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Severe neuroinflammation is associated with blood brain barrier (BBB) disruption

in CNS diseases. Although microglial activation and the subsequent changes in

cytokine/chemokine (C/C) concentrations are thought to be key steps in the development

of neuroinflammation, little data are available concerning the interaction of microglia

with BBB cells. In this study, we investigated this interaction by adding LPS-activated

microglia (LPS-MG) to the abluminal side of a BBB model composed of endothelial

cells (EC), pericytes (Peri) and astrocytes (Ast). We then examined the abluminal

concentrations of 27 C/Cs and the interactions between the LPS-MG and BBB cells.

LPS-MG caused collapse of the BBB, revealed by decreases in the trans-endothelial

electrical resistance (TEER) and by changes in the expression levels of tight junction

(TJ) proteins. Under these conditions, 19 C/Cs were markedly increased on the

abluminal side. Unexpectedly, although LPS-MG alone released 10 of the 19 C/Cs, their

concentrations were much lower than those detected on the abluminal side of the BBB

model supplemented with LPS-MG. Co-culture of LPS-MG with Ast caused marked

increases in 12 of the 19 C/Cs, while co-culture of LPS-MG with EC and Peri resulted

in a significant increase in only 1 of the 19 C/Cs (fractalkine). These results suggest that

C/C dynamics in this system are not only caused by activated microglia but also are due

to the interaction between activated microglia and astrocytes.
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INTRODUCTION

The blood brain barrier (BBB) acts as a protective barrier of the central nervous system (CNS)
against potential neurotoxic molecules (Abbott et al., 2010; Serlin et al., 2015). BBB functions are
regulated by various types of cells that belong to a neurovascular unit (NVU) (Zlokovic, 2011;
Keaney and Campbell, 2015). Recent reports have clarified that microglia not only act as the
CNS-resident immune cells but also have important physiological roles in the CNS (Shigemoto-
Mogami et al., 2014; Sato, 2015). Microglia sense slight changes in the surrounding environment
and associate along the brain capillaries (Nimmerjahn et al., 2005). In a variety of pathological
conditions (Oby and Janigro, 2006; Desai et al., 2007; McCaffrey et al., 2008; Bataveljic et al.,
2014; Ortiz et al., 2014; Kamphuis et al., 2015; Li et al., 2015; van de Haar et al., 2016), functional

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2018.00494
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2018.00494&domain=pdf&date_stamp=2018-12-13
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kasato@nihs.go.jp
https://doi.org/10.3389/fncel.2018.00494
https://www.frontiersin.org/articles/10.3389/fncel.2018.00494/full
http://loop.frontiersin.org/people/387577/overview
http://loop.frontiersin.org/people/370790/overview


Shigemoto-Mogami et al. Microglia, Neuroinflammation, and BBB

impairment of BBB has been reported (Zhao et al., 2015;
Almutairi et al., 2016) and is often correlated with disease
severity. Microglia adopt an activated form in pathological
conditions in which BBB breakdown is a hallmark (Nakajima
and Kohsaka, 1993; Kreutzberg, 1996; Graeber and Streit, 2010;
Salter and Beggs, 2014; Streit et al., 2014). Furthermore, activated
microglia produce inflammatory cytokines such as TNFα and
IL-1β (Nishioku et al., 2010; Yang et al., 2015) that increase
BBB permeability and downregulate TJ proteins (Gu et al.,
2015; Almutairi et al., 2016). However, little is known about
the comprehensive changes in cytokines/chemokines (C/Cs) and
the interaction between microglia and the other NVU cells in
neuroinflammation associated with BBB collapse. In this study,
we measured the concentrations of 27 C/Cs when BBB collapse
was induced by activated microglia in an in vitro BBB model
(Nakagawa and Niwa, 2009; Nakagawa et al., 2009). We found
that the interactions of activated microglia with pericytes and
endothelial cells, and with astrocytes were critical in determining
the final concentrations of C/Cs.

MATERIALS AND METHODS

This study was carried out in accordance with the principles
of the Basel Declaration and recommendations of Guide for
the Care and Use of Laboratory Animals, the Animal Research
Committee of the National Institute of Health Sciences, Japan.
The protocol was approved by the Animal Research Committee
of the National Institute of Health Sciences, Japan.

Materials
Bovine serum albumin (BSA), Evans blue, sodium fluorescein
(NaF) and anti-β-actin antibody (A5316) were purchased from
Sigma-Aldrich (St. Louis MO, United States). Fetal bovine
serum (FBS) and Dulbecco’s Modified Eagle’s Medium (DMEM)
were purchased from Life Technologies (Grand Island, NY,
United States). The rat in vitro model of the BBB (RBT-24H)
was purchased from PharmaCo-Cell Company Ltd. (Nagasaki,
Japan). Anti-ZO-1 (33-9100), anti-claudin5 (35-2500), and anti-
occludin (33-1500) antibodies were purchased from Invitrogen
(Camarillo CA, United States). Anti-GRO KC (AF-515), anti-
GFAP (AF-2594) antibodies were purchased from R&D systems
(Minneapolis, MN, United States). Anti-Iba1 (019-19741)
antibody and DAPI were purchased from Wako (Osaka, Japan).
The MILLIPLEX MAP Rat Cytokine/Chemokine Panel was
purchased from Merck Millipore (Billerica MA, United States).
SuperSignal West Femto Substrate was purchased from Thermo
Scientific (Rockford IL, United States). Can Get Signal was
purchased from TOYOBO (Osaka, Japan).

Preparation of the Rat in vitro BBB Model
The in vitro BBB model was cultured according to the
manufacturer’s protocol. Microglia were added to the abluminal
side and incubated for 1 day (Figure 1A).

Microglial Cell Culture
Rat microglia were cultured as previously described (Nakajima
et al., 1992; Nakajima and Kohsaka, 1993; Shigemoto-Mogami

et al., 2014). To activate microglia, they were incubated with
1µg/ml LPS for 1 h (LPS-MG), which has already been shown
to induce inflammatory reaction in our preliminary experiments
and another’s report (Huang et al., 2018). Microglia were then
washed twice, and transferred to the abluminal side of the BBB
model at 5.0× 104 cells/cm2.

Measurement of the Transendothelial
Electrical Resistance (TEER)
The TEER was measured by an Endohm resistance meter (World
Precision Instruments, FL. United States).

Measurement of Transcellular Transport
and Paracellular Transport
To measure transcellular transport and paracellular transport,
we measured the permeabilities of Evans blue albumin (EBA)
and NaF, respectively. EBA (165µg/ml) and NaF (10µg/ml) were
added to the luminal side. PBS-H (10mMHEPES, 25mMglucose
in PBS) was added to the transmembranes (30min) and the
concentrations of NaF and EBA in the PBS-H were measured
using a Spectra Max (Molecular Devices, CA. United States). The
permeability coefficient (Papp) was calculated using the following
formula: Papp (cm/s)= VA/A x [C]luminal x 1 [C]Abluminal/1t.

Western Blotting of TJ Proteins
The transmembranes with EC and Peri were lysed with
sample buffer (62.5mM Tris, 2% SDS, 10% glycerin, 0.0125%
bromophenol blue, pH 6.8), and homogenized on ice. The
concentrations of primary antibodies: anti-ZO-1 [1:1,000], anti-
claudin5 [1:2,000], anti-occludin [1:1,000], anti-β-actin [1:5,000].
We have confirmed that the bands were detected with their
specific molecular weights, i.e., ZO-1(225 kDa), claudin5 (24
kDa), occludin (65 kDa), and β-actin (42 kDa). The level of
β-actin was not changed in any experimental conditions.

Immunocytochemistry
The expressions of ZO-1 and claudin5 in EC and Peri, and
the expression of GRO KC in co-culture of Ast and MG were
examined immunocytochemically (Shigemoto-Mogami et al.,
2014). The primary antibodies were used in the following
concentrations: anti-ZO-1 [1:100], anti-claudin5 [1:100], anti-
GRO KC [1:100], anti-GFAP [1:50], anti-Iba1 [1:100]. For
visualization of nuclei, DAPI was used [1:1,000].

Measurement of C/Cs
The concentrations of 27 rat C/Cs (IL-1α, IL-1β, IL-2, IL-4, IL-
5, IL-6, IL-10, IL-12 (p70), IL-13, IL-17, IL-18, EGF, eotaxin,
fractalkine, G-CSF, GM-CSF, GRO/KC, IFN-γ, IP-10, leptin,
LIX, MCP-1, MIP-1α, MIP-2, RANTES, TNFα, and VEGF)
were measured by MILLIPLEX MAP Multiplex Immunoassay
Kits (Rat Cytokine/Chemokine Magnetic bead kit RCYPMX27-
MAG).

Data Analysis and Statistics
The statistical analysis was performed using ANOVA followed by
Tukey’s test. Differences were considered significant at a value
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FIGURE 1 | Activated microglia disrupt BBB barrier functions and cause concentration changes of 19 C/Cs. (A) Schematic diagram of the experiment. (B) Effects of

LPS-MG on TEER (a), and the permeability of EBA (b) and NaF (c). Effects of LPS-MG on the expression levels of TJ proteins (d). Immunocytochemistry of ZO-1 (top)

(Continued)
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FIGURE 1 | and claudin5 (bottom) (e). Scale bar indicates 50µm. N = 4, * < 0.05 vs. control, ANOVA followed by Tukey’s test. Error bars represent the s.e.m.

(C) Comprehensive quantitative measurement of C/C concentrations in the medium of the abluminal side of the BBB model one day after incubation with LPS-MG. (a)

Heat map of the concentrations of all 27 C/Cs. (b) Concentrations and their fold changes. The fold change represents the C/C concentration ratio of LPS-MG + BBB

to BBB alone. Asterisks indicate a significant increase compared to the BBB alone. N = 4, * < 0.05 vs. control, ANOVA followed by Tukey’s test. The reproducibility of

the data was confirmed by 3 independent experiments.

FIGURE 2 | The interaction of LPS-MG with the other NVU cells is important for C/C dynamics. (A) After 1 day of incubation with LPS-MG, the concentrations of all

27 C/Cs were measured. (a) The heat map of the 27 C/Cs in microglia alone, LPS-MG alone and the LPS-MG + BBB model. (b) Comparison of the concentrations of

the 19 C/Cs upregulated by LPS-MG (see Fig. 1) in the above three culture conditions. (B) The 19 C/C concentrations in the LPS-MG + BBB model, the LPS-MG +

Peri + EC, LPS-MG + Ast, and LPS-MG. (a) Heat map of the 19 C/C concentrations in the above four culture conditions. (b,c) Concentrations of the C/Cs in all the

experimental conditions: (b) raw concentrations; (c) those normalized to the LPS-MG + BBB model. The 19 C/Cs were divided into three groups. (d) Typical

expression pattern of cell type specific markers (GFAP, Iba1) (red) and that of GRO KO (green) in the co-culture of LPS-MG and astrocytes were shown. Scale bar

indicates 100µm. The reproducibility of the data was confirmed by 3 independent experiments.

of p < 0.05. The reproducibility of the data was confirmed by 3
independent experiments.

RESULTS

We first attempted to reproduce the BBB disruption observed in
neuroinflammation by adding LPS-MG to the abluminal side of
the BBB model (Figures 1A,Ba–e). A 1 day incubation with LPS-
MG significantly decreased the TEER and increased paracellular
transport (NaF). In addition, the expression levels of occludin

and ZO-1 were significantly decreased (Figure 1Bd). As revealed

by immunostaining of ZO1 and claudin5, TJ structures were

collapsed by LPS-MG (Figure 1Be). When we added microglia

without LPS stimulation, no changes were detected in these

parameters. We then measured the concentrations of 27 C/Cs
on the abluminal side of the BBB model. The basal levels of
C/Cs, without microglia, were identical to levels after adding
unstimulated microglia concentrations (shown in a heat map,
Figure 1Ca and quantitatively, Figure 1Cb). However, adding
LPS-MG significantly increased the concentrations of 19 C/Cs
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(GRO/KC, LIX, IP-10, MIP-2, MCP-1, RANTES, IL-6, MIP-1α,
IFN-γ, fractalkine, IL-5, leptin, IL-13, IL-1α, IL-4, IL-10, IL-
12 (p70), IL-1β, and TNFα). The right column of Figure 1Cb
indicates the ratios of C/Cs with LPS-MG to those at basal levels,
i.e., the induction strength.

We next attempted to identify the cell types responsible
for the changes in C/Cs (Figure 2). We first measured C/C
concentrations in supernatants of microglia alone, of LPS-MG
alone, and of the medium on the abluminal side of the BBB
model supplemented with LPS-MG (Figure 2Aa,b). Microglia
alone did not affect the concentrations of C/Cs, but LPS-MG
increased 10 C/Cs (IL-1β, IL-10, IL-12 (p70), GRO/KC, IP-10,
MCP-1, MIP-1α, RANTES, MIP-2, and TNFα). However, the
concentrations of these C/Cs were much lower than C/Cs of the
BBB model supplemented with LPS-MG. These results suggest
that the interaction of LPS-MG with BBB cells is important
in determining the final concentrations of C/Cs. To determine
which of the BBB components increased the C/C concentrations,
we compared the C/C concentrations in the entire LPS-MG +

BBB model to that of LPS-MG co-cultured only with Peri +
EC, co-cultured only with Ast, and LPS-MG cells alone, without
any BBB components (Figure 2B). The heat map of C/Cs in
the LPS-MG + Ast and LPS-MG + BBB conditions were very
similar (Figure 2Ba). Figure 2Bb and c show the concentrations
of the respective C/Cs in the four culture conditions. The 19
C/Cs appeared to be divided into three groups. Group 1 (LIX,
GRO/KC, IP-10, MIP-2, MCP-1, RANTES, IL-6, IL-12 (p70),
IL-5, IL-13, IL-4, and IL-10) included C/Cs of which the final
concentrations were determined by the interaction between LPS-
MG and Ast. When we performed double immunostaining of
GRO KC, one of the members of this group, along with cell type
specific markers, we found GRO KC associated with astrocytes
after the stimulation with LPS-MG (Figure 2Bd, top), but not
with microglia (bottom). Group 2 (MIP-1α, IL-1α, TNFα, and IL-
1β) included C/Cs of which the final concentrations depended
on LPS-MG. Group 3 included fractalkine; the concentration
was mainly determined by the Peri + EC condition, and Ast
suppressed its release.

DISCUSSION

The addition of activated microglia to the abluminal side of
the BBB model caused a collapse of the BBB. For example, the
membrane-specific localization of ZO-1 and claudin5 almost
disappeared after microglial addition. Activated microglia also
induced drastic changes in the concentrations of C/Cs, indicating
that microglial activation can trigger BBB disruption during
neuroinflammation. Among 19 C/Cs that showed significant
changes in our experiment, IP-10 (Chai et al., 2015), MCP-1
(Yao and Tsirka, 2014), IL-6 (Paul et al., 2003), IL-1β (Argaw
et al., 2006; Wang et al., 2014), and TNFα (Afonso et al., 2007)
have previously been reported to induce BBB disruption. The
concentrations of GRO/KC (Maysami et al., 2015), LIX (Wang
et al., 2016), MIP-2 (Shaftel et al., 2007), RANTES (Ubogu et al.,
2006), and MIP-1α (Maysami et al., 2015) are reported to be
elevated at the time of BBB collapse, which causes infiltration
of monocytes and T cells into the CNS, thereby worsening BBB

disruption. The C/Cs described abovemay act as both a cause and
a consequence of the neuroinflammation.

Many studies have suggested that activated microglia
themselves disrupt BBB integrity by releasing inflammatory C/Cs
(Yenari et al., 2006; da Fonseca et al., 2014). However, we
found that although activatedmicroglia alone induced significant
elevations of GRO/KC, IP-10, MIP-2, MCP-1, RANTES, MIP-1α,
IL-12 (p70), IL-10, IL-1β, TNFα, and IL-1α, their concentration
changes were slight. The concentrations of 12 C/Cs (LIX,
GRO/KC, IP-10, MIP-2, MCP-1, RANTES, IL-6, IL-12 (p70),
IL-5, IL-13, IL-4, and IL-10) were mainly determined by the
interaction between astrocytes and LPS-MG. The 7 most highly
concentrated C/Cs (GRO KC, LIX, IP-10, MIP-2, MCP-1,
RANTES, and IL-6) in Figure 1Bb were included in this group.
LIX (Wang et al., 2016), GRO/KC (Maysami et al., 2015), IP-10
(Chai et al., 2015), MIP-2 (Shaftel et al., 2007), MCP-1 (Yao and
Tsirka, 2014), RANTES (Ubogu et al., 2006), IL-6 (Paul et al.,
2003), and IL-10 (Lin et al., 2018) play roles in BBB disruption
during neuroinflammation. By immunostaining, we confirmed
that the main resource of GRO KC was astrocytes, while only
minor signals were detected in LPS-MG. Further experiments are
necessary to clarify the contribution of astrocytes and activated
microglia to the final concentration of each cytokine. The
concentrations of IL-1β, TNFα, IL-1α, and MIP-1α in the above
4 culture conditions were the same as those with LPS-MG alone,
indicating that activated microglia are the predominant source of
these C/Cs. However, their concentrations were lower than those
in the co-culture of LPS-MG and Ast. These four C/Cs are well-
known pro-inflammatory C/Cs (Wang et al., 2014; Rochfort et al.,
2016) and might trigger the subsequent serial C/C concentration
changes leading to BBB collapse. The concentration change of
fractalkine was unique. The main source of fractalkine was Peri
+ EC, i.e., blood vessels, and microglia suppressed the fractalkine
release.

In this study, activated microglia-induced C/Cs were
categorized into three groups based on the main sources,
i.e., microglia, Ast, and EC + Peri (blood vessels). Of note,
microglia-triggered elevation of Ast C/Cs was remarkable in
terms of both quantity and variation. BBB collapse and the
subsequent infiltration of peripheral immune cells into brain
parenchyma drastically worsen neuroinflammation (Dos Passos
et al., 2016; Zenaro et al., 2017). It therefore seems likely that
signals between microglia and Ast are potent therapeutic targets
for neuroinflammation.
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