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Synapse loss has detrimental effects on cellular communication, leading to network
disruptions within the central nervous system (CNS) such as in Alzheimer’s disease (AD).
AD is characterized by a progressive decline of memory function, cognition, neuronal
and synapse loss. The two main neuropathological hallmarks are amyloid-β (Aβ) plaques
and neurofibrillary tangles. In the brain of AD patients and in mouse models of AD several
morphological and functional changes, such as microgliosis and astrogliosis around Aβ

plaques, as well as dendritic and synaptic alterations, are associated with these lesions.
In this review article, we will summarize the current literature on synapse loss in mouse
models of AD and discuss current and prospective treatments for AD.
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SYNAPSE LOSS IN NEURODEGENERATION

Synapse loss has harmful effects on cellular communication, leading to network disruption in the
central nervous system (CNS). The communication of billions of neurons within the mammalian
brain generates and controls memory, thoughts and emotions. In a neuronal network with different
cells, the transfer of information is coordinated at specialized compartments such as the synapse.
Synapses are contact points between two neurons, where they communicate by passing ions or
neurotransmitter across the synaptic cleft. Synapses can have excitatory or inhibitory effects on
the target cells, depending on the released signals. The formed synapses are not rigid but rather
dynamic and can either strengthen, shrink or even get lost. Considering the critical role of synapses
under physiological conditions, it is not surprising that a severe loss of synaptic integrity can cause
substantial disorders such as neurodegenerative diseases (Dudai and Morris, 2013).

Neurodegenerative diseases are disorders of the CNS or the peripheral nervous system
characterized by the progressive structural and functional degeneration of neurons, leading
to mental or movement problems. The most common form of neurodegenerative diseases is
Alzheimer’s disease (AD) which currently affects 46 million people worldwide (Prince, 2015). Over
a century ago Alois Alzheimer first described the defining lesions (Stelzmann et al., 1995), the
two main hallmarks of AD, extracellular amyloid-β (Aβ) plaques and intraneuronal aggregates of
hyperphosphorylated tau protein, so-called neurofibrillary tangles. Aβ is released from the amyloid
precursor protein (APP) by cleavage of β- and γ-secretases (Haass, 2004) and accumulates in
the extracellular space of the brain to diffuse or dense-core plaques (Serrano-Pozo et al., 2011).
Intravital imaging studies of APP transgenic mice confirmed that smaller dense-core plaques
can cluster together, thus forming lager plaques (McCarter et al., 2013) that are associated with
neuronal and synapse loss (Tsai et al., 2004; Spires et al., 2005), increased neurite curvature (Garcia-
Alloza et al., 2006; Meyer-Luehmann et al., 2008), impaired neuronal activity in dendritic segments
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(Meyer-Luehmann et al., 2009), dystrophic neurites (D’Amore
et al., 2003; Tsai et al., 2004) and the accumulation of glial
cells (Bolmont et al., 2008; Meyer-Luehmann et al., 2008;
Kuchibhotla et al., 2009; Delekate et al., 2014). However,
memory impairments and cognitive decline are most likely
caused by synapse dysfunction and synapse loss rather than
due to mere neuronal loss or the accumulation of Aβ

plaques and neurofibrillary tangles (Terry et al., 1991; Masliah
et al., 1994; Koffie et al., 2011). Electron microscopy and
immunohistochemical stainings for synaptic markers revealed
significant reductions in synaptic density in the cortex and
hippocampus (Scheff et al., 1990; Terry et al., 1991; Masliah,
2001). Although the cause of synapse loss has not yet been fully
elucidated, most likely both lesions, Aβ and tau, contribute to
neurodegeneration.

Besides aging, new genetic risk factors for AD were
reported recently in GWAS, such as ApoJ/Clusterin, PICALM,
complement receptor 1 (CR1), TREM2 and sialic-binding
immunoglobulin (Ig)-like lectin CD33 (Lambert et al., 2009; Naj
et al., 2011; Hollingworth et al., 2012; Guerreiro et al., 2013;
Jonsson et al., 2013). Interestingly, some of these genes are
involved in Aβ production or clearance (Harold et al., 2009;
Lambert et al., 2009), or are part of immune-related pathways.
During development, synapse elimination was shown to be
dependent on microglia phagocytosis that was mediated by C1q
and C3 (Stevens et al., 2007). Recently, it was also demonstrated
that in young pre-depositing hAPP mice this ‘‘developmental
synaptic pruning pathway’’ is activated and leads to synapse loss
(Hong et al., 2016).

Aβ plaque formation follows a nucleation-dependent
polymerization, where monomers form dimers, oligomers,
protofibrils and amyloid fibrils (Harper and Lansbury, 1997;
Kumar and Walter, 2011). Aβ peptides are 36–43 amino acids
in length, whereas Aβ42 is the most neurotoxic fragment,
with the highest affinity to aggregate and represents the main
component of senile Aβ plaques. Soluble Aβ oligomers are
the most neurotoxic species that have been shown to impair
long-term potentiation (LTP) (Walsh et al., 2002; Shankar et al.,
2008) and enhance long-term depression (LTD) (Li et al., 2009),
resulting in weakening of synapses. LTP has been related to the
formation of new dendritic spines, increases of postsynaptic
densities and the enlargement of spine heads (Maletic-Savatic
et al., 1999; Nägerl et al., 2004). In contrast, LTD has been
associated with spine shrinkage and loss (Nägerl et al., 2004).
Other studies reported that the non-fibrillar forms of Aβ can
affect learned behaviors in rodents (Cleary et al., 2005; Lesné
et al., 2006; Freir et al., 2011). Recently, it was demonstrated that
lower molecular weight oligomers are highly bioactive molecules
that inhibit synaptic plasticity, alter cell-surface receptor levels
and induce microglial inflammatory response (Yang et al., 2017).
Soluble oligomers extracted from AD brains disrupt LTP and
synaptic function in vitro and impair cognition when injected
into healthy mice in vivo (Walsh et al., 2002; Cleary et al.,
2005; Shankar et al., 2007). In vivo imaging studies revealed a
loss of dendritic spines around plaques as a result of altered
structural plasticity (Spires et al., 2005), whereas increased spine
density and synaptic markers were obtained upon the removal

of soluble oligomers (Spires-Jones et al., 2009). Together, these
results support the idea that soluble forms of Aβ are toxic to
synapses.

In mouse models of AD, synapse loss is primarily found
around dense-core Aβ plaques (Koffie et al., 2009), whereas
no synapses are lost in the vicinity of diffuse plaques (Masliah
et al., 1990), thus indicating that dense-core Aβ plaques
release toxic soluble Aβ oligomers into the surrounding
tissue (Takahashi et al., 2004; Koffie et al., 2009), leading
first to synaptic dysfunction and finally to complete synapse
loss. In several mouse models of AD, synapse numbers are
significantly decreased compared to non-transgenic control
mice already at pre-depositing stages (Hsia et al., 1999;
Mucke et al., 2000; Shankar et al., 2009; Harris et al.,
2010).

The role of tau in synapse loss is less well established. During
the course of AD tau gets hyperphosphorylated and accumulates
in the somata and dendrites of neurons (Grundke-Iqbal et al.,
1986). The intracellular aggregates of hyperphosphorylated tau
form inclusions and neuropil threads, both of which are
strongly related to neuronal apoptosis (Spires-Jones et al., 2009).
In human AD brains and in mouse models of tauopathy,
tangle bearing neurons comprise fewer synapses onto their
somata and express less synaptic proteins compared to healthy
neurons (Callahan et al., 1999; Ginsberg et al., 2000). The
overexpression of mutant P301L in rTg4510 mice led to
altered synaptic function and synapse loss (Crimins et al.,
2011).

GLIAL CELLS

Neuronal synapse formation is based on the interplay between
neurons and glial cells. Microglia, the immune cells of the
brain parenchyma, regulate synapse formation (Parkhurst
et al., 2013) and synapse engulfment via the complement
system, which is part of the innate immune system (Wu
et al., 2015). In contrast, astrocytes provide nutrients to
neurons, take up and release neurotransmitters and provide
structural support for neurons (Verkhratsky et al., 2010; Clarke
and Barres, 2013). Oligodendrocytes are myelin-forming cells
guaranteeing a fast movement of action potentials through axons.
Recently, a new cell population was defined as oligodendrocyte
precursor cells or NG2-glia (Dimou and Gallo, 2015). In the
hippocampus synaptic transmission occurs between NG2-glia
and axons. Furthermore, NG2-glia can receive direct excitatory
and inhibitory synaptic input from neurons mediated by
the neurotransmitters glutamate and GABA. However, the
functional role of this neuron to glia synapse is not yet
entirely understood (Lin and Bergles, 2004; Bergles et al., 2010).
The discovery of NG2-neuron synapses offers the possibility
to further investigate the relationship between NG2-glia and
neurons in the brain. Interestingly, during their differentiation
step from NG2-glia to more mature stages (oligodendrocytes),
these cells lose their synapses with neurons (De Biase et al.,
2010). Due to the dearth of data, we will focus in this review
more on the role of microglia and astrocytes and synapse
loss.
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MICROGLIA

Microglia mediated synapse loss, or synapse pruning is an
important physiological process for proper brain maturation
during development. Understanding microglia function in
healthy conditions can further help to get insights into their
contribution to synapse loss and dysfunction early in disease.
Microglia constantly extend and retract their processes and
scan their local environment, thereby exploring the entire brain
volume (Nimmerjahn et al., 2005). Several studies confirmed
that microglia directly contact synaptic elements, thus affecting
many synapses (Tremblay et al., 2010; Paolicelli et al., 2011;
Schafer et al., 2012). Recent work has also shown that disruption
of microglia function resulted in deficient synaptic pruning
that was associated with weak synaptic transmission leading
to functional connectivity deficits (Paolicelli et al., 2011; Zhan
et al., 2014). Furthermore, this microglia-mediated synaptic
elimination was shown to be dependent on neuronal activity
(Schafer et al., 2012). In addition, depletion of microglia led
to a reduction in motor-learning-dependent synapse formation
(Parkhurst et al., 2013), implicating microglia in sculpting
synaptic connectivity.

Aβ plaques in human AD brains and in mouse models
of AD are surrounded by microglia (Meyer-Luehmann et al.,
2008; Serrano-Pozo et al., 2013) with impaired process extension
(Figure 1A). Microglia cells can be classified into three main
types based on their morphology: ramified, hypertrophic and
amoeboid. Ramified microglia are found in plaque-free areas
of the brain, whereas hypertrophic and amoeboid microglia
with short, thick and poorly ramified processes are typically
associated with senile plaques (Brawek et al., 2014). Interestingly,
microglia are not only the resident monocytes in the brain
but are also present in the retina, where Aβ deposits
have been reported as well in AD patients and AD mice

(Ning et al., 2008; Grimaldi et al., 2018). Similar to the brain,
the retina of late-symptomatic AD mice contains less ramified
microglia when compared to wildtype (WT) controls (Grimaldi
et al., 2018). Recently, with the help of advanced technologies,
more microglial phenotypes have been described. By comparing
microglia cells from WT and 5xFAD transgenic mice using
single-cell RNA-sequencing, disease associated microglia (DAM)
co-localizing with Aβ plaques were identified (Keren-Shaul et al.,
2017). Though, their precise role in synapse clearance and
remodeling requires further investigation (Deczkowska et al.,
2018). Moreover, an electron microscopy study defined ‘‘dark’’
microglia that are under steady state conditions rarely present
but become prevalent in mouse models with AD pathology.
Those ‘‘dark’’ microglia are predominantly active at synapses
with condensed, electron-dense cytoplasm and nucleoplasm
(Bisht et al., 2016). Ultimately, another study depicted the
switch of microglia from a homeostatic to a neurodegenerative
phenotype by gene expression analyses (Krasemann et al.,
2017). However, the exact function of microglia in the context
of AD is still not understood. In any case, they play either
a beneficial or detrimental role in AD pathology, including
the degradation of Aβ or the stimulation of neurotoxicity
through inflammatory cytokine release (Wyss-Coray and Rogers,
2012). Several genes expressed or enriched in microglia
appeared to be involved in Aβ clearance, including CD33
(Griciuc et al., 2013). Furthermore, members of the classical-
complement-cascade, Clusterin and CR1 have been linked to
late onset AD (Jun et al., 2010; Fonseca et al., 2016). The
best characterized molecules involved in synapse removal by
microglia are components of the complement cascade that is
upregulated in AD brains. Furthermore, Aβ and tau aggregates
can induce microglial and complement activation (Rogers et al.,
1992; Shen et al., 2001). A recent study implicates microglia,
complement and immune-related pathways as early mediators

FIGURE 1 | Microglia and astrocytes cluster around amyloid-β (Aβ) plaques (white arrows) in the brains of amyloid precursor protein (APP) transgenic mice. (A)
Microglia (Iba1, red) can be found closely associated with Aβ plaques (6E10, blue), with dystrophic neurites appearing in the vicinity of Aβ plaques (GFP). (B) Reactive
astrocytes (GFAP, red) can be found in close proximity to Aβ plaques (6E10, blue). Scale bar represents 10 µm.
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of synaptic dysfunction (Hong et al., 2016). In the hippocampus
of AD mice, the complement proteins C1q and C3 were
upregulated and connected with synapses at pre-depositing
stages, causing extended engulfment of synaptic elements (Hong
et al., 2016). Furthermore, inhibition of C1q, C3 and CR3 rescued
synapse loss and synaptic dysfunction in young hAPP mice
indicating that microglia are involved in early synapse loss
in pre-depositing mice. In addition, C1q-deficient mice that
were crossed to Tg2576 mice displayed less astrogliosis and
Aβ plaques, suggesting a detrimental role of the complement
pathway (Fonseca et al., 2004). Together, these data indicate that
pathways responsible for synaptic pruning during development
are activated in AD that eventually lead to synapse loss (Stephan
et al., 2012; Hong et al., 2016). Interestingly, depletion of
microglia (30%) in 3xTg AD mice improved cognition but did
not alter Aβ plaque load, suggesting that microglia might play
a role in cognitive dysfunction independent of Aβ pathology
(Dagher et al., 2015). Alternatively, it has been proposed that Aβ

binds to postsynaptic glutamatergic receptors leading to synapse
inactivation (Decker et al., 2010; Li et al., 2011). Microglia might
then be recruited to the Aβ tagged synapse and induce the
removal of this complex.

ASTROCYTES

Astrocytes represent the most abundant cell type in the brain.
They are involved in synapse formation and elimination, synaptic
plasticity and activity. Due to their essential role in brain function
it is likely that astrocyte dysfunction results in progression
of neurodegenerative diseases. Similar to microglia, reactive
astrocytes surround senile Aβ plaques in the brain of AD
patients and in mouse models of AD. They become reactive
as indicated by their hypertrophic processes and increased
expression of GFAP (Wisniewski and Wegiel, 1991; Sofroniew,
2009) (Figure 1B). On the one hand, astrocytes are able
to degrade and phagocytose Aβ and reduce Aβ mediated
neurotoxicity (Wyss-Coray et al., 2003), but on the other hand
they induce microglia activation by releasing proinflammatory
factors (Wyss-Coray and Rogers, 2012). Vice versa, a subtype
of reactive astrocytes (A1) that is abundant in the AD brain, is
induced by neuroinflammatory microglia (Liddelow et al., 2017).
As AD pathology progresses, reactive astrocytes upregulate the
adenosine receptor A2A, thereby leading to long-term memory
loss due to affected astrocyte-synapse interactions. In addition,
conditional genetic removal of the A2A-receptor enhanced
memory function in hAPPmice (Orr et al., 2015). These findings
suggest that increased levels of astrocytic A2A receptor due
to AD pathology might contribute to memory loss. Moreover,
resting Ca2+ levels are enhanced in AD mice and more frequent
Ca2+ transients and intracellular Ca2+ waves are present, all
of which can lead to the release of gliotransmitters (glutamate,
ATP, GABA) (Kuchibhotla et al., 2009; Henneberger et al., 2010;
Lee et al., 2010; Woo et al., 2012). Furthermore, production
of GABA by reactive astrocytes is increased in APPPS1 mice,
though inhibition of GABA production or release from reactive
astrocytes fully recovers spike probability, synaptic plasticity,
learning and memory loss in these mice (Jo et al., 2014).

Further investigations of neuron-glia signaling pathways and
their disruption in neurodegenerative diseases are necessary
for the development of new successful therapies that are
promising due to the early involvement of glia in the disease
process.

THERAPEUTIC APPROACHES

Although our knowledge regarding the mechanism underlying
AD pathogenesis has improved over the last decades, there is still
no cure available. Moreover, open questions concerning memory
and synapse loss, as well as gliosis and related neuronal damage,
still remain (De Strooper and Karran, 2016).

Most current therapeutic approaches focused on the
reduction of Aβ levels and Aβ plaque load by inhibiting or
modifying the generation of Aβ. Other attempts tried to target
the tau protein instead (Roberson et al., 2007; Ittner et al.,
2010). The reduction of endogenous WT murine tau by 50%
circumvented synaptic and behavioral deficits in hAPP mice,
without affecting Aβ plaque load (Roberson et al., 2007).
Although the mechanism by which Aβ-mediated cognitive
deficits are prevented without diminishing Aβ levels remains
elusive. In vivo imaging of 3xTg-AD mice revealed spine loss
on dystrophic dendrites positive for hyperphosphorylated
tau in areas without plaques (Bittner et al., 2010). Further
investigations on the function of tau in mouse models of AD will
provide insights regarding the role of tau in AD.

Prime targets for AD therapies are β- and γ-secretase
inhibitors. Numerous inhibitors currently undergo clinical trials
(May et al., 2011; Lucas et al., 2012; Wang et al., 2014; Yan
and Vassar, 2014). Therefore, several studies have tested β-
and γ-secretase inhibitors in mouse models of AD. In vivo
2-photon imaging allows to explore structural plasticity of
synapses in living mice, even for long-time periods (Grutzendler
et al., 2002; Tsai et al., 2004; Spires et al., 2005; Fuhrmann
et al., 2007; Liebscher and Meyer-Luehmann, 2012; Liebscher
et al., 2014) and the effect of administered drugs on the
plasticity of spines and synapses can be directly monitored.
Two different γ-secretase inhibitors, DAPT and LY450139, were
tested in WT and APP-KO mice on structural plasticity of
dendritic spines. Bittner et al. (2009) could show that APP-KO
mice have an increased spine density and that γ-secretase
inhibition reduces the number of spines in an APP-dependent
manner. Other studies performed in vivo 2-photon imaging
and followed dendritic spines and axonal boutons over the
course of several weeks in APPS1 mice. Pre- and postsynaptic
structures showed an enhanced instability in the vicinity of Aβ

plaques (Grutzendler and Gan, 2007; Spires-Jones et al., 2007;
Liebscher et al., 2014). Four weeks treatment with a γ-secretase
inhibitor (ELN594) efficiently reduced Aβ plaque formation
and growth and stabilized spines near plaques (Liebscher et al.,
2014).

Unfortunately, the inhibition of BACE1 is known for its
mechanism-based side-effects. Conditional deletion of BACE1 in
5xFAD mice resulted in reduced Aβ plaque load and improved
synaptic function, determined by LTP and contextual fear
conditioning experiments (Hu et al., 2018). However, ablation
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of BACE1 in mice is not without issues, as those mice exhibit
abnormal astrogenesis, neurogenesis, hyperactivities, impaired
axonal growth and altered LTP (Vassar, 2014). Pharmacological
inhibition of BACE1 slowed down plaque formation and reduced
dendritic spine formation via Seizure Protein 6 in long-term
in vivo imaging experiments (Filser et al., 2015; Peters et al.,
2018; Zhu et al., 2018). Further studies are needed to elucidate
how side-effects can be reduced to a minimum e.g., by partial
inhibition of BACE1 (Fukumoto et al., 2002; Zhao et al.,
2007).

The oligomeric form of Aβ is often considered as the toxic
form. Immunotherapy against Aβ oligomers had little effect
on synapse loss in the vicinity of Aβ plaques but abolished
synapse loss further away from plaques (Dorostkar et al., 2014),
suggesting that synapse loss is not primarily mediated by
oligomers. In another study, switching off oligomer production
resulted in improved cognitive and synaptic impairment (Fowler
et al., 2014). However, despite these promising results in
preclinical studies, removing toxic Aβ species from the brain with
active immunization failed in clinical trials (Hyman, 2011).

To date, it remains an open question whether such Aβ

lowering strategies will be successful. Therefore, alternative
treatment options should be considered. Mice exposed to an
environmental enrichment developed enhanced numbers of new
dendritic spines, excitatory synapses and dendritic branches
on pyramidal neurons (Mora et al., 2007). Environmental
enrichment has also been shown to ameliorate Aβ plaque
load, synapse loss and impaired synaptic plasticity (Lazarov
et al., 2005; Cracchiolo et al., 2007; Herring et al., 2009;
Ziegler-Waldkirch et al., 2018a,b). In a non-pharmacological
approach, housing in an environmental enrichment reduced
Aβ plaque load by activating phagocytic microglia in 5xFAD

transgenic mice (Ziegler-Waldkirch et al., 2018a). Furthermore,
adult neurogenesis was revived and cognitive deficits caused by
induced Aβ plaque deposits were rescued (Ziegler-Waldkirch
et al., 2018a). Future research on the microglia function and
dysfunction in CNS disorders, such as pruning, regulating
plasticity and neurogenesis will undoubtedly play a predominant
role in the search for an effective cure.

CONCLUSION

Besides the physical degeneration of synapses in AD and
other neurodegenerative diseases, it is unclear which role
glial cells play during the process of synapse loss. Further
research will hopefully provide more insights into the role of
glial cells and their contribution to synapse loss, in particular
at earlier pre-depositing stages when synapses are already
vulnerable. Future preclinical treatment approaches should
combine pharmacological, non-pharmacological and behavioral
studies.
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