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Adult neurogenesis is present in the dentate gyrus and the subventricular zone in
mammalian brain under physiological conditions. Recently, adult neurogenesis has also
been reported in other brain regions after brain injury. In this study, we established a focal
striatal ischemic model in adult mice via photothrombosis (PT) and investigated how focal
ischemia elicits neurogenesis in the striatum. We found that astrocytes and microglia
increased in early post-ischemic stage, followed by a 1-week late-onset of doublecortin
(DCX) expression in the striatum. The number of DCX-positive neurons reached the
peak level at day 7, but they were still observed at day 28 post-ischemia. Moreover,
Rbp-J (a key effector of Notch signaling) deletion in astrocytes has been reported to
promote the neuron regeneration after brain ischemia, and we provided the change of
gene expression profile in the striatum of astrocyte-specific Rbp-J knockout (KO) mice
glial fibrillary acidic protein (GFAP-CreER:Rbp-Jfl/fl), which may help to clarify detailed
potential mechanisms for the post-ischemic neurogenesis in the striatum.
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INTRODUCTION

Ischemic brain stroke is a serious disease with high incidence and poor prognosis worldwide
if systemic thrombolysis or endovascular treatment is not applied in time, and it may result
in memory disorder, vascular dementia, affective disorder and ataxia (Donnan et al., 2008;
Khandelwal et al., 2016). Now it is well accepted that active adult neurogenesis is present in the
mammalian brain although it is largely restricted to the dentate gyrus and the subventricular zone
lining the lateral ventricle (Duan et al., 2008; Zhao et al., 2008; Ming and Song, 2011). Recent
studies have reported that adult neurogenesis is present the cerebral cortex particularly following
cerebral ischemia (Jiang et al., 2001; Pekcec et al., 2006; Kernie and Parent, 2010; Ohira et al., 2010;
Huttner et al., 2014). It is challenging and interesting to explore intrinsic mechanism underlying
post-ischemic adult neurogenesis, and this line of research may facilitate the development of new
therapeutic strategies for restoring brain functions after brain stoke.

The striatum is one major part of basal ganglia with high risk of stroke, and its damage
may lead to impairments of voluntary movement and abnormal muscular tension (Fisher, 1965;
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Nicolai et al., 1996; Feekes and Cassell, 2006). The
current methods to build ischemic animal models in adult
mammalian brain include the middle cerebral artery occlusion
(MCAO; Memezawa et al., 1992), electric coagulation and
photothrombosis (PT). However, the infarct area induced by
MCAO often covers one third or even larger brain regions in
transverse sections, and this large damage is not often present
in survived patients. Electric coagulation improves the survival
rate with better homogeneity, but the craniotomy changes
intracranial pressure, and the surgical approach may damage the
temporal vessels, nerves, or muscles (Tamura et al., 1981). PT,
firstly reported in 1985 (Watson et al., 1985) can precisely target
focal area, and is characterized by easy operation and better
controllability for injury location and degree (Fluri et al., 2015).
Therefore, PT shows great strengths in building striatal ischemic
models (Kuroiwa et al., 2009).

In MCAO-induced cerebral ischemia, reactive astrocytes
and nestin-positive neural stem cells could be observed in
the striatum, which suggested that striatum has the potential
to generate new neurons in extensive ischemia (Shen et al.,
2016). However, whether focal ischemia in the striatum can
induce neurogenesis is uncertain, although it did elicit active
microglial cells and astrocytes locally (Nakajima and Kohsaka,
2004). In our study, we built and verified the striatal ischemic
models via PT in adult mice. We recorded changes of reactive
astrocytes and microglia and doublecortin (DCX)-positive cells
after the striatal ischemia. We also detected the dynamic
expression of several transcription factors, which are possibly
related to ischemia-induced neurogenesis in our striatal ischemic
model. Because the deletion of Rbp-J, a key component
of Notch signaling, has been reported to promote neural
regeneration in MCAO-induced ischemia (Magnusson et al.,
2014), we also investigated the changes of the transcription
factors in the striatum of astrocyte-specific Rbp-J knockout
(KO) mice in order to provide more insight into this
process.

MATERIALS AND METHODS

Animals
C57BL/6J mice were bred in the Laboratory Centre for
Medical Sciences, Tongji University. Glial fibrillary acidic
protein (GFAP)-CreER mice were purchased from The Jackson
Laboratory (USA), and floxed Rbp-J mice was generated
as described previously (Han et al., 2002; Kuroiwa et al.,
2009). GFAP-CreER:Rbp-Jfl/fl mice were obtained by crossing
GFAP-CreER with Rbp-Jfl/fl mice, and litter mates with the
genotype of Rbp-Jfl/fl were used as control. Male mice
aged 8–10 weeks and weighing 18–24 g were used. Before
ischemia, the GFAP-CreER:Rbp-Jfl/fl mice were given intragastric
administration of tamoxifen (20 mg/ml) once a day for
5 days to induce nuclear translocation of the Cre-ERT2 fusion
protein and subsequent Cre recombinase activity, allowing
deletion of loxP-flanked Rbp-J in GFAP-expressing astrocytes.
All animals were bred in-house and maintained in an aseptic
environment supplied with water and rodent chow ad libitum.
All experimental procedures and protocols in the study were

approved by the Ethics Committee of Tongji University,
China.

Rose Bengal Photothrombosis Model
To induce acute striatal ischemic stroke, we applied the rose
bengal PT model as described previously (Watson et al., 1985;
Yu et al., 2015). A diagram for experimental paradigm is shown
in Figure 1A. Mice were under anesthesia with intraperitoneal
(i.p.) injection of ketamine-xylazine (65 mg/kg of ketamine,
9.9 mg/kg xylazine) through a round cranial window (2 mm
diameter) made at 0.7 mm posterior to the Bregma, and
1.8 mm left to the midline in each mouse. Then a cannula was
embedded vertically from the cranial window to the location of
striatum 3.2 mm deep, and was fixed by silicate cement. After
1-week recovery from the operation, we injected rose bengal
(100 mg/kg mouse) intraperitoneally, and 30 min later, the
striatum was illuminated for 10–12 min by inserting an optical
fiber with a cold light source (Zeiss FL1500 LCD) from the
cannula to induce striatal ischemia. Mice in the control group
(sham-stroke, see ‘‘Photothrombosis Induces Focal Ischemic
Injury in the Striatum’’ to ‘‘DCX Expression Is a Delayed
Process After Striatal Ischemia’’ in ‘‘Results’’ section) received
the same operation with inserted optical fiber on one side of
striatum and injection of rose bengal, but no illumination was
applied.

Rotational Test
Apomorphine-induced rotation behaviors were examined on
mice receiving sham-stroke surgery (control) and mice with PT
at 2 days, 5 days, 7 days, 14 days and 28 days. At each time
point, apomorphine (10 mg/kg, i.p.; Sigma)-treated mice were
placed in Activity Monitor (Med Associates) for 20 min and
rotation index was calculated by using EthoVision XT8 software
(Noldus) as reported previously (Lerchner et al., 2007; Hu
et al., 2014). Rotation scores were calculated by subtracting
contralateral from ipsilateral rotations and dividing by the
total distance traveled (m), namely rotation scores = rotation
numbers/distance (m).

Quantitative Real-Time PCR (qRT-PCR)
Mice were anesthetized as described above, and brains were
removed and cut into 200-µm-thick slices on ice-cold dish
to identify the striatum. For detection of ischemia-induced
alterations in gene transcripts (see ‘‘Changes of Transcription
Factors Possibly Involved in the Neurogenesis in Striatum’’
in ‘‘Results’’ section below), the tissues of striatum of the
ischemic side and contralateral intact side were isolated by
removing surrounding tissues under dissecting microscopy, and
compassion was made between the two sides. For detection
of those caused by inactivation of Rbp-J in astrocytes (see
‘‘Changes of Transcription Factors in the Ischemic Striatum
of Rbp-J KO Mice’’ in ‘‘Results’’ section below), the tissues of
ischemic striatum were isolated in the same way from both
GFAP-CreER:Rbp-Jfl/fl mice and control Rbp-Jfl/fl mice, and
comparison was made between the two genotypes. Total RNA
was extracted from each sample but not as a combination
of multiple animals’ tissues with TRIzol reagent (Invitrogen,
Carlsbad, CA, USA), and 2 µg RNA was reversed to cDNA via
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FIGURE 1 | Photothrombosis (PT) induces focal ischemic injury in mouse striatum. (A) A diagram shows the experimental paradigm. (B) Triphenyltetrazolium chloride
(TTC) staining of brain slices. Ischemic areas were indicated by arrows. (C) Nissl staining shows a loss of cellular structure in the ischemic region at indicated time
points after PT. (D,E) Distribution of glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule 1 (Iba1) in the ischemic region at 28 days post
PT. (F) Quantitative analysis of cellular structure lacking area of (C; n = 5 in each group). (G) The rotation score of mice receiving sham-stroke surgery (control) and
mice at indicated time points post PT. Significance was analyzed by compare the mean of 2 days, 5 days, 7 days, 14 days and 28 days with the mean of control
(n = 5 in each group). Statistical significance: ∗p < 0.05, ∗∗∗p < 0.001. Scale bars = 200 µm.

SuperScript II reverse transcriptase (Invitrogen) according to the
manufacturer’s instructions. All primer sequences were obtained
from NCBI database (Supplementary Table S1). qRT-PCR was
performed in triplicate for each sample using ABI-7900 (Applied
Biosystems, Foster City, CA, USA) with SYBR Green Premix Ex

Taq (Takara). The resulting cDNAs were amplified by two-step
method under the following conditions: 95◦C for 5 min as
initial denaturation followed by 40 cycles of denaturation at
95◦C for 15 s annealing combined with extension at 60◦C
for 30 s.
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Triphenyltetrazolium Chloride (TTC)
Staining
Mice were anesthetized as described above, and brains were
removed immediately and chilled at −20◦C for 1 min to slightly
harden the tissue. Six 2-mm-thick coronal sections were made
from the olfactory bulb to the cerebellum and then stained with
1% triphenyltetrazolium chloride (TTC; Sigma, St. Louis, MO,
USA) at 37◦C for 30 min.

Immunohistochemistry and Cell Counting
Mice were harvested at 2 days, 5 days, 7 days, 14 days, 28 days
post-ischemia, and mice receiving sham-stroke surgery were
used as controls. The mice were anesthetized with an overdose
of urethane and then transcardially perfused with 0.1 M PBS
followed by 4% paraformaldehyde. Brains were dissected out,
post-fixed within 4% paraformaldehyde for 24 h at 4◦C, and were
sectioned into 30-µm-thick coronary sections on a cryostate. All
sections were washed with PBS, blocked with 1% bovine serum
albumin (BSA) for 30 min at room temperature, and incubated
overnight at 4◦Cwith primary antibodies in PBS containing 0.1%
Triton X-100 and 1% BSA. The information about the antibodies
and respective dilutions is listed in Supplementary Table S2.
After washing in PBS, sections were reacted with the fluorescent-
labeled secondary antibody for 3 h at room temperature. Sections
were counterstained with Hoechst 33342 (1:2,000; Sigma).
Images were obtained with a 50i Nikon fluorescence microscope
(Nikon). The numbers of immunostained cells were counted in
images taken from ischemic penumbra area (500 µm× 500 µm)
using Adobe Photoshop. For non-ischemic mice, number of
cells was counted in the equivalent region in the striatum. The
counts collected from three to four slices, which covered the
whole rostro-caudal extent of ischemic penumbra area with equal
distance (30 µm) of each brain were averaged as one value and
values from five mice in each group were averaged as a group
value.

BrdU Incorporation Assay
To label newly synthesized DNA, animals received i.p. injection
of BrdU (50 mg/kg; Sigma) four times, 48 h, 36 h, 24 h and 12 h
before harvest. For BrdU staining, brain sections were heated
at 37◦C for 30 min in 2 M HCl, then neutralized with 0.1 M
borate buffer (pH 8.5) for 10 min and incubated overnight with
a rat monoclonal antibody against BrdU (1:1,000; AbD Serotec)
followed by a rhodamine-conjugated goat anti-rat secondary
antibody (1:500; ZSGB-BIO) for 2 h at room temperature. The
nucleus was counterstained with Hoechst 33342 (Sigma).

Nissl Staining
Thrity micrometer-thick sections mounted on gelatin-coated
slides were incubated in toluidine blue pH 4.1 for 30 min,
dehydrated through a battery of alcohols with increasing
graduation, xylene transplant and coverslipped in neutral
balata.

Statistical Analysis
All experiments were performed for at least three biological
repeats. Data was reported as mean± SD. Statistical analysis and

diagrams were performed with GraphPad Prism 6.0. Significance
of results was analyzed using one-way ANOVA (more than two
groups were compared, i.e., Figures 1–4) followed by Tukey’s
test procedure for multiple comparisons with false discovery
rate (FDR) correction, or two-tailed Student’s t-test (two groups
compared, i.e., Figures 5, 6). P< 0.05 was considered statistically
significant.

RESULTS

Photothrombosis Induces Focal Ischemic
Injury in the Striatum
Mortality rate of mice treated with PT was low in our
experiments (2.5%). To test whether striatal ischemic injury
model was built successfully by PT in mice, we performed TTC
staining, Nissl staining and apomorphine-induced rotational test.
Macroscopically, TTC staining clearly showed the white-stained
ischemic area in the ipsilateral striatum 24 h post PT (arrows,
Figure 1B). In contrast, the contralateral brain was red-stained
(Figure 1B). Nissl staining showed an obvious loss of cellular
structure in the ischemic region at day 2, and 5, but it became
smaller at day 7 and 14 and was repopulated with Nissl-stained
cells at day 28 after the focal ischemia, most of which were
GFAP-positive astrocytes and ionized calcium binding adapter
molecule 1 (Iba1)-positive microglia (Figures 1C,E). Loss of
cellular structures in ischemic core is likely caused by the
procedures of Nissl staining, as this situation was also observed
when PT was performed in the cerebral cortex with intact skull.

To evaluate the locomotive deficit induced by the striatal
injury, we performed apomorphine-induced rotational test,
which is widely used to examine the dopamine-involved striatal
activity (Arenkiel et al., 2008). The rotation score is calculated by
subtracting contralateral from ipsilateral rotations and dividing
by the total distance traveled. The score can be used to reflect
neuronal activity in the striatum (Hu et al., 2014) and may be
helpful for evaluation of functional recovery in future studies. It
was nearly zero before the ischemia. At day 2 post-ischemia, the
score reached the peak value (nearly 3), maintained high level at
day 5 and day 7, and dropped down significantly at day 14 and
day 28 but still higher than the base level (Figure 1G). These
results indicated that locomotive deficit was induced by the focal
PT in the striatum.

Astrocytes Are Activated After the Striatal
Ischemia
Astrocytes play a key role in the maintenance of normal
brain functions as well as post-injury restoration. Upon injury,
quiescent astrocytes transformed into reactive astrocytes with
strong proliferation ability and highGFAP expression, and ended
in glial scar in damage area (Lu et al., 2014). More importantly,
astrocytes were regarded as potential cell source for neurogenesis
(Guo et al., 2014; Lu et al., 2014; Magnusson et al., 2014).

To test whether astrocytes were activated in our ischemic
model as well as their proliferation ability, we performed
immunostaining of GFAP combined with BrdU that was
applied four times before the mice were sacrificed. GFAP+
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FIGURE 2 | Changes of astrocytes in the striatum after PT-induced ischemia in mice. (A–D) GFAP+ astrocytes and BrdU-incorporated proliferating cells in uninjured
mice (ctrl) and post-ischemic mice during the time course (2 days, 7 days, 14 days and 28 days, respectively). (E) Quantitative analysis of GFAP+ astrocytes at
indicated time points after ischemia. (F) Quantitative analysis of BrdU-incorporated proliferating cells at different time points after ischemia. (G) Ratio of GFAP/BrdU-
double labeled cells to the total of GFAP+ cells at different time points after ischemia. (H) GFAP/BrdU-double cells to the total of BrdU+ cells at different time points
after ischemia. Arrowhead marks the GFAP/BrdU-double cells. (E–H) n = 5 in each group. Statistical significance: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Scale
bars = 200 µm.

astrocytes were scattered in intact striatum. However, GFAP+

cells dramatically increased at day 2, reached the peak level at
day 7, and gradually dropped down to day 28 post-ischemia
(Figures 2A–E). Similarly, BrdU+ cells were rare in intact
striatum, but it increased significantly at day 2, reached the
highest level at day 7, and reduced at day 14 and day 28
(Figures 2A–D,F). Furthermore, we calculated the ratio of
GFAP+/BrdU+ cells to GFAP+ cells and ratio of GFAP+/BrdU+

cells to BrdU+ cells, and found that both of them reached
the highest level at day 7 (15.1 ± 0.69% and 42.09 ± 2.56%)
(Figures 2A–D,G,H). These results demonstrated that the
astrocytes were highly proliferated in our striatal ischemic
model.

Morphologically, GFAP+ astrocytes changed its shape
significantly in the ischemic region over time after PT. In
the early period (2 days, 7 days), GFAP+ astrocytes exhibited
a typical stellate-like morphology with extensive processes.
However, astrocytes were densely packed and formed a stream
with elongated, straight shape in the ischemic core at late stage,
especially at day 28 (Figure 1D).

Microglia Are Activated After the Striatal
Ischemia
Iba1 is a marker for quiescent as well as activated microglia
(Zamanian et al., 2012). To investigate the dynamic changes of
microglia after PT, we performed double immunostaining of
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Iba1 and BrdU (Figure 3A). Iba1+ cells were highly proliferated
in the ischemic area from the initial 2 days after PT, and then
dropped down over time but still maintained a high level even
at day 28 (Figures 1E, 3B). The peak level of Iba1+/BrdU+ cells
was observed at day 7 (254.9± 17.15; Figure 3C), and the highest
ratio of Iba1+/BrdU+ cells to Iba1+ cells was present at day 2
(21.55 ± 2.03%; Figure 3D), suggesting that microglia owed
the fastest proliferation rate within the first week after striatal
ischemia. On the other hand, the ration of Iba1+/BrdU+ cells
to BrdU+ cells at day 2 and day 7 were 31.67 ± 1.95% and
24.07± 1.49% (Figure 3E), respectively. Overall, Iba1+microglia
were highly and quickly activated after the striatal ischemia.

DCX Expression Is a Delayed Process
After Striatal Ischemia
DCX is a microtubule associated protein in cytoplasm, and can
be used to mark the new-born neurons (des Portes et al., 1998).

To test whether the focal ischemia is able to trigger appearance
of new-born neurons in the injured striatum, we examined
DCX-expressing cells. DCX+ cells were not detected in the
striatum at day 2 when astrocytes were quickly expanded, but
were observed at day 7 and continuously existed at day 28 post
ischemic injury (Figures 4A–F,H). Moreover, the number of
DCX+/BrdU+ cells and the ratio of DCX+/BrdU+ cells to DCX+

cells both reached the highest level at day 7 (Figures 4G,I,J). In
comparison with the quick reaction of astrocytes and microglia,
the ischemia-evoked neurogenesis is a delayed process in the
striatum.

Changes of Transcription Factors Possibly
Involved in the Neurogenesis in Striatum
Our PT-induced ischemia did activate the astrocytes and
microglia, which was companied by a delayed occurrence of
DCX+ cells in the striatum. In order to uncover the key

FIGURE 3 | Changes of microglia in the striatum after PT-induced ischemia in mice. (A) Iba1+ microglia and BrdU-incorporated proliferating cells in post-ischemic
mice at day 5 and day 7. Arrow heads point to Iba1/BrdU-double labeled cells. (B) Quantitative analysis of Iba1+ microglia at indicated time points after ischemia.
(C) Quantitative analysis of Iba1/BrdU-double labeled cells at indicated time points after ischemia. (D) Ratio of Iba1/BrdU-double labeled cells to the total of Iba1+

cells at indicated time points after ischemia. (E) Iba1/BrdU-double labeled cells to the total of BrdU+ cells at indicated time points after ischemia. (B–E) n = 5 in each
group. Statistical significance: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Scale bars = 100 µm.
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FIGURE 4 | New-born neurons in the striatum after PT-induced ischemia in mice. Panels (A–F) showing doublecortin (DCX+) cells in the striatum at 7 days (C) and
28 days (F) post-ischemia. Boxed areas in (A,D) are enlarged in (B,E), respectively. Panel (G) showing DCX/BrdU-double positive cells (arrows) at day 7
post-ischemia. (H–J) Quantitative analysis of DCX+ cells, DCX/BrdU-double positive cells and ratio of DCX/BrdU-double positive cells to the total of DCX+ cells at
indicated time points post-ischemia, respectively. (H–J) n = 5 in each group. Statistical significance: ∗∗p < 0.01, ∗∗∗p < 0.001. Scale bars = 200 µm.

genetic regulators controlling this process, we used qPCR to
compare the expression of a certain number of transcription
factors and signaling pathways that have been reported to
be involved in the morphogenesis of striatum between the
ipsilateral side (ischemic side) and the contralateral side
(uninjured side), on the basis of the hypothesis that these
genetic programs may be reinitiated during the ischemia-
induced striatal neurogenesis. Among them, Notch signaling
pathway is one of the most important networks, because
the deletion of Rbp-J, a canonical pathway effector for
Notch signaling pathway, has been reported to promote
neural regeneration in MCAO-induced ischemia (Bhat, 2014;

Magnusson et al., 2014). We found that Rbp-J was transiently
up-regulated at day 2 and then returned to the normal level
(Figure 5). However, Hes1 and Hes5, target transcription factors
of Notch signaling pathway, were down-regulated during the
early post-ischemic process, then returning to normal state at late
stage (Figure 5).

Transcription factor Sp9 is known to promote striatopallidal
medium-sized spiny neuron progenitor division and
differentiation (Zhang et al., 2016). Our results showed that
the mRNA of Sp8, a member of Sp family, significantly increased
at day 7, three times higher than that in the contralateral side,
and still maintained high level during later period (Figure 5).
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FIGURE 5 | Relative mRNA level of the genes in ischemic striatum relative to
contralateral striatum at day 2 (A), 7 (B), 14 (C), 28 (D), 60 (E) post-ischemia.
Ipsilateral side: stroke side; contralateral side: uninjured side. n = 4 in each
group. Statistical significance: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

However, Sp9 was slightly down-regulated at day 2, but its
expression was all higher than that in the contralateral side at
day 14 and day 28. Adora2, P2ry1, Grik3, the target factors of Sp9
(Zhang et al., 2016), showed the similar changes to that of Sp9
(Figure 5).

Ascl1, also called Mash1 and Neurod1 are neurogenic
genes, and importantly, a single overexpression of Ascl1 or
Neurod1 in astrocytes could make trans-differentiation of
astrocytes into functional neurons (Guo et al., 2014; Liu et al.,
2015; Brulet et al., 2017). In our study, the trend of Ascl1
expression change was similar to Sp8, no statistically different
at day 2 but higher than the contralateral side at day 7,
14, 28 and 60 post-ischemia. Neurod1 also showed higher
expression at the late stage post-ischemia (day 14, 28 and 60;
Figure 5).

Shh signaling is involved in multiple organogenesis including
the nervous system, and its expression is required for the
proliferation, differentiation and migration of neural precursors
and neurogenesis in the cortex (Jin et al., 2015). However, in
our PT-induced ischemic model, Shh was down-regulated at
both early and late stages (Figure 4). Besides, β-catenin, a key
component of Wnt singling pathway (Nusse and Clevers, 2017),
was unchanged in our ischemic model (Figure 5).

Changes of Transcription Factors in the
Ischemic Striatum of Rbp-J KO Mice
Magnusson et al. (2014) found that Notch signaling was
up-regulated, and conditional KO ofRbp-J in the astrocytes could
promote the trans-differentiation of astrocytes into neurons
in MACO-induced ischemia. In this study, we created GFAP-
CreER:Rbp-Jfl/fl mice, in which Rbp-J was inactivated specifically
in GFAP-expressing astrocytes in the presence of tamoxifen.
We induced the striatal ischemia in both GFAP-CreER:Rbp-
Jfl/fl mice and Rbp-Jfl/fl (control). At day 7 post-ischemia, when
DCX+ neurons were first observed after the injury, we focused
on comparison of transcriptions of the genes in the striatum of
both GFAP-CreER:Rbp-Jfl/fl mice and the Rbp-Jfl/fl. We found
that Hes1 and Hes5, target factors of Rbp-J (Kageyama et al.,
2008), were both reduced in GFAP-CreER:Rbp-Jfl/fl mice relative
to control Rbp-Jfl/fl mice (Figure 6). Interestingly, the expression
of GFAP was also down-regulated, and this might suggest
less appearance of astrocytes in GFAP-CreER:Rbp-Jfl/fl mice. In
contrast, the expression ofDCX was statistically higher in GFAP-
CreER:Rbp-Jfl/fl mice than that in control Rbp-Jfl/fl mice. Besides,
the levels of Ascl1, Neurod1, β-catenin, Sp8 and Sp9 were also
higher than the control group (Figure 6). These results suggested
that Rbp-J deletion may promote neurogenesis via multiple
neurogenic genes.

DISCUSSION

PT is easy-operated, and importantly its target site is easy to
control. PT-induced focal ischemia in mouse striatum could
well mimic human striatal ischemia, which may help to reveal
the mechanism of neurogenesis caused by ischemia and find
potential therapeutical target.
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In this study, mice receiving the PT showed obvious
locomotive deficits, suggesting that the mice did suffer striatal
damage. In many cerebral diseases, the injured area was always
accumulated by reactive glial cells, including astrocytes and
microglia. This process was recognized to form glial scar,
so as to avoid infection, repair injury area and reconstruct
the integrity of neuronal connections (Liddelow and Barres,
2016). Recent studies have shown that reactive astrocytes
could be one main cell source of neurogenesis during
recovery (Magnusson et al., 2014). In our work, large amounts
of astrocytes appeared at day 2 and reached the highest
level at day 7 post-ischemia. Later on, GFAP+ astrocytes
were densely packed with broad processes (i.e., astroglial scar
formed). Astroglial scar is recognized as protective reaction,
but may also result in refractory epilepsy. If reactive astrocytes
can be transformed into neurons under ischemic condition,
it is of profound significance to find the fittest time and
proper treatment on the astrocytes not only in aid of neural
regeneration but also to avoid astroglial scar-induced side
effects.

Previous studies have shown that cerebral neurogenesis can
be triggered by two programs: (i) adult neural stem cells, located
in the subventricular zone and hippocampal subgranular zone,
continuously produce new neurons during whole lifetime (Braun
and Jessberger, 2014); when activated by external signaling, they
migrate to certain areas (e.g., ischemic area) and form lineage-
restricted neurons or astrocytes to reconstruct functional neural
unit (Yagita et al., 2001); and (ii) some specialized astrocytes,
possessing similar properties to neural stem cells and an intrinsic
ability to generate neurons. Although this ability is dormant,
it can be brought out by stimulating the cells with growth
factors in vitro (Sirko et al., 2013). Recently, it has been reported
that some parenchymal astrocytes in the striatum can also

produce neurons in vivo (Magnusson et al., 2014; Nato et al.,
2015). Ischemia was reported to have intense inductive effect
on neurogenesis (Yagita et al., 2001; Magnusson et al., 2014).
In our study, we found that focal striatal ischemia could also
elicit the occurrence of DCX+ cells in adult mice, although it
was a delayed process compared to glial cells. Further studies
are needed to identify the origin of the DCX+ cells, generated
locally or adult neural stem cells migrated from the wall of lateral
ventricle.

The cell homoeostasis of certain state is maintained by
stabilized intrinsic gene expression, and the disturbance of cell
signaling network could trigger the change of the cell state. In
our study, PT-induced ischemia would break the homoeostasis,
activating the astrocytes and promoting the neurogenic program
of DCX+ cells, which may be paralleled by complicated changes
in transcriptional network. In order to uncover the potential
mechanism within the recovery of post-ischemic injury, we
detected the dynamic expression of several transcription factors
that is implicated in the striatum development in the view
of similar signaling network between them. We found that
the key effector of Notch signaling, Rbp-J, was transiently
up-regulated and then returned to normal level. Factors which
are indispensable for the striatal neurogenesis (e.g., Ascl1,
Neurod1 and Sp family) were up-regulated during mid and late
period. These results suggest that the amplification of astrocytes
in the early phase might be mediated by Notch signaling
activation, and it becomes inhibited when neurogenic program
is launched.

Reactive astrocytes usually exist in the injury area and express
stem properties of neural stem cells, likely to be a potential
cell source for in vivo reprogramming. It has been reported
that some transcription factors (e.g., Neurod1, Ascl1, Pax6 and
Dlx2) could reprogram astrocytes into neural progenitors or

FIGURE 6 | Relative mRNA level of the genes in the striatum of GFAP-CreER/Rbp-Jfl/fl mice (n = 4) to Rbp-Jfl/fl (n = 4) at 7 days post-ischemia. Statistical
significance. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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functional neurons in vivo (Heinrich et al., 2011; Jang and
Goldman, 2011; Guo et al., 2014; Liu et al., 2015). Besides,
in vivo study showed that overexpression of single factor
Sox2 was sufficient for trans-differentiation from astrocytes to
neural precursors, and the neural state could maintain through
whole lifetime (Niu et al., 2013). The striatum contains several
specified types of functional neurons, and the genetic program
governing ischemia-induced transformation of astrocyte into
neurons should have something unique in addition to the
pan-reprogram machinery. In this study, we identified the
changes of genes that are implicated in the development of
striatal neurons under ischemic condition, and they may be
candidate genes for exploring themechanisms underlying striatal
ischemia-induced neurogenesis.

It has been reported that Rbp-J deletion in astrocytes
enhances their proliferation ability spontaneously after
2–3 weeks, and promotes the generation of Ascl1+ and
DCX+ cells in MCAO-induced ischemia (Magnusson et al.,
2014; Magnusson and Frisén, 2016). Consistently, our study
showed that the level of DCX transcripts was statistically
higher in GFAP-CreER:Rbp-Jfl/fl mice than that in control
Rbp-Jfl/fl mice after the striatal ischemia. In addition, the
levels of neurogenic genes (e.g., Ascl1 and Neurod1) and
transcription factors controlled the striatal neurogenesis
(e.g., Sp9) were also higher than the control group. It should
be noted that GFAP transcription was reduced in the striatum
of GFAP-CreER:Rbp-Jfl/fl mice relative to control Rbp-Jfl/fl

after the ischemia. These results suggest that astrocytes
transformation may occur in the absence of Rbp-J and
contribute to the Rbp-J deletion-promoted neurogenesis in
ischemic condition.

In summary, we successfully established a focal striatal
ischemic model in adult mice via PT, and found that astrocytes
and microglia increased in early post-ischemic stage, followed
by a 1-week late-onset of DCX expression in the striatum. Then
we examined a certain number of transcription factors and
signaling pathways that have been reported to be involved in
the striatal morphogenesis. Moreover, we provided the change

of gene expression profile in the striatum of astrocyte-specific
Rbp-J KO mice. Our data presented in this study may help
to clarify potential mechanisms underlying brain ischemia-
evoked neurogenesis. Adult neurogenesis in the hippocampus
is highly activated in enriched environments, and it is of
interest to investigate if a similar scenario is present in
ischemia-induced transient neurogenesis in order to develop new
therapeutic strategies for repairing brain functions caused by
brain injury.
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