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Coagulation and the immune system interact in several physiological and pathological
conditions, including tissue repair, host defense, and homeostatic maintenance. This
network plays a key role in diseases of the central nervous system (CNS) by
involving several cells (CNS resident cells, platelets, endothelium, and leukocytes) and
molecular pathways (protease activity, complement factors, platelet granule content).
Endothelial damage prompts platelet activation and the coagulation cascade as the
first physiological step to support the rescue of damaged tissues, a flawed rescuing
system ultimately producing neuroinflammation. Leukocytes, platelets, and endothelial
cells are sensitive to the damage and indeed can release or respond to chemokines
and cytokines (platelet factor 4, CXCL4, TNF, interleukins), and growth factors
(including platelet-derived growth factor, vascular endothelial growth factor, and brain-
derived neurotrophic factor) with platelet activation, change in capillary permeability,
migration or differentiation of leukocytes. Thrombin, plasmin, activated complement
factors and matrix metalloproteinase-1 (MMP-1), furthermore, activate intracellular
transduction through complement or protease-activated receptors. Impairment of the
neuro-immune hemostasis network induces acute or chronic CNS pathologies related
to the neurovascular unit, either directly or by the systemic activation of its main steps.
Neurons, glial cells (astrocytes and microglia) and the extracellular matrix play a crucial
function in a “tetrapartite” synaptic model. Taking into account the neurovascular unit,
in this review we thoroughly analyzed the influence of neuro-immune hemostasis on
these five elements acting as a functional unit (“pentapartite” synapse) in the adaptive
and maladaptive plasticity and discuss the relevance of these events in inflammatory,
cerebrovascular, Alzheimer, neoplastic and psychiatric diseases. Finally, based on the
solid reviewed data, we hypothesize a model of neuro-immune hemostatic network
based on protein–protein interactions. In addition, we propose that, to better understand
and favor the maintenance of adaptive plasticity, it would be useful to construct
predictive molecular models, able to enlighten the regulating logic of the complex
molecular network, which belongs to different cellular domains. A modeling approach
would help to define how nodes of the network interact with basic cellular functions,
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such as mitochondrial metabolism, autophagy or apoptosis. It is expected that dynamic
systems biology models might help to elucidate the fine structure of molecular events
generated by blood coagulation and neuro-immune responses in several CNS diseases,
thereby opening the way to more effective treatments.

Keywords: coagulation, complement, neuro-immune system, neuroinflammation, Alzheimer’s disease, vascular
diseases, brain tumor, systems biology

INTRODUCTION

The complex and dynamic biological process of healing following
an injury is linked to the activation of coagulation and of
the immune system (Mancuso and Santagostino, 2017; Wang
et al., 2017). Indeed, reparative processes can functionally restore
endothelial integrity after a damage (infectious, post-traumatic,
shear stress-induced, or metabolic-related) and hereafter activate
the immune system (Nurden, 2011; Mancuso and Santagostino,
2017). Activation of these integrated processes relies upon cellular
components and circulating factors that are crucial to stimulate
physiological repair and tissue rearrangement, and essential to
the homeostasis of central nervous system (CNS) (De Luca et al.,
2017).

The paramount step to secure the integrity of the system is the
scouting of the endothelial damage and the clot formation. The
coagulation players have been divided into cellular and protease
components, the latter playing into three pathways: intrinsic,
extrinsic, and common (McMichael, 2012). In this review the
clotting factors will be addressed with Roman numbers, with
the post-position of the letter “a” to indicate the activated factor
(Giangrande, 2003) except for the FI-IV that will be addressed
as fibrinogen, prothrombin, tissue factors (TFs) and Calcium
(Ca2+) (Table 1).

The explorers of damage are FVII (described as the extrinsic
pathway initiator), the only human factor circulating as both
FVII and FVIIa to monitor TF exposure, and FXII (the intrinsic
pathway initiator), whose activation is induced by subendothelial
collagen in the presence of high-molecular-weight kininogen
(HMWK). The TF-FVIIa complex activates FIX and FX, while
FXIIa activates FXI, which also leads to FIXa. FXa indeed
converts low levels of prothrombin in thrombin (Tanaka et al.,
2009). Briefly, low concentration of thrombin and FXa are the
scouting signals that can either trigger the amplification or be
neutralized by the surrounding healthy cells.

Platelet are then activated with the formation of pseudopodia
that allow covering the injury site and the release of granular (α
and δ granules) mediators (Mancuso and Santagostino, 2017).
In fact, once the damage has been localized, degranulation of
α-granules exposes P-selectin, activates integrin αIIbβ3, promotes
circulating immune cells adhesion and releases fibrinogen, VWF,
FV and more than 300 proteins, including chemokines (Bahou,
2013) and growth factors, such as platelet-derived growth factor
(PDGF), brain-derived neurotrophic factor (BDNF), fibroblast
growth factor (FGF), and the vascular endothelial growth factor
(VEGF) (Nurden, 2011; Chen et al., 2018). P-selectin, also
known as Cluster of Differentiation (CD)62P, and glycoprotein
(GP)Ib on platelets are respectively recognized on white cells

by P-selectin glycoprotein ligand 1 (PSGL1) and αMβ2 integrin
CD11b/CD18, also known as Macrophage-1 antigen (Mac-1) or
CR3, the latter able to bind also complement, fibrinogen and
platelet GPIIb-IIIa (Nurden, 2011; Mancuso and Santagostino,
2017). Chemokines, or chemotactic cytokines, are classified
into families according to the arrangement of the cysteine
residues that constitutes the disulfide bridges, namely CXCL,
CC, CX3C, XC (Zlotnik and Yoshie, 2000, 2012). Among
chemokines, platelet factor 4 (PF4, also known as CXCL4),
CXCL1, interleukin-8 (IL-8) (Bahou, 2013) and CXCL7 are
absolutely the most abundant, the latter used as a marker
of megakaryocytic lineage. However, several other molecules
(CCL5, CXCL5, CXCL12) have been recognized, and there
is evidence of distinct and specialized α-granules subclasses
containing subsets of chemokines specifically released under
certain pathophysiological conditions (Italiano et al., 2008; van
Nispen tot Pannerden et al., 2010).

The δ granules (or dense granules) release bioactive amines
(e.g., histamine and serotonin), adenine nucleotides (ADP, ATP,
and cAMP), poly- and pyrophosphates, and high concentrations
of cations, above all Ca2+ (Bahou, 2013). A high local
concentration of FXa and thrombin ends the amplification phase
and induces its propagation and the last proteolytic cleavage
that involves fibrinogen, which is then transformed into fibrin
and stabilized by the transglutaminase FXIIIa. Plasminogen,
activated by tissue-type plasminogen activator (tPA) into the
protease plasmin, can ultimately disassemble the fibrin aggregates
(Muszbek et al., 2011). Moreover, thrombin on the intact vessel
wall can inhibit itself: it binds to thrombomodulin and cleaves

TABLE 1 | List of the coagulation factors with their assigned Roman numbers and
the alternative names that are found in the literature.

Factor number Alternative name(s)

I Fibrinogen (fibrin zymogen)

II Prothrombin (thrombin zymogen)

III Tissue factor

IV Calcium

V Labile factor, proaccelerin

VI Unassigned (previously activated factor V)

VII Stable factor (proconvertin)

VIII Antihemophilic factor A

IX Christmas factor, antihemophilic factor B

X Stuart prowar factor

XI Plasma thromboplastin antecedent

XII Hageman factor

XIII Fibrin stabilizing factor

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 November 2018 | Volume 12 | Article 459

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-12-00459 November 23, 2018 Time: 10:56 # 3

De Luca et al. Neuro-Immune System and Brain Diseases

Protein C (PC) into its activated form (aPC) which, together with
Protein S and TFPI, inactivates FVa, FVIIIa and inhibits FXa,
thus limiting and quenching the process (Peraramelli et al., 2012;
Mosnier et al., 2014).

Moreover, on cell surface thrombin can trigger the
complement cascade (Hamad et al., 2010). Activated complement
receptor (CR)2 is present on resting platelets expressing GPIb, as
well as the iC3b binding on CR3, while C3a, C5a (the so-called
anaphylatoxin) and C4a are bound on human platelets (Cosgrove
et al., 1987). However, to inhibit spontaneous aggregation and
membrane attack complex (MAC) formation, it is pivotal the
expression of Factor H (FH) and thrombospondin type 1 (TSP-1)
(Mnjoyan et al., 2008). The important regulation of this system
has been demonstrated, for example, in the atypical hemolytic
uremic syndrome (aHUS), where the deficit of FH (genetic
or acquired) causes the triad: anemia, thrombocytopenia, and
uremia (due to acute renal failure) (Kavanagh et al., 2013).

NEURO-IMMUNE HEMOSTASIS AND
NEUROINFLAMMATION

The complexity of the neuro-immune system interaction starts at
the level of the neurovascular unit. This structure is composed
by the blood–brain barrier (BBB) elements (endothelial cells,
pericytes and the astrocytic foot endings) on the one side, and
neurons, glia and extracellular matrix (ECM) on the other side
(Muoio et al., 2014). All together, these elements (neurons,
glia, and ECM) constitute what has been well-described as the
tetrapartite synapse (Dityatev and Rusakov, 2011; Tsilibary et al.,
2014; De Luca and Papa, 2016, 2017).

This complex structure accounts for the immune privileged
properties of the brain and of the spinal cord (which has its own
blood–barrier BSCB) (Bartanusz et al., 2011). The efficacy of the
barrier is based on the innate immune properties of resident cells
(neurons and glia), which interact with pathogens, endogenous
(e.g., unfolded or misfolded proteins) or exogenous toxins, to
maximize the adaptive response and to reduce the collateral
damage (Medzhitov et al., 2012; Lampron et al., 2013). The
resiliency of the system strictly depends on a variety of proteins
that have been grouped for their functional role of neuro-immune
regulators (NIReg) and are expressed on both glial cells and
neurons (Bedoui et al., 2018).

NIReg are constitutively expressed on neurons and acts as
“Don’t eat me” signals for microglial cells that are maintained
in a resting state (such as the CD200, CD47, and CXCL1), or
they negatively regulate complement activation (CD59, CD46,
FH) (Bedoui et al., 2018) (Figures 1, 2). Moreover, resident cells
are able to repress deregulated cytokine activation through the
expression of Suppressor Of Cytokine Signaling (SOCS) that
interferes with the inflammatory-related activation of the JAnus-
Kinase (JAK)/Signal Transducer and Activator of Transcription
(STAT) intracellular polarizing pathway (Bedoui et al., 2018).

Thrombin, a crucial protein in this network, has been reported
to affect the behavior of CNS resident cells, such as neurons
(Olianas et al., 2007), astrocytes and microglia (Lin et al., 2013;
Beggs and Salter, 2016) in a dose dependent manner, with

adaptive changes at low dose and maladaptive modifications at
high concentration.

Of relevance for thrombin interaction with CNS resident
cells, endothelium, and immune cells, is the proteinase activated
receptor (PAR) family, G protein coupled receptors (GPCR)s
with four recognized members (PAR1-4). PARs can be activated
by a proteolytic cleavage of the extracellular amino-terminal
domain of their seven-transmembrane α-helix structure (Junge
et al., 2004; Wang et al., 2004; Luo et al., 2007; Traynelis and
Trejo, 2007; Vance et al., 2015). Thrombin (not complexed with
thrombomodulin), FXa, plasmin, and matrix metalloproteinases-
1 (MMP-1) canonically activate PAR1 on cell surface, unmasking
the tethered ligand with a proteolytic cleavage and causing its
internalization (Ye et al., 1994; Wittinghofer and Vetter, 2011).
Thrombin can alter neuronal viability through PAR-1 interaction,
since thrombin antagonists and pharmacological/genetic PAR-1
inhibitors increase neuroprotection (Rajput et al., 2014). PAR2,
instead, can be activated by low-concentration of trypsin. PAR3
is the only PAR with no function because of its short cytoplasmic
domain (Coughlin, 2005). Indeed, it can act as a cofactor for
other PARs to form heterodimers and amplify the variety of
intracellular transduction systems (Arachiche et al., 2013; Lin and
Trejo, 2013), perhaps by allosteric modification and interaction
with different G proteins (Gαq/11, Gαi/o, Gα12/13) (Ossovskaya
and Bunnett, 2004; McLaughlin et al., 2005). Non-canonical
cleavage by aPC also activates PAR1 (biased agonism) and
trigger a different intracellular pathway (Figure 1). The aPC
binds to the coreceptor endothelial PC receptor (EPCR) and
cleaves PAR1 (Riewald and Ruf, 2005), but does not induce its
internalization as being co-localized in caveolin-rich membrane
domains (Russo et al., 2009). Canonical-cleavage activates
Guanosine-triphosphatase (GTPase) rat-sarcoma protein (Ras)-
related protein-A (RhoA), while non-canonical cleavage (aPC-
mediated) stimulates GTPase Ras-related C3-botulinum toxin
substrate-1 (Rac1) through β arrestin (βarr2) and disheveled 2
(Dvl-2), usually associated to frizzled receptors (FZD) (Russo
et al., 2009; Soh and Trejo, 2011). Moreover, C4a has been
proposed as an untethered agonist for PAR1 and PAR4 acting
through Gαq-Phospholipase C (PLC) pathway that within
nanomolar concentrations can cause intracellular Ca2+ release
(Wang et al., 2017) (Figure 1).

NIReg also include serpins and thrombomodulin, which are
able to reduce the potential neurotoxicity of thrombin, mainly
mediated through tethered ligand activation of PAR1 signaling
(Buisson et al., 1998; Niego et al., 2011) (Figure 1). The
lipopolysaccharide (LPS), furthermore, stimulates the expression
of coagulation and inflammation factors in the hippocampal
microglia, but a sharp reduction of both inflammatory and
coagulation factors occurs when the thrombin-mediated signal is
inhibited (Shavit Stein et al., 2018).

Definitely, based on relevance of the neurovascular unit in
modulating neuro-immune hemostasis and neuroinflammation,
we propose that the neurovascular complex can be associated
with the tetrapartite synapse to form an ultimately unified
pentapartite synaptic model (Figure 2). This model might better
represent the complex and robust interplay between cellular and
molecular pathways of coagulation and the immune system, as
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FIGURE 1 | Molecular pathways of the neuro-immune hemostasis model. Cytokine activation of JAK-STAT tyrosine kinase receptor can be turned off by SOCS
expression and, together with the complement regulation and the biased activation of PAR-1/β arrestin (β arr2) (orange pathway), they enhance the adaptive
response. The canonical activation of PAR1, together with tyrosine kinase receptor activation and the fibrin deposition (blue pathway), accelerate maladaptive cellular
changes.

reported by in vitro or in vivo studies (Thornton et al., 2010;
Barbier et al., 2011). The analysis of the state of the art in this field
can partly reveal the pathophysiology of neuro-inflammatory
and neurodegenerative diseases, such as multiple sclerosis (MS),
cerebrovascular, Alzheimer, neoplastic and psychiatric diseases.

MULTIPLE SCLEROSIS

Multiple sclerosis is a demyelinating autoimmune inflammatory
disease affecting the CNS white matter. It lacks a commonly
recognized causative agent (idiopathic), and the multifactorial
interactions between environment and genetics are not
fully elucidated (Sawcer et al., 2014; Belbasis et al., 2015).
Though the pathophysiology of MS remains unknown, there is
morphological evidence of its inflammatory origin and of the
resulting neurodegeneration, moreover, therapies targeting the
inflammasome modify the progression of the disease (mainly the
relapsing-remitting phenotype) (Dahdaleh et al., 2017).

On the base of the clinical observation and the progression,
MS can be classified into two forms, relapsing-remitting and
progressive (primary or secondary) (Lublin and Reingold, 1996).
Inflammation with relatively preserved cell viability seems to be
the hallmark of relapsing-remitting early stages, is characterized
by clinical features that can affect the motor system (particularly
the pyramidal tract) or non-motor areas, depending on which
part of the CNS is affected by the demyelination. Every relapse

is followed by a spontaneous partial remission, ameliorated by
early therapy (Lublin and Reingold, 1996), while the progressive
forms, either the primary or the evolution of the initially
relapsing-remitting MS (secondary), are characterized by a
continuous neurodegeneration with almost ineffective therapy on
its progression (Lublin and Reingold, 1996; Feinstein et al., 2015).

Which is the key to understand the failure of the immune
system has been long debated. Inflammatory autoimmunity,
defined “horror autotoxicus” by Paul Ehrlich over a century
ago (Ehrlich, 1900), starts with the erroneous recognition of an
endogenous target as a threat, with the activation of resident cells
that present it to the immunity effectors. As discussed above,
the neurovascular unit should prevent inappropriate migration
of leukocytes from the bloodstream and protect the CNS. The
Trojan horse that could cause the BBB failure and allow the
specific T-cells diapedesis has not been identified yet, but a
putative role could be assigned to platelets activation and fibrin
depots in the CNS and other tissues (Hultman et al., 2014;
Joshi et al., 2016). These cellular and protein aggregates can be
produced by a minimal vascular damage or venous stasis, and
their pathological accumulation could produce a non-diffusible
and localized signal to mediate lymphocyte T helper (Th)1
migration and myelin targeting (Ryu et al., 2015). This hypothesis
is supported by the evidence of the occurrence of fibrinogen in
myelinated areas that correlates with T-cells invasion and IL-
12 mediated Th1 differentiation, macrophage activation through
CCL2 and CXCL10 and following demyelination (Lodygin
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FIGURE 2 | Cellular model of a pentapartite synapse. Common cellular pathways and cell-specific role within the neuro-immune hemostasis network.

et al., 2013). Antibodies directed to GPIb or GPIIb-IIIa reduce
the severity of the disease in an animal model, whereas
increased integrin αIIb gene (ITGA2B) mRNA has been found
in chronic lesions of MS patients (Lock et al., 2002; Langer
et al., 2012). Furthermore, in the autoimmune encephalomyelitis
model (EAE) it has been shown that depletion of fibrinogen
blocks T-cell activation, accelerating the coagulopathy-mediated
pathway (Akassoglou et al., 2004), where the presence of fibrin
or platelets are the erroneous triggering signal, allowing antigen
presenting cells to interact with lymphocytes and delete the
immune privilege property of the CNS (Lodygin et al., 2013).
Thrombin, in addition, can speed the process between platelet
activation and fibrin deposition (Figure 1) favoring the formation
of aggregates, and drive the leukocytes through release of
granular CCL3, CCL5, PF4 (CXCL4), and CXCL5 (Raphael et al.,
2015).

Platelet activation is associated with clinically assessed
worsening of MS, as demonstrated by the positive correlation
between the Expanded Disability Status Scale (EDSS) and the
level of Cyclooxygenase (COX)-1 activity, and the levels of
the eicosanoid thromboxane B2 (TBX2) in blood platelets
of MS patients (Morel et al., 2016). Furthermore, mediators
from platelet granules include growth factors (i.e., BDNF) and
chemokines involved, together with MMPs, in both hemostasis
and inflammatory progression (Morrell et al., 2014). Hence,
the initial vascular damage activates platelets and converts
fibrinogen. Platelets phenotype, at this point, is characterized by
low selectin expression and low-rate degranulation. The granule
content (PF4, serotonin, chemokines, cytokines, ADP, ATP,
etc.) is released more efficiently upon contact with astrocytes,

neuronal glycolipids and ECM (Sotnikov et al., 2013) (Figure 2).
The acute inflammatory response is not produced only by
the active degranulation; the expression of other proteins is
needed to activate the inflammasome. One of the main proteins
involved, and utterly the most studied, is Interleukin-1β (IL-
1β) synthesized on demand from a messenger RNA stored
inside platelets. IL-1β is secreted and found in occlusive thrombi
after vascular damage (before leukocyte incorporation) (Mancuso
and Santagostino, 2017). Moreover, the corresponding receptor
(IL1R) is expressed on the platelet surface, allowing an autocrine
self-sustaining feedback (Brown et al., 2013). Tumor necrosis
factor-α (TNF-α) also seems to be influenced by platelets
activation, since its depletion significantly reduces white cells
diapedesis during TNFα-mediated CNS phlogosis (Carvalho-
Tavares et al., 2000). TNF-α can induce cellular apoptosis or
contribute to chemokine generation and neurodegeneration
through necroptosis (Dhuriya and Sharma, 2018).

This unregulated process induces BBB leakage, antigen
presentation, activation of CD4 positive T-cells and their
differentiation into Th1 or Th17 (Starossom et al., 2015). During
later stages, the process is self-sustaining and platelets change
their phenotype, express a higher level of selectins and adhere
to T-cells or to antigen presenting cells, forming aggregates
(Starossom et al., 2015).

The pivotal role of the molecular components of the
coagulation cascade is confirmed by the protective action in
the EAE model exerted by the administration of both warfarin
and the non-vitamin K antagonist oral anticoagulant (NOAC)
rivaroxaban (direct inhibitor of FXa) (Stolz et al., 2017).
Thrombin can interrupt BBB integrity through PAR1 signaling;
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however, warfarin effect seems to be greater than rivaroxaban,
probably resulting for the interactions with other proteins of the
coagulation pathway, such as FVII (Coughlin, 2000, 2005). The
lysis of fibrin, furthermore, should inhibit microglia activation via
CD11b (part of CR3, encoded by ITGAM gene) and produce a
similar beneficial effect in the EAE model without the possible
detrimental side effect of warfarin due to the inhibition of the
aPC endothelial protective functions (Adams et al., 2007; Sarangi
et al., 2010). The protective role of aPC, however, is not a
linear process; it has been shown that the anticoagulant and
the intracellular signaling function of aPC are both essential
to exert neuroprotection. However, both the inhibition of the
endogenous aPC and the administration of exogenous aPC
ameliorated the EAE outcome (Alabanza et al., 2013). This seems
apparently controversial, but it can be explained because reduced
endogenous aPC can induce early leukocyte infiltration due to
BBB instability; at the same time, it increases CD11b positive
elements, interfering with T-cells differentiation, thus reducing
disease progression (Alabanza et al., 2013). Reduction of aPC is
effective only if it is induced before the disease onset (Alabanza
et al., 2013).

As the aforementioned CD11b positive elements confirm,
the complement system pathway is a prominent component of
the immune response and is entirely involved in inflammatory
autoimmune disease at various levels. The system plays a
pivotal role in essentially all immune-mediated processes, and it
made difficult, although intriguing, designing drugs targeting its
components. Complement proteins can act through three main
activation pathway: classical, lectin and alternative pathway, all
at the end forming the MAC complex with the elimination of
target cells (Horstman et al., 2011). A coding variant in the C3
gene (C3R102G) reduced C3 activity and affected white/gray
matter damage that is related to increased cognitive dysfunction
in MS patients (Roostaei et al., 2018). Detrimental effects of
complement interference can be overcome through inhibition at
the lower level of complement activation cascade (e.g., C5). This
strategy may reduce detrimental inflammation without affecting
previous signaling steps. Hence, Eculizumab an inhibitor of C5,
already approved for treatment of the paroxysmal—nocturnal
hemoglobinuria (PNH), and of the aHUS (Marti-Carvajal et al.,
2014; Cofiell et al., 2015) is undergoing phase III clinical trial
for another autoimmune demyelinating disease of the CNS, the
neuromyelitis optica (NMO) either for prevention or relapses
forms1. NMO with dominant involvement of optic nerves and
spinal cord has been previously considered as a variant of MS.
Nowadays, it is considered a distinct disease (Trebst et al., 2014)
and even though it can lead to a more early disability, there
are few approved therapeutic protocols (Trebst et al., 2014).
Furthermore, human post-mortem study has demonstrated that
neurons from patients with progressive MS express a higher
level of PAR1 and are exposed to granzyme B and IL-1β,
inflammatory mediators that could at least partially explain by
their neurotoxic effect the progressive related cortical atrophy
(Lee et al., 2017).

1https://clinicaltrials.gov/ct2/show/NCT01892345

CEREBROVASCULAR DISEASES

The link between coagulation and cerebrovascular diseases
seems causative, however, recent findings confirm the pivotal
role of the coagulation/immune pathways during the plastic
remodeling following or associated to the acute event. After an
ischemic and hemorrhagic stroke, cortical synaptic remodeling
is largely biased by a maladaptive response accounting for
about 10% of epileptic seizures in elder (Maggio et al., 2008;
Procaccianti et al., 2012; Guth et al., 2014). Moreover, the
efficacy of thrombolysis and the current guidelines for the
management of acute ischemic stroke (AIS) have rapidly reduced
the acute mortality rate. Nowadays, the main social burdens and
future challenges concern prolonged hospitalization, ineffective
rehabilitation program, disability, and the epileptic sequelae
(Szaflarski et al., 2008; Burneo et al., 2010; Tsivgoulis et al.,
2014; GBD, 2016). Studies on human platelet activation focused
on platelet ultrastructure and plasma levels of PF4, thrombin–
antithrombin complex, fibrinogen and other biomarkers in
patients with AIS, and during the chronic phase or with
atherosclerosis (without stroke) compared to healthy subjects
(Kurabayashi et al., 2000). Data are compatible with platelet
pre-activation in atherosclerotic patients, similar but lower
compared to patients with AIS or chronic phase. Pre-activated
platelets showed a higher density of pseudopods and vacuoles
(Kurabayashi et al., 2000, 2010). The endothelial damage
reported in atherosclerosis, combined with a pre-activated state
of platelets, is the most plausible factor for inflammatory-
mediated CNS damage that accelerates the major hypoxic
injury.

Astrocytes and other glial cells play a key role in the
rearrangement of the neurovascular unit. They react to
inflammatory stimuli by expressing chemokines (CXC and CC
type) (García-Berrocoso et al., 2014). The CCL20, expressed
only by astrocytic cells, is essential for the recruitment of white
cells to the CNS (Ambrosini et al., 2003). The concentration
of CCL22 is reduced in the damaged brain tissue and in the
bloodstream following AIS and is associated with poor stroke
outcome (García-Berrocoso et al., 2014). The CCL22 receptor
CCR4, expressed on Th2 cells can shift the inflammatory
response toward an adaptive deregulation, suppressing Th1-
polarized response. This is supportive for a protective immune
response, initiated during the acute ischemic event and lasting for
some time (Theodorou et al., 2008). Microglia express C1q during
transient ischemic attack and deposits of C3d and C9 have been
reported on neuronal cells after traumatic concussion (Pasinetti
et al., 1992; Schafer et al., 2000; Schultz et al., 2005). Depletion
of the complement factor, C1q deficiency, and C1-inhibitor
expression (Figure 1) are neuroprotective too, improving
blood flow and neurological recovery after transient ischemia,
and reducing the intracerebral edema following hemorrhage
(Vasthare et al., 1998; Xi et al., 2001; Ten et al., 2005).

According to these data, complement levels in the
cerebrospinal fluid (CSF) are elevated following AIS and
correlate with BBB failure. C1q, C3b, and C3d have been found
close to the ischemic penumbra (Lindsberg et al., 1996; Pedersen
et al., 2004; Schultz et al., 2005). All these data show the putative
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FIGURE 3 | Network analysis using the string.org platform for protein–protein interactions (PPIs) which integrates Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) database. The databases query demonstrates the solid neuro-immune hemostatic network with the pivotal hubs strictly
interconnected and the expandable hub-spoke associations. Four input proteins (F2, C3, ITGAM, GP1BA) with 14 nodes and 23 edges (minimum required
interaction score: highest confidence 0.900; PP1 enrichment p-value of 0.00103). C3, complement component 3; CD, cluster of differentiation; CFH, complement
factor H; CR1, complement component (3b/4b) receptor 1; FG, fibrinogen: alpha (FGA) or gamma (FGG) chain; F2, thrombin; F2R, protease-activated receptor-1
(PAR-1); ITGAM, integrin αM (C3 receptor 3 subunit); THBD, thrombomodulin; SERPINC1, serpin peptidase inhibitor, clade C member 1 (antithrombin III);
SERPIND1, serpin peptidase inhibitor, clade D member 1 (heparan cofactor).

role of complement activation in tissue recovering after AIS, thus
offering new perspectives on the role of complement during the
postictal plastic reorganization.

Thrombin effects depend on its concentration: the increase
produces an adaptive-maladaptive gradient (Maggio et al., 2013c;
Becker et al., 2014; Ben Shimon et al., 2015; Bushi et al.,
2015; Garcia et al., 2015). Following AIS in the surrounding
non-ischemic tissue, thrombin concentration is high; this could
influences the recovery in the ischemic penumbra. In the PAR1
null animal model, a reduction of the ischemic area and repair
in the postictal phase has been reported (Hamill et al., 2009).
Drug inhibition of PAR1, or its knockdown, restores the impaired
synaptic plasticity and neurotransmission in hippocampal slices
exposed to oxygen and glucose deprivation (OGD) (Stein et al.,
2015). Thrombin is produced in the brain and its concentration
alters the homeostatic behavior in both pathology and physiology
(Ben Shimon et al., 2015). In OGD and transient medial cerebral
artery occlusion (TMCAO) models, the levels of endogenous
thrombin and FX are elevated; this affects synaptic function and
alters the coagulation process (Bushi et al., 2015; Lenz et al.,
2015; Stein et al., 2015). Thrombin in the perilesional area can be
derived by the brain tissue itself or by the bloodstream following
to BBB failure. However, how endogenous thrombin is involved
in the AIS or ischemic chronic phase remains not completely
understood.

One hypothesis is that impairment of inhibitory
neurotransmission by γ-aminobutyric acid (GABA), or by
increased paired-pulse facilitation (PPF) also known as neural
facilitation, would partially account for post-ischemic epileptic
seizure (Maggio et al., 2008, 2013a,b; Ben Shimon et al., 2015).
PPF is reduced by the administration of PAR1 antagonist or
diazepam (GABAergic drug) (Bushi et al., 2015). PAR1 receptor
sensitivity to different G proteins activation in different brain
areas (or PAR1 partial activation) could be a good premise to
explain the thrombin-dose related effects (McCoy et al., 2012;
Maggio et al., 2013b). Hence, thrombin should be considered at
least one of the triggers of the stroke-dependent seizures. This
is a real perspective to pursue a therapeutical PAR1 inhibitory
approach to treat epilepsy, not necessarily related to stroke. In
the paradigm of PAR1 partial activation, a potential target is
aPC; it efficiently interferes with inflammation, by promoting
vascular integrity and sustaining the neuronal cells viability,
thus improving the post-ischemic outcome (Cheng et al., 2003).
We previously reported that BBB stability and endothelium
integrity are mediated by aPC and PAR1 pathway (De Luca et al.,
2017); furthermore, the aPC improves synaptic plasticity during
rehabilitation, probably through EPCR/PAR1/Sphingosine1-
phosphate receptor1 (S1P1R) intracellular activation (Maggio
et al., 2014). S1P1R modulation with FTY720 (Fingolimod)
receptor agonist, or with a novel more specific receptor agonist
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(RP101075) have shown to improve the clinical outcome of AIS
and intracerebral hemorrhage (ICH) in animal models (Liu et al.,
2013; Sun et al., 2016). Fingolimod, being approved as treatment
for MS (for its immunosuppressive properties) reduce the
capability of lymphocyte infiltration of CNS, reduce perilesional
edema, preserve the neurovascular unit and polarize microglia
toward the attenuated neuroinflammatory polarization through
the STAT3 pathway (Sun et al., 2016; Qin et al., 2017).

A recent phase 2 clinical trial with Fingolimod in AIS
has been completed2and another trial combinating Fingolimod
with Alteplase bridging with Mechanical Thrombectomy in
Acute Ischemic Stroke (FAMTAIS) is ongoing3 . Whether
this mechanism involves neurons or astrocytes PAR response
is still debated, however, the co-localization of EPCR and
PAR1 in specific brain areas (as hypothesized), mainly in the
hippocampus, has been shown (Maggio et al., 2014). These
reported data suggest that developing S1P1R agonists and
thrombin inhibitors acting on PAR1 specific signaling, combined
with the progress of thrombolytic therapies (or mechanical
thrombectomy), will reduce both AIS lethality and post-
ischemic hospitalization. Indeed, it is compelling to define the
pathophysiology underlying the reparative processes of ischemic
tissues and the perilesional area, having special attention to the
neuro-immune coagulation pathways.

ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is a degenerative, gradually progressive,
irreversible form of cognitive degeneration, recognized as the
most diffused type of dementia (Reiman, 2014), and responsible
for up to 60–80% of an estimated population (in 2010) of
35.6 million people worldwide affected by cognitive decay
(Reitz et al., 2011; Mayeux and Stern, 2012). Gaetano Perusini
and Alois Alzheimer firstly described AD at the beginning of
the 20th century (Macchi et al., 1997) with their studies on
AD anatomopathological hallmarks represented by amyloid-
β (Aβ) plaques and neurofibrillary tangles (aggregates of
hyperphosphorylated tau protein), cortical atrophy and gliosis
(Papa et al., 2014; Reiman, 2014). The classical phenotype of AD
is called hippocampal type and is characterized by progressive
and disabling loss of memory function, with an amnestic
syndrome selectively compromising episodic memory during
early stages (Dubois et al., 2014). AD variant phenotypes include
diseases affecting primary cognitive function other than memory,
with apraxia, loss of visual identification or aphasia (respectively
biparietal, occipitotemporal, or logopenic variant) (Dubois et al.,
2014). Advanced neuroimaging or biomarkers (mostly in the
CSF) based on Aβ or tau proteins and genetic profiling searching
for causative mutations of presenilin1/2 or amyloid-precursor
protein (APP) and risk factors such as apolipoprotein-E ε4 allelic
variant now facilitate clinical diagnosis (Dubois et al., 2014). We
need to find, as Perusini speculated, “[. . .] a noxious agent, which
causes the whole disease, also acts on the blood vessels or equally

2https://clinicaltrials.gov/ct2/show/NCT02002390
3https://clinicaltrials.gov/ct2/show/NCT02956200

damages both the neuron and the blood vessels” (Macchi et al.,
1997).

Platelets are pivotal and pleiotropic in the regulation of
inflammation and repair processes. In AD they might play a role
in the proteolytic processing of APP by carrying a disintegrin
and metalloproteinase (ADAM)17 (Skovronsky et al., 2001; Evin
et al., 2003) or by favoring the complement cascade initiation.
ADAM family proteins are transmembrane proteases that can
perform the so-called α-cleavage on APP (Siegenthaler et al.,
2016). A-cleavage prevents Aβ formation by inhibiting APP
sequential cleavage by an aspartyl protease called BACE1 (β site
APP cleaving enzyme 1) and by the γ-secretase with the following
release of amyloid peptides of different lengths and aptitude for
plaque formation (Aβ-38, Aβ-40, Aβ-42) (Siegenthaler et al.,
2016). The link between AD and complement proteins has been
proposed after the deposition of C proteins was shown inside Aβ

plaques. Subsequently, it was reported that amyloid itself could
activate the complement cascade, even without the involvement
of antibodies (as pattern recognition of damaged-self) (Salminen
et al., 2009). This mechanism, overcoming the NIReg protective
function, is functional in the general circulation, mediated
by C3b and CR1 on erythrocytes. Furthermore, the genetic
association between complement receptors or regulators (CR1
and clusterin) and AD has been suggested, opening the more vast
scenario involving inflammatory regulators, lipid metabolism,
complement, and platelets in the development of the disease (Jun
et al., 2010). It has been demonstrated a coordinated involvement
of clusterin, involved in complement-mediated cell lysis (also
known as apolipoprotein j) (Figure 1), phospholipase-A2 (PLA2)
and platelet-activating factor (PAF) (Osborn et al., 2007; Jun
et al., 2010; Sanchez-Mejia and Mucke, 2010). The deficit of
the early stage complement factors (e.g., C3) in AD mouse
models has been shown to increase deposits of Aβ and accelerate
the disease progression, probably due to a neuroprotective role
played by the complement in clearing the plaque in the early
phases of their formation (Wyss-Coray et al., 2002; Maier et al.,
2008). These data must be considered with a caveat since the
AD transgenic mouse model has been considered deficient
in fully mimicking the human AD pathophysiology (Schwab
et al., 2010). However, the immune system, considering the
toll-like receptors (TLRs) or nucleotide-binding oligomerization
domain (NOD)-like receptors and cytokines release, seems to
share a common network with immune cells, complement and
coagulation cascade through the damage-associated molecular
patterns (DAMPs) recognition (Salminen et al., 2009).

Thrombin and the DAMP high-mobility group box protein 1
(HMGB1) have been associated to impaired memory formation
acting cooperatively on the neuro-immune pathway, disrupting
the neurovascular unit (Festoff et al., 2016). HMGB1 in particular
seems to act via TLR4 and the receptor for advanced glycation
end product (RAGE) impairing memory in an animal model
(Mazarati et al., 2011).

Chronic vasculopathies and hypoxic damage have been
reported in AD patient, along with fibrin depots in both
capillaries and large vessels without the typical ischemic
stepladder progression of the vascular dementia (Mazza et al.,
2011). Besides the vascular hypo-perfusion and/or blood stasis,
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the fibrin deposition could play a signaling role in sustaining
CNS inflammation and BBB failure, along with tight-junction
digestion and ECM remodeling following blood cell invasion
(Mosesson, 2005).

Considering Aβ deposition as a putative mechanism triggering
the self-generating, self-sustaining degenerative process, and
a DAMP itself prompting the immune system, Aβ-mediated
expression of MMP-9 could alter the neurovascular unit and
partially account for the intracerebral amyloid angiopathy (CAA)
and the spontaneous parenchymal hemorrhages that almost
constantly accompany disease progression (Hartz et al., 2012).
Thrombin and FXIIIa are constituents of Aβ deposits in the
vessel walls in CAA, suggesting a local activation mediated by
amyloid, while FXIIIa can also form complexes with Aβ (both
Aβ-40 and Aβ-42 fragments) by a mechanism that is independent
of the binding site employed during fibrin ligation, and Ca2+

dependent (de Jager et al., 2015).
High thrombin concentration has a neurotoxic effect on

microvessels of AD patient and can induce astrocytes apoptosis
and BBB disruption followed by edema and blood leakage (Thal
et al., 2008; Hartz et al., 2012; Schneider, 2016). Aβ-42 itself
can be considered as a thrombin activating factor through FXI
and FXII sequential activation, as shown in response to Aβ-
42 oligomers (Zamolodchikov et al., 2016). This process further
involves C1 inhibitor that can block FXIa, FXIIa, and kallicrein,
endorsing the integration of the neuro-immune hemostatic
model (Zamolodchikov et al., 2016). This thrombotic effect
could be counterbalanced by soluble (s)APP expressing several
Kunitz-type protease inhibitory domains, being able to block the
protease functionality of coagulation factors at multiple levels
(Ben Khalifa et al., 2012). The sAPP is produced during the
Aβ-42 formation with a substantial possible balance between
activation/repression of hemostasis. However, accumulation of
one of these two fragments in several areas of CNS and blood
vessels can account for the spotty aspects of thrombosis and
hemorrhage, thoroughly described in the pathophysiology of the
AD (Ramanathan et al., 2015). Protease nexin 1 (PN1) is a potent
thrombin inhibitor released by glial cells that has been found
extremely reduced and complexed with thrombin in AD patients,
although its activity in Aβ depots was increased, probably due
to the excess of thrombin (Vaughan et al., 1994; Baloyannis,
2015). Thrombin effects in AD, however, seem to be essentially
regulated by PAR-1 through Gi/phosphatidylinositol-3 kinase
(PI3K) signaling (Voss et al., 2007) and MMP-9 upregulation to
prompt pathological effects on cells, endothelium, and ECM (Lin
et al., 2014). Furthermore, MMP-9 activity is induced by plasmin,
which converts pro-MMP-9 to active MMP-9. In addition to
its effect on other ECM components, MMP-9 is involved in
the degradation of nerve growth factor (NGF), a neurotrophin
essential for development and function of cholinergic and other
NGF-responsive neurons (Cuello et al., 2009; Cirillo et al., 2016).
On the other hand, the tPA-plasmin system itself regulates
the processing and maturation of pro-NGF and pro-BDNF to
their corresponding mature forms (Lee et al., 2001; Pang et al.,
2004; Bruno and Cuello, 2006; Colangelo et al., 2012). This
implies that, in addition to the transcriptional events regulating
neurotrophin levels (Colangelo et al., 2004), both thrombin

and the tPA-plasmin system play a pivotal role in modulating
neuronal differentiation and the structural changes linked to
activity-dependent plasticity or Aβ toxicity.

NEOPLASTIC DISEASES

Neoplasm developing inside the skull may be subdivided in
primary lesions developing from resident cell clones (astrocytes,
meninges, pituitary gland, bone or vascular structures, neurons
or embryonic remnants) and secondary brain tumors, originating
from systemic tumor metastasis, which are the most common (de
Robles et al., 2015). The primary lesions from lung, breast cancers
account for the 75% of metastasis, while melanoma, testicular
and renal carcinomas are rare, but most likely tend to metastasize
to the brain (Gallego Perez-Larraya and Hildebrand, 2014). The
overall incidence of all brain tumors worldwide is 25.48 cases per
100,000 person (de Robles et al., 2015).

Several reports have shown a role of activated platelets in
inflammatory chronic processes and metastatic cancer (Nurden,
2011). Platelets in metastatic cancer patients change the
expression of VEGF, PF4 and TSP-1 with increase of platelet
number and marks of persistent activation (Wiesner et al., 2010).
VEGF is increased, while PF and TSP-1 are reduced, raising
multiple hypotheses for the differentially released mediators, the
platelets protein scavenging function, or the modulation of the
megakaryopoiesis (megakaryocyte maturation and subsequent
platelet formation from the common hemopoietic stem cell)
(Geddis, 2010). It has been shown that platelet depletion, or
the block of platelet surface receptors, decreases metastasis
formation and tumor-platelets aggregates in animal models. This
correlation between platelets and tumor metastasis is the shield
hypothesis (Erpenbeck and Schon, 2010).

Embolization of tumor cells covered by platelets could be one
of the ways for cancer spreading. Platelets may be an anchorage
system by their subendothelial receptors and integrins (such
as P-selectin, GPIb, αIIbβ3) to breakdown the neurovascular
unit and defeat the ECM resistance through MMPs secretion,
producing a shield against the immune system, releasing
transforming growth factor beta (TGF-β) and inhibiting natural
killer cell antitumor reactivity (Kim et al., 1998; Kopp et al., 2009).
Tumor cells can promote thrombocytosis by interfering with
the megakaryocytopoiesis or by releasing unknown inflammatory
cytokines (Falanga et al., 2009). Cancer produces a well-known
hypercoagulability state and thrombin can promote cancer
growth and VEGF release supporting the vascular net growth
in the expanding mass (Falanga et al., 2009). Platelets factors
also play intriguing roles in promoting metastasis and favoring
angiogenesis through VEGF release. Although platelets express
anti-angiogenic factor, such as TSP-1, PF4 and endostatin
(Zaslavsky et al., 2010), they are the main serum sources of
these mediators (Browder et al., 2000; Folkman et al., 2001). In
the recent years, extensive literature has been produced on the
increase of these proteins in cancer, aiming to define whether
it is specific of the early cancer stages or regulating tumor
growth, however, the precise mechanism underlying metastasis
and neuro-immune system crosslink remains to be explained
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(Nurden, 2011). From this perspective, the C-type lectin-like
receptor 2 (CLEC-2)A plays a key role in mediating tumor
interactions; it binds to podoplanin, physiologically expressed on
kidney podocytes and lymphatic endothelial cells, protecting the
tumor from the immune system aggression and inducing platelet
aggregation and tumor metastasis progression (Suzuki-Inoue
et al., 2007).

Gliomas are the most common primary CNS tumors
(Louis et al., 2016). They are classified, by the World Health
Organization (WHO), by their molecular markers, the biological
activity and the histologic features, from grade I (non-malignant
and slowly-growing associated with long-term survival) to grade
IV (very aggressive malignant tumors, with fast-rate growing and
short patient survival) (Popova et al., 2014; Louis et al., 2016). In
adults, the glioblastoma multiforme (GBM) is the most frequent
grade IV glioma characterized by highly infiltrative mass, with
diffuse necrosis inside, highly infiltrative nature and whole brain
diffusion, marked angiogenesis, apoptosis deregulation, and high
genetic instability (Popova et al., 2014; Louis et al., 2016).

Thrombin levels into the lesion are very high, with a typical
co-occurrence of thrombosis and hemorrhage that could in
some extent favor the uncontrolled dissemination and growth
of the malignant mass (Le Rhun and Perry, 2016; Mihara
et al., 2016). The transduction-signaling pathway of thrombin,
in these circumstances, is essentially by the canonical activation
of PARs. Activation of PAR2, the lower affinity receptor, is
possible, due to its high concentration found in brain tumor and
following a vascular injury (Mihara et al., 2016). The putative
PARs transactivation and dimerization could affect several cell
functions by multiple transduction signals, still unknown but a
promising gateway to design new therapeutic strategies (Mihara
et al., 2016).

Tumor gene instability causing the development of cancer,
whatever is the underlying mechanism or causative gene,
leads to an altered cell proliferation/apoptosis ratio with the
immortalization of a cellular clone. This process is, at final
steps, regulated by mitogen activated protein kinases (MAPK),
mainly extracellular signal–regulated kinase (ERK)1 and ERK2
(Nicole et al., 2005; Carmo et al., 2014). The intracellular
transduction pathway seems to be cell-type related; however,
the PI3K/PLC/PKC transduction can be considered as the
key player (Wang and Reiser, 2003). PAR1, is even in these
circumstances the crucial thrombin receptor and its expression,
well-investigated in metastatic tumor, seems to be correlated
to the tumor grading and invasiveness (Zhang et al., 2011),
thus opening the research for future development of targeted
chemotherapies (Kirwan et al., 2016). PARs can react with
platelets beyond the tumor cells site. Platelets recognize also
normal resident cells, not involved in the neoplastic process, and
exert a neurotoxic effect on the healthy tissue, whereas tumor
cells, expressing platelet receptors (mimicry phenomenon) can
activate mitogenic pathways through the interaction between
thrombin and PAR1-4 (Sotnikov et al., 2013; Wojtukiewicz et al.,
2016). Surprisingly thrombin, at the site of the lesion, may
mediate a protective role in a concentration independent manner.
The protease can process the esophageal cancer related gene 4
(Ecrg4) having a chemotactic property for myeloid cells and can

activate a host-versus-cancer pro-inflammatory reaction, slowing
tumor growth (Lee et al., 2015), hastening the neuro-immune
response. Ecrg4 that could in principle be the switch between
thrombin adaptive/maladaptive changes and a key node in the
neuro-immune activation is indeed downregulated in the high
grade gliomas (Gotze et al., 2009).

Thrombin is involved in the persistent release of growth
factors, as discussed for VEGF and tumor neo-angiogenesis (Hua
et al., 2005). Fibrin, stabilized by FXIIIa is one of the proposed
mechanism of the immunological masking (Walter et al., 2012).
Kallicreins (Drucker et al., 2015), and specifically kallicreins 6-7-
9, are also associated with poor survival in patients with GMB.
How these serine proteases directly promote tumor cell survival
need to be revealed, however, kallicrein 6 induces resistance to
radiation and chemotherapy (temozolomide) in glioma cells by a
PAR1 dependent mechanism (Drucker et al., 2013, 2015).

The TF, the principal initiator of coagulation, is also
upregulated in gliomas and perilesional tissues (Walter et al.,
2012; Le Rhun and Perry, 2016), hence being the activator
of many thrombin-related toxic effects. Microglial activation
has harmful effects on neurons and astrocytes (Zimmer et al.,
2010) when exposed to high-level of thrombin and the reaction
is characterized by intra and perilesional edema and altered
leukocyte infiltration (Walter et al., 2012) or complement
activation (Horstman et al., 2011). The complement system has
been historically correlated to the cancer destruction mediated
by the innate immune system, but it has been reported that a
component of the system can promote the growth of malignant
tumors (Markiewski and Lambris, 2009). The occurrence of C3
and C5b-9 complex depots in patients with GBM suggests the
involvement of these proteins in the cancer process, even though
serum level of complement system does not correlate with patient
survival (Bouwens et al., 2015).

PSYCHIATRIC DISEASES

Mental health has many definitions. The WHO recognizes the
“state of well-being” as the possibility to realize the person’s
potential, resilience to the normal life stressors and, based on the
social nature of our species, it emphasizes that for mental health
recognition a person should make a working contribution to the
community (Manwell et al., 2015). The absence of mental health,
without detectable macroscopic organic lesion, is the domain
of psychiatric diseases. The most treated and frequent disorders
are unipolar depression, bipolar disorder, schizophrenia, and
substance use disorders (addiction). Depression, expressed to
a great extension among the population, is strictly related
to blood coagulation disorders and complement activation
(Thombs et al., 2006; Dantzer et al., 2008). The incidence
of this disease grows from the 5% of the population up to
20% in subjects following ischemic heart diseases; moreover,
cardiovascular diseases represent an independent risk factor for
major depression (Forrester et al., 1992; Frasure-Smith et al.,
1993; Thombs et al., 2006).

There are many variables to take into consideration when
relating infarcts and depression. Obviously, scarce therapy
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compliance and negative habits (e.g., smoking, physical
inactivity, dietary high calories intake) may influence both
diseases; however, the role played by the underlying molecular
pathways must be taken into account (Nemeroff and Musselman,
2000; Parissis et al., 2007). A 20-year study has shown that men
which were hostile and prone to anger or depression had a
complement system hyper-activation with the increase of C3,
that could favor an ischemic heart disease. The study results were
standardized for age, alcohol intake, and body mass index (BMI)
(Boyle et al., 2007).

The relation between C3 increase and heart diseases has
been confirmed in both myocardial infarctions and stable angina
pectoris (Yan et al., 2016). In a mouse model of depression
the levels of glial protein S100B and C3 has been found
significantly lower in the amygdala, hippocampus, hypothalamus,
prefrontal cortex, and striatum in control and after peripheral
LPS administration (Strenn et al., 2015). The role of C3 in
the development of CNS has been studied in C3 deficient
mice; they showed reduced immature synapse elimination and
development of aberrant neuronal networks (Stevens et al., 2007).
In schizophrenic patients, in comparison to bipolar patients
and healthy subjects, the C3 and C4 serum concentrations
and their hemolytic properties were decreased (Spivak et al.,
1993). A pathway proteomic profile of ischemic stroke survivors
with mild depression showed that both lectin and the classical
pathway of complement activation are downregulated and the
phenomenon is associated with depressive symptoms (Nguyen
et al., 2016). C3 is pivotal for the entire process; it is required
for both lectin and classical activation of complement and for
immune system regulation.

Platelets are the putative intriguing link interlacing mental,
immune system, and coagulation-related disorders. These
elements pivotal in the coagulation and complement cascade
are the main reservoir of systemic serotonin. Indeed, their
hyperactivity could explain both ischemic and depressive
disorders (Nemeroff and Musselman, 2000; Musselman
et al., 2002). Patients affected by major depressive disorder
(MDD), matched with healthy subjects, showed increased
platelet activation and expression of GPIIb-IIIa and P-selectin
(Musselman et al., 1996). Platelets BDNF-containing granules
were decreased in MDD, which could account for the limbic
cortical thickness reduction (Duman and Monteggia, 2006;
Liu et al., 2012). Treatment with the Citalopram, a selective
serotonin reuptake inhibitor (SSRI), normalized BDNF level.
Additionally, a single nucleotide polymorphism (SNP) of BDNF
has been frequently associated with MDD, bipolar disorder (Sen
et al., 2003), and coronary heart disease (Bozzini et al., 2009).
It has been reported that the physiological response of platelets
to thrombin is increased in manic, compared to depressed
or schizophrenic patients, via a PKC modulated pathway
(Wang et al., 1999). Mental health disorders are generally
associated to a pro-coagulatory activity showing fibrinolytic
residues in the general circulation (this is partly reversed by
the therapy) (Schroeder et al., 2007; Geiser et al., 2011). The
methylenetetrahydrofolate reductase (MTHFR) gene variant
C677T, involved in the one-carbon metabolic pathway which
is essential for DNA biosynthesis and the epigenetic process

of DNA methylation, a cardiovascular and ischemic stroke
independent risk factor, has been associated with schizophrenia,
bipolar and unipolar depressive disorder (Peerbooms et al., 2011;
El-Hadidy et al., 2014).

Psychoactive drugs interact with the CNS reward system and
cause a substance abuse disorder (also known as addiction)
interfering with the fine neurotransmitters balance (Goldstein
and Volkow, 2002). Substance abuse disorder is a self-
maintaining disorder with the dismal capacity of compulsive
seeking repression, which overcome self-preserving mechanisms
and the judgment of risk-taking (Hyman and Malenka, 2001).
The social burden and the danger, deriving from the incapacity
of measuring the negative outcome of actions, make addiction
devastating, especially when it evolves in a chronic condition
with the failure of the scarcely available treatments (O’Brien,
2011). Opiate abuse has been related to the deficiency of
blood coagulation cascade with an increased fibrinolysis and
higher levels of α2-macroglobulin (Ceriello et al., 1985).
Morphine, methamphetamine, and nicotine increase the release
of dopamine in the nucleus accumbens and activate post-synaptic
dopamine receptors D1 (D1R). D1R activates cAMP/PKA
pathway and extracellular enhancement of tPA activity in the
nucleus accumbens that regulates dopamine release through
PAR1 and is involved in the double mechanism of reward
and dependence (Ito et al., 2007; Nagai et al., 2008). Ethanol
addiction and withdrawal further enhance tPA activity. This
mechanism is not plasmin-PAR1 mediated, but it produces the
overexpression of NR2B subunit of the N-methyl-D-aspartate
receptor (NMDAR) without intermediate proteolytic activity.
Ethanol could inhibit the glutamate receptor whose expression
is compensatively increased, until a rapid decrease of ethanol
levels relieves the inhibitory tone on the overexpressed NMDAR
population, leading to withdrawal symptoms and even seizures
(Pawlak et al., 2005; Nagai et al., 2008).

PERSPECTIVE

Experimental and clinical reports unequivocally correlate the
coagulation with the immune system and neuroinflammatory,
degenerative, ischemic, proliferative, and functional disorders
of the CNS. Platelet-derived, complement and clotting factors,
CNS resident cells and protease intracellular signal transduction
can modify the neurovascular unit integrity and recruit
leukocytes at the site of the damage (Figure 2). Circulating
coagulation proteins, complement and immune cells interact
with several messengers and with each other to provide an
active continuous scavenging activity, promptly correcting the
structural or functional failures that constantly jeopardize the
CNS homeostasis.

Central nervous system elements are partially protected by the
immune privilege guaranteed by the BBB, through a constantly
and actively filtering operated by endothelium, astrocytes,
pericytes, and ECM. However, they express all the potential
ligand and receptors to react actively to external damage. The
chronicity of this reaction, mediated by both endogenous as
exogenous elements can partly account for the switch between
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a remedial adaptive plasticity to the damage and a maladaptive
rewiring of the CNS with disruption of synaptic stability and
aberrant formation of newly deposed ECM. In the neuro-
immune hemostasis framework concurring to CNS pathology,
the coagulation and the immune system are cooperative in
pathophysiological conditions, specifically after the BBB failure.

The analysis of literature data on cellular-protein-interactions
involved in neuro-immune hemostasis allows designing a
proposal for the main protein-hubs of this network formed
by three fundamental nodes and one internode (Figure 3).
The first node of the network is thrombin with activation of
PAR-1 in a dose-dependent manner; the second node is C3,
linking coagulation, synaptic plasticity and immune system; the
third node is GPIb, essential for activated platelet anchorage,
coagulation processes, thrombin activation and C3 activation.
The internode is represented by αMβ2 integrin (part of the CR3)
connecting the second and the third node of the network.

To better understand how to favor the maintenance of the
remedial adaptive plasticity, which would have a clear therapeutic
interest for several pathological conditions, it would be useful
to construct predictive molecular models, like the proposed
network. The perspective is to be able to enlighten the regulating
logic of the complex molecular network of Figure 3, which
belongs to different cellular domains (neurons, astrocytes, BBB,
and blood cells).

Several types of mathematical models have been described in
the literature to analyze complex patho/physiological functions.
The more immediate tool is offered by network analysis (Loscalzo
et al., 2017), which builds on protein–protein interaction map
(PPI), performed at genome-wide level. For several diseases it has
been reported where the nodes of the network under examination
(in our case those of Figure 3) cluster on the general PPI map.
In this way, it would be possible to ascertain which basic cellular

functions interact with the cluster under investigation. It would
be of interest, for instance, to know whether one of the nodes in
Figure 3 interacts with mitochondrial metabolism, autophagy or
apoptosis.

Other possibilities are offered by dynamic systems biology
models (Abudukelimu et al., 2018; Barberis et al., 2018), whose
computational analysis has been able to shed some light on
the regulatory logic governing either inflammation response or
T cell differentiation. It is expected that the interactions of
computational models and new experiments, suggested by the
model predictions, will be able to elucidate the fine structure
of molecular events generated by blood coagulation and neuro-
immune response in several CNS diseases, thereby opening the
way to more effective treatments.
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