 µm), MTs are stationary relative to the substrate (Miller
and Sheetz, 2006). In the growth cone, MT translocation velocity
rises to an average rate of ∼ 25 µm/h (Athamneh et al., 2017).
This gradient in velocity reflects the stretching of the axon. It is
caused by the difference in contractile forces between the axon
and the traction forces generated in the growth cone and shaped
by the frictional interactions between the axon and substrate
(O’Toole et al., 2008a; Figure 2D). Across the growth cone, MT
velocity drops sharply, to a large negative value of ∼−125 µm/h
over a region of∼ 5–10 µm in the peripheral domain (Athamneh
et al., 2017). The switch from slow bulk anterograde motion
to rapid retrograde flow occurs at the transition zone when
MTs enter into the peripheral domain and become coupled with
retrograde actin flow (Schaefer et al., 2002, 2008; Lee and Suter,
2008). As the growth cone advances over time, this profile moves
forward in space at a rate roughly equal to a peak rate of MT
advance in the growth cone (Athamneh et al., 2017).

While, we measure velocity in one dimension, axons are three-
dimensional, and volume is conserved during rapid stretching
(Fan et al., 2017). If we ignore for the moment the delivery
of material through fast and slow axonal transport, changes in
velocity along the axis of the axon are paired with alterations in
diameter. In regions where the velocity gradient is positive (i.e.,
it increases with distance from the cell body) ‘stretching’ occurs
and diameter decreases, likewise in the growth cone where the
velocity gradient is negative diameter increases. Mechanically,
this explains in part why growth cones are wide, and axons
are thin. Strikingly, if new materials were not added to axons,
they would rapidly thin behind the growth cone (O’Toole et al.,
2008a).

Nonetheless, neurons are not passive materials: the subcellular
assembly and disassembly of MTs are tightly controlled. Because
axonal diameter remains relatively constant during elongation
(Bray, 1984), fast axonal transport of organelles, slow axonal
transport of cytoskeletal elements, and net MT assembly are
needed to maintain axonal diameter (O’Toole et al., 2008b). In
support of this, the flux associated with transport declines along
the axon, which adds mass (Miller and Samuels, 1997; O’Toole
and Miller, 2011). Paired with this, analysis of end-binding
(EB)1/3 protein comets and markers for MT dynamics indicates
that MT assembly occurs preferentially in the distal axon, where
stretching is most prominent (Baas and Black, 1990; Cammarata
et al., 2016; Qiang et al., 2018). Thus, while our recent quantitative

analysis of MT motion indicates that axons do not advance by
the assembly of MTs at the tip of the central domain (Athamneh
et al., 2017), analysis of the velocity gradients suggests robust
assembly is needed in the distal axon to prevent thinning. The
observation of robust MT assembly in the distal axon raises the
question, ‘why doesn’t MT assembly at tip drive elongation.’ One
possibility is that when MTs extend into the peripheral domain,
they come under high stress, which bends and breaks the plus
ends off (Schaefer et al., 2002, 2008; Lee and Suter, 2008; Rauch
et al., 2013). In turn, MT disassembly may occur (Tang-Schomer
et al., 2010). Thus, the same MTs that could add mass at the tip of
the central domain are the ones most likely to depolymerize.

Based on these considerations, we propose that the transition
point, where the velocity gradient shifts from positive to negative
(Figure 2E), regulates the shape and size of the growth cone
(Figure 5). Behind this point, axonal thinning occurs because
of stretching. In front of this point, thickening occurs through
contraction. When the growth cone pauses, this transition point
shifts back toward the contractile node in the neck of the growth
cone, which leads to the widening of the central domain because
contraction pushes material outwards. In contrast, during rapid
elongation, this point shifts forward toward the actin-rich region
in front of the growth cone, which causes the central domain
to stretch and decrease in width. As the transition zone and
actin arcs surrounding the sides of the growth cone are critical
for creating this velocity gradient, the question of what controls
its advance becomes critical for understanding elongation. As
we develop next, the net forces generated by multiple sources
including membrane tension, MTs assembly, axonal contraction,
actin retrograde flow, and clutch engagement are integrated
into a net force vector across the transition zone that controls
its advance (Figures 2, 6). In terms of the biology, a critical
question is the relative force contributions of each of these
mechanisms.

Does MT Assembly Create a Pushing
Force That Drives Elongation?
The observed correlation between bulk MT advance and
elongation (Athamneh et al., 2017) challenges the idea that
new tubulin addition at the tip is the main driving force for
neurite elongation. To determine if MT assembly modulates bulk
transport, we disrupted it and tracked bulk motion (Athamneh
et al., 2017). Strikingly, this blocked forward advance, lead to
retraction of material in the distal axon, and increased tension
by roughly 60%. Collectively this suggests that normal MT
assembly is needed for elongation because when it is disrupted,
tension rises (presumably along the axon) that pulls material
rearward. While models of axonal elongation have suggested that
MT assembly generates a pushing force that drives elongation
(Buxbaum and Heidemann, 1992; Recho et al., 2016), we suspect
that the large compressive forces created by MTs are primarily
generated as the result of MT sliding by motors and coupling
between MTs and actin retrograde flow via cross-linkers. For
MT assembly to generate a significant pushing force, it must
be stalled against a barrier (Dogterom and Yurke, 1997). In
agreement with this, EB3-GFP comets do not stall along the
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axon (Stepanova et al., 2010), as they would if they were pushing
against a barrier. In addition, as the stall force of a MT is
∼ 5 pN (Dogterom and Yurke, 1997) and the numbers of MTs
in a typical growth cone are in the range of 5 - 20, the force
generated by assembly is theoretically small compared to the
net forces generated by NMII and dynein that act on MTs
(Koch et al., 2012; Roossien et al., 2014). If we exclude the idea
that MT assembly generates large extensile forces, why does
tension rise so dramatically when assembly is blocked? Here,
we see two untested but logical possibilities. The first is that
disruption of MT assembly interferes with the ability of dynein
to generate large extensile forces which have been measured to
be at least 400 pN in sensory neurons (Roossien et al., 2014). As
dynein is a +tip protein (Duellberg et al., 2014) and drugs that
target MT dynamics lead to disassociation of +tip proteins from
MTs (Morrison et al., 1998), disruption of MT assembly could
dramatically reduce the ability of dynein to generate extensile
forces on MT arrays (de Rooij et al., 2017). Secondly, disruption
of MT assembly could lead to the activation of NMII along the
axon via the GEF-H1 – Rho signaling pathway (Chang et al.,
2008; Takano et al., 2017; de Rooij and Kuhl, 2018). While the
idea that MT assembly generates a pushing force that drives
elongation has been an attractive one, we believe that there are
plausible alternative hypotheses, which in our eyes need to be
tested.

Is the Growth Cone a Battering Ram?
Cajal initially compared the growth cone with “a living
battering ram, soft and flexible, which advances, pushing
aside mechanically the obstacles which it finds in its path”
(Ramón y Cajal, 1995). This evokes an impression that it
pushes forward with large forces. Consistent with this idea
actin filaments polymerize at the leading edge (Forscher and
Smith, 1988), and their assembly generates a force of 5–10
pN per filament in vitro (Greene et al., 2009; Figure 2). As
there are 100–200 actin filaments per micron at the leading
edge of cells (Koestler et al., 2008), a 1 µm region could
generate as much as ∼ 1 nN/µm. Furthermore, in non-neuronal
cells, the forward pushing force of the lamellipodia has been
directly measured using atomic force microscopy to have a
stall force of roughly 0.3 nN/µm (Prass et al., 2006). Similarly,
using a more refined analysis, the pushing force associated
with actin assembly in the lamellipodia of Aplysia neurons has
been estimated theoretically to be ∼ 100 pN/µm (Craig et al.,
2012). As the length of the leading lamellipodial edge in a
typical chick sensory growth cone is ∼ 5–10 µm, these growth
cones could theoretically push forward with 0.5–1 nN of force.
This is similar to the pulling or traction force, ∼ 1.5 nN, of
these growth cones (Athamneh and Suter, 2015; O’Toole et al.,
2015).

In contrast to theory, experimental data suggest that the
forward pushing force of actin assembly in growth cones is
extraordinarily small. When the pushing force of growth cones
was measured directly in sensory or hippocampal neurons,
individual filopodia pushed forward with ∼ 1–5 pN and the
lamellipodia with ∼ 10–20 pN/µm (Cojoc et al., 2007; Amin
et al., 2013). If we assume that the length of the leading edge of

a growth cone is 10 µm, the net force would be 100 pN; roughly
10 times less than the traction forces (O’Toole et al., 2015).
One possibility to explain these small forces is that membrane
tension is very high and most of the forces associated with actin
assembly are directed to pushing it forward. Yet, the in-plane
membrane tension in chick sensory and C. elegans neurons are
3 pN/µm and ∼ 12 pN/µm, respectively (Hochmuth et al.,
1996; Krieg et al., 2014). This suggests that the small measured
pushing force of growth cones does not arise because large
forces that counteract each other. Instead, membrane tension and
the force of actin polymerization are both small and balanced.
This is consistent with the idea that membrane tension may
be determined by the tension at which actin polymerization
underneath the membrane is mechanically stalled (Sens and
Plastino, 2015). Regarding growth cone behavior, the close
balance between these forces has also been suggested to account
for the probabilistic anterograde and retrograde motion of the
growth cone (Shahapure et al., 2010). While membrane addition
is critical for the process of axonal elongation and blocking
membrane addition halts elongation (Quiroga et al., 2018),
membrane tension does not appear to be significantly limit the
assembly of actin or the advance of the growth cone through large
forces.

Substrate-Cytoskeletal Coupling
In addition to pushing forward, most types of growth cones
generate pulling or traction forces in the range of 0.5 to 3 nN
(Athamneh and Suter, 2015). Neuronal cell lines and central
nervous system neurons generate forces at the lower end of
the range, whereas peripheral nervous system neurons build up
moderate forces. An exception is the enormous growth cones
of Aplysia neurons, which can develop traction forces up to 100
nN (Athamneh et al., 2015). Strikingly, single filopodia in chick
sensory neurons can pull with a force of ∼ 1 nN (Heidemann
et al., 1990; Bridgman et al., 2001) suggesting that forces in the
growth cone can be highly directed. Nonetheless more typically,
traction force analysis indicates that forces are distributed over
the growth cones, with a few peaks of high intensity (Koch
et al., 2012; Hyland et al., 2014; Figure 2D). How do retrograde
traction forces in the growth cone develop, and what is their
function?

The substrate-cytoskeletal coupling model explains the
generation of traction forces by proposing that point contacts
link actin undergoing retrograde flow to the extracellular
matrix (Suter et al., 1998; Bard et al., 2008; Shimada et al.,
2008; Nichol et al., 2016). Engagement of the clutch through
linkages between the actin cytoskeleton and the adhesion
receptors, through proteins such as talin, vinculin, shootin1,
and cortactin (Toriyama et al., 2013; Gomez and Letourneau,
2014; Kubo et al., 2015) increases traction forces and slows
flow (Figures 2, 6). Relatively little is known how guidance
cues and signaling affect force production in growth cones
and neurites. The few studies that have published in this
area focused on how signaling regulates clutch formation and
thereby traction force. The Inagaki group has shown that netrin-
1 causes Pak1-mediated shootin1 phosphorylation to regulate
substrate-cytoskeletal coupling and traction force production

Frontiers in Cellular Neuroscience | www.frontiersin.org 11 November 2018 | Volume 12 | Article 447

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-12-00447 November 23, 2018 Time: 10:38 # 12

Miller and Suter Integrated Model of Neurite Growth

(Toriyama et al., 2013). Phosphorylation is probably the most
common post-translational protein modification associated with
force production. Along these lines, Suter and Forscher have
shown that strong coupling between the cell adhesion molecule
apCAM and actin cytoskeleton in Aplysia growth cones depends
on Src-mediated tyrosine-phosphorylation (Suter and Forscher,
2001).

How substrate-cytoskeletal coupling translates into growth
cone advance is not fully understood. A classic interpretation
of the clutch hypothesis is that it reduces the rate of retrograde
actin flow, and increases the rate of growth cone advance
(Mitchison and Kirschner, 1988; Suter et al., 1998; Suter
and Forscher, 2000). The reduced actin flow consequently
represents a reduced barrier to MT assembly into the peripheral
domain (Hur et al., 2011; Cammarata et al., 2016; Blanquie
and Bradke, 2018). Whereas there have been several reported
examples where the growth cone transition from one substrate
to another resulted in an inverse relationship between actin
flow and growth cone advance (Lin and Forscher, 1995; Suter
et al., 1998; Nichol et al., 2016), slower rates of retrograde
flow are not always linked to faster elongation. For example,
when Aplysia growth cones are treated with serotonin (i.e.,
5-HT) both retrograde flow and elongation increase (Zhang
et al., 2012). Disruption of NMII with blebbistatin reduces
traction forces, retrograde flow, and elongation when neurons
are grown on laminin (Medeiros et al., 2006; Ketschek et al.,
2007; Koch et al., 2012). Inhibition of actin disassembly reduces
retrograde flow, traction forces and elongation (Gallo et al.,
2002; Van Goor et al., 2012; Hyland et al., 2014). Finally,
when we examined the correlation between retrograde flow
and axonal elongation, flow rates increased as the rate of
elongation rose (Athamneh et al., 2017). In light of these
findings, we believe that the primary function of the clutch is
not to reduce actin flow, but rather to increase the tension
between adhesions and the transition zone (Figure 2). When
this causes the net force vector over the transition zone to be
positive, the transition zone advances and MTs flow forward in
bulk.

A general prediction of this model is that higher rates of
elongation should be paired with higher traction forces. In
support of this, it is well established that traction forces and
elongation rise when the clutch is engaged (Suter et al., 1998;
Athamneh et al., 2015; Kubo et al., 2015). Nonetheless, a
careful analysis of growth rates and traction forces in freely
growing neurons indicates forces and growth rate are not
correlated (Hyland et al., 2014). As we indicated above and
will develop in the next sections, the growth cone is not
the only source of force generation in neurons. In addition,
contractile forces are generated along the axon (O’Toole et al.,
2015; Tofangchi et al., 2016) that could oppose the advance
of the transition zone (Figures 2, 6). Furthermore, extensile
force generation by the MT cytoskeletal is posed to decrease
traction forces and boast elongation (Roossien et al., 2014). This
suggests that axonal elongation is not controlled by a single
process, but rather how multiple mechanisms interact (Figure 2).
Through the next sections of the paper, we expand on the ideas
introduced here to develop a more detailed understanding of the

contribution of NMII, actin turnover, and actin-MT coupling in
elongation.

Force Generation by Non-muscle Myosin
II in the Growth Cone
Non-muscle myosin II has a central role in modulating axonal
elongation and neuronal mechanics. It acts downstream of the
major classes of guidance cues and signaling pathways including
Slit, Netrin-1, Semaphorin-3A, Ephrin-A5, Rho and ROCK
(Wahl et al., 2000; Wylie and Chantler, 2003; Gallo, 2006;
Brown et al., 2009; Murray et al., 2010). Consistent with this
role, it produces the majority of traction forces generated by
neurons (Bridgman et al., 2001; Koch et al., 2012). Strikingly,
while NMII generates large forces, it is not required for axonal
elongation per se. Treatment of chick sensory neurons with
50 µM blebbistatin, which reduces both NMIIA and NMIIB
activity by >95% (Limouze et al., 2004), only decreases the
rate of axonal elongation on laminin by 66%, and increases
the rate on poly-lysine by ∼ 50% (Ketschek et al., 2007).
Furthermore, disruption of NMII only slows retrograde flow
by 50% in Aplysia growth cones (Medeiros et al., 2006). These
observations suggest that while NMII generates large forces,
there are other motors and force-generating mechanisms which
power outgrowth in its absence. Instead, the primary role of
NMII appears to be the modulation of outgrowth downstream
of guidance cues.

A key to understanding the complex function of NMII is
that there are three isoforms, NMIIA, NMIIB, and NMIIC, all
of which are expressed at relatively high levels in the brain
and each with specific, yet overlapping functions (Golomb
et al., 2004; Wylie and Chantler, 2008; Shutova and Svitkina,
2018). Of note, disruption of NMIIB or NMIIC slows neurite
elongation for N2A cells grown on fibronectin, while disruption
of NMIIA increases it (Wylie and Chantler, 2001). More
generally, NMIIA is recognized as promoting axonal retraction,
while NMIIB drives elongation (Bridgman et al., 2001; Kubo
et al., 2008; Wang et al., 2017). While all three are found
in the growth cone, axon shaft, and cell body, there are
variations in their peak levels of localization. NMIIA is found
to be most concentrated along the axon shaft and central
domain (Rochlin et al., 1995; Bridgman, 2002; Wylie and
Chantler, 2008), whereas NMIIB and NMIIC are enriched in the
transition zone (Rochlin et al., 1995; Wylie and Chantler, 2008;
Figures 2C, 6). In turn, treatment of neurons with Semaphorin
3A, which causes growth cone collapse and retraction, increases
the concentration of NMIIA in the axon and shifts NMIIB
from the transition zone in front of the central domain to the
neck of the growth cone (Gallo, 2006; Brown et al., 2009).
Activation of Rho, which preferentially activates NMIIA in
neurons (Kubo et al., 2008), drives contraction in the axon but
does not affect retrograde flow (Zhang et al., 2003). Thus, a
picture emerges that during rapid elongation NMIIB generates
contractile forces in the growth cone to promote elongation,
while NMIIA generates contractile forces along the axon that
oppose it (Figure 6). From these observations, during slow
growth or retraction, Rho is activated, which generates contractile
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forces along the axon mediated primarily by NMIIA. When
Rho is inactive, contractile forces in the axon decrease, strong
pulling forces generated by NMIIB (and perhaps NMIIC) in
front of the central domain are dominant, and rapid elongation
ensues.

Whether the disruption of NMII increases or decreases
elongation depends on the substrate (Ketschek et al., 2007);
when neurons are grown on polyamines, in the presence
of growth inhibitory substrates such as CSPGs, or in the
presence of low concentrations of laminin, growth is typically
slow, and inhibition of NMII increases elongation (Ketschek
et al., 2007; Hur et al., 2011). In contrast, growth on high
concentrations of laminin is rapid but slowed by inhibition
of NMII (Ketschek et al., 2007; Turney et al., 2016). As
growth inhibitory substrates activate Rho (Monnier et al., 2003;
Geoffroy and Zheng, 2014), these effects can be interpreted in
the context of the differential activation of NMIIA along the
axon.

To better understand the interplay between the substrate,
NMII activity, and growth, Turney et al. (2016) recently
investigated the mechanism underlying the promotion of neurite
outgrowth by NGF on both fibronectin and laminin in embryonic
mouse sensory neurons. They did so by systematically varying
NGF concentration, the substrate, and NMII activity. They
found NMII disruption blocked the growth promoting effect
of NGF, but the mechanism depended on the substrate. On
laminin, NGF had little effect on NMII activity as assessed by
phosphorylated myosin light chain staining. Instead, it promoted
growth by selectively shifting vinculin, which links actin to
integrin, to the leading edge of the growth cone. Correlated
with this shift, NGF increased traction forces and slowed
retrograde flow. In contrast, when neurons were grown on
fibronectin, NGF selectively decreased NMIIA activity. As these
studies and our recent analysis of bulk MT motion were both
conducted in sensory neurons grown on laminin, the possibility
exists that the effects of NGF, substrate and NMII activity
may be explained through a consideration of how they impact
the forward flow of MTs and the motion of the transition
zone (Athamneh et al., 2017). In concluding this section, we
think it is important to note that our model of how NMII
isoforms interact to control elongation is a working hypothesis
(Figures 2, 6) and direct biophysical analysis of the role of
NMII in sub-cellular force generation and bulk flow is needed to
test it.

The Importance of Actin Disassembly in
Neurite Outgrowth
Growth cone advance depends not only on actin assembly and
NMII-actin interactions but also on actin disassembly (Figure 2).
ADF/cofilins are tightly linked to this process because they
promote actin turnover (Bamburg and Bernstein, 2010). They
do so by selectively binding to F-actin bound to ADP, severing
the filaments, and promoting disassembly at both ends (Wioland
et al., 2017). During neurite elongation, inhibition of actin
disassembly by either disruption of ADF/cofilin (Endo et al.,
2003; Flynn et al., 2012) or with the actin-stabilizing drug

jasplakinolide (Gallo et al., 2002; Van Goor et al., 2012), slows
retrograde flow and growth cone advance. In contrast, activation
of ADF/cofilin downstream of 5-HT increases elongation and
retrograde flow (Zhang et al., 2012). The effect of ADF/cofilin in
promoting growth has been suggested to occur in part because
it creates a space that allows MT advance (Flynn et al., 2012).
On the other hand, activation of AC downstream of repulsive
cues leads to growth cone collapse paired with a decrease in
growth cone F-actin (Hsieh et al., 2006; Piper et al., 2006). If
actin filaments were a passive barrier to MT advance, one would
predict elongation to increase. Likewise, the observation that
both flow and growth slows when actin disassembly is inhibited
challenges the hypothesis that that rapid retrograde actin flow
is a kinetic barrier to MT advance (Lin and Forscher, 1995).
A clue to this complex response comes from the observation that
the inhibition of actin disassembly with jasplakinolide decreases
traction forces by ∼ 50% (Hyland et al., 2014). As discussed
above, viewing elongation as being controlled by force balance,
the decrease in traction forces may explain why inhibition of actin
disassembly slows elongation.

Why forces decrease when actin disassembly is inhibited is
still poorly understood, but may occur because they are shunted
toward breaking and compacting actin filaments, instead of
pulling the substrate rearward (Medeiros et al., 2006; Craig et al.,
2012; Vogel et al., 2013; McFadden et al., 2017). Similarly, loss
of growth cone actin as the result of high ADF/cofilin activity
may reduce traction forces through loss of linkages with the
substrate. It is important to note that the biophysical effects of
altering ADF/cofilin on growth cone traction forces are currently
unknown. Furthermore, other effects such as a change in viscosity
could explain these responses to changing actin disassembly
(O’Toole et al., 2008a; de Rooij et al., 2018). Given our field’s
poor understanding of the interplay between actin dynamics and
neuronal mechanics, we suggest it as a critical topic for deeper
investigation.

MT-Actin Interactions in Neurite
Outgrowth
How MTs and actin interact to drive axonal elongation is a
difficult question (Coles and Bradke, 2015; Voelzmann et al.,
2016). Again, applying ideas developed in physics with rigorous

FIGURE 7 | Microtubule/actin coupling promotes elongation. Loss of MT –
actin cross-linkers shown in red (A) leads to MT buckling (B), shorter axons
and thicker growth cones. MTs are represented by arrows.
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cell biology has the potential to transform our understanding.
A growing array of MT plus-end tracking protein, direct cross-
linkers, and cross-linking protein complexes have been identified
as couplers between actin filaments and MTs (Figure 2).
Invariably, disruption of these proteins alters elongation and
guidance and leads to disordered MT arrays. An excellent
illustration of this is shown in Drosophila neurons null for
shot, the homolog of spectraplakin ACF7, where extensive MT
buckling occurs in both the growth cone and along the axon
(Alves-Silva et al., 2012). In parallel, theory to model the bending
of rods in elastic matrixes and active fluids has been applied to
better understand the relationship between MT bucking, forces
and the influence of actin (Brangwynne et al., 2006; Kikuchi et al.,
2009). When MTs are under compression in isolation, they buckle
as rods described by the classic Euler buckling theorem. When
MTs are embedded in an active fluid or elastic medium, such
as actin filaments, instead of having a single C shaped curve,
they assume a wavy S-shaped confirmation (Brangwynne et al.,
2006). As the stiffness of the matrix increases, the number of
bends (i.e., modes) and the force MTs bear increases, whereas the
size of the bends (i.e., their amplitude) decreases (Brangwynne
et al., 2006). With knowledge of the stiffness of MTs and the
actin meshwork, the compressive force on MTs can be estimated
based on their curvature. In neurons and other cells, this is on
the order of 100 pN with the caveats that density, orientation,
and forces generated by actomyosin strongly impact this estimate
(Brangwynne et al., 2006; Rauch et al., 2013).

When actin-MT cross-linkers are disrupted, it seems unlikely
that either the compressive forces on MTs are higher or that the
actin matrix is directly weakened. Nonetheless, as the coupling
between actin filaments and MTs is decreased, it is possible that
the ‘effective’ stiffness of the matrix is reduced. From this, the
buckling of MTs observed when shot (Alves-Silva et al., 2012),
tau (Biswas and Kalil, 2018), and other cross-linkers are disrupted
may arise through a decreased physical interaction with the actin
network (Figure 7). There are two important implications. The
first is that without the stabilizing influence of actin, MTs will bear
reduced compressive loads (Brangwynne et al., 2006). The second
is that when MTs are disorganized, they will direct forces against
the sides of the axon and growth cone (Alves-Silva et al., 2012).
Bringing these ideas together provides a physical explanation for
the large axonal varicosities filled with disorganized MTs and
the widening of the growth cones observed when the actin-MT
cross-linking function of tau is disrupted (Biswas and Kalil, 2018).
More generally, a reduction in the net forward forces may explain
why disorganized MTs are typically associated with reduced
rates of axonal elongation. Collectively, these observations shift
focus from models that propose elongation is driven by the
pushing force of MT or actin assembly in the growth cone toward
mechanisms involving MT sliding by motors and crosslinking to
actin filaments.

CONCLUSION AND OUTLOOK

In conclusion, we propose here an integrated cytoskeletal model
of neurite outgrowth (Figure 2), that does not pinpoint a

single dynamic process as the sole driving force of elongation.
We suggest that gradients in force generation and adhesions
along the axon and growth cone determine whether axons
elongate, retract, or stall. If the growth cone produces stronger
traction forces and adhesions than the axon, the net result
will be increased neurite growth. The second significant aspect
of our model involves the idea that axons are active fluids
and that viscosity controls the rate of material flow. In
addition to force generation, cross-linkers between different
types of filaments affect viscosity and control how quickly
flow occurs in response to forces. Since cross-links are lost
when filaments undergo disassembly, the dynamics of MTs
and actin filaments impacts viscosity. In general, for fast
growth to occur, the density of cross-linkers needs to be
minimized, and the dynamics of filaments increased. On the
other hand, if the density of cross-linkers drops too much,
the forces generated by these systems may be less directed
(Figure 7).

Viewing neurons as an active fluid leads to a model
of elongation that is useful for understanding how growth
occurs and further suggests principles for prompting rapid
neurite growth for example during regeneration following
injury. To promote rapid elongation, one needs to increase
net contractile force generation and adhesions in front
of the central domain, decrease net contractile force
generation and adhesions along the axon, and lower viscosity
(Figures 2, 6). As forces, adhesions, and viscosity are
influenced by multiple processes; many approaches could
lead to fast elongation. What complicates the development
of therapies for neurite growth is that any given component
is typically involved in several processes that often have
opposing effects on elongation. However, without an
integrated model, it will be challenging to come up with
better approaches to increase neurite growth. We hope
that this review will stimulate new developments in this
area.
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