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Cisplatin-induced ototoxicity is one of the major adverse effects in cisplatin
chemotherapy, and hearing protective approaches are unavailable in clinical practice.
Recent work unveiled a critical role of autophagy in cell survival in various types of
hearing loss. Since the excessive activation of autophagy can contribute to apoptotic
cell death, whether the activation of autophagy increases or decreases the rate of
cell death in CDDP ototoxicity is still being debated. In this study, we showed that
CDDP induced activation of autophagy in the auditory cell HEI-OC1 at the early stage.
We then used rapamycin, an autophagy activator, to increase the autophagy activity,
and found that the cell death significantly decreased after CDDP injury. In contrast,
treatment with the autophagy inhibitor 3-methyladenine (3-MA) significantly increased
cell death. In accordance with in vitro results, rapamycin alleviated CDDP-induced death
of hair cells in zebrafish lateral line and cochlear hair cells in mice. Notably, we found
that CDDP-induced increase of Sirtuin 1 (SIRT1) in the HEI-OC1 cells modulated the
autophagy function. The specific SIRT1 activator SRT1720 could successfully protect
against CDDP-induced cell loss in HEI-OC1 cells, zebrafish lateral line, and mice cochlea.
These findings suggest that SIRT1 and autophagy activation can be suggested as
potential therapeutic strategies for the treatment of CDDP-induced ototoxicity.
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INTRODUCTION

Since the discovery of its anticancer properties in the 1960’s, Cisplatin [cis-diammine
dichloroplatinum (II); CDDP] has been widely used as the most potent chemotherapeutic
drug for a variety of solid tumors, such as those found in testicular, ovarian, breast, head
and neck, lung, and many other types of cancers (Wang and Lippard, 2005; Cepeda et al., 2007).
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Despite decades of research, effective approaches against
CDDP-induced side effects including ototoxicity, nephrotoxicity,
and neurotoxicity remain unavailable (Rybak et al., 2007; Florea
and Büsselberg, 2011; Kim et al., 2018). The ototoxicity induced
by CDDP limits its utility and therapeutic profile in both children
and adult patients (Rybak et al., 2007; Langer et al., 2013).
Therefore, finding effective medications that have a therapeutic
effect on existing CDDP-induced ototoxicity remains an unmet
medical need.

CDDP ototoxicity is manifested as bilateral, irreversible
sensorineural hearing loss (Fang and Xiao, 2014). The ototoxicity
is common, in particular among children (Li et al., 2004). The
organ of Corti, the spiral ganglions, and the stria vascularis are
profoundly damaged in CDDP injury (Gabaizadeh et al., 1997;
Tsukasaki et al., 2000; Cardinaal et al., 2004). It’s noteworthy that
the severe hair cell loss is primarily found in CDDP exposure
(Wang et al., 2003; van Ruijven et al., 2005). Although CDDP
accumulation is consistently high in the stria vascularis (Breglio
et al., 2017), the sensory cells in the cochlea, including outer hair
cells (OHCs) and inner hair cells (IHCs), are more susceptible to
CDDP-induced damage (Borse et al., 2017).

Autophagy is known to be a general cellular response
to starvation or stress that degrades cytoplasmic waste or
aggregation depending on lysosome pathway (Klionsky et al.,
2016). In addition to the maintenance of cellular homeostasis,
autophagy also plays important roles in development,
physiology, and pathogenesis of a variety of diseases (Mizushima
et al., 2008; Janda et al., 2012; Ohsumi, 2014; He et al., 2017;
Pang et al., 2017; Song et al., 2017). In various types of hearing
loss, autophagy has been proven to be a protective factor for
the survival of hair cells (He et al., 2017; Pang et al., 2017).
However, it is also implicated in cell death processes (Shen
and Codogno, 2011). In CDDP ototoxicity, it is still not well
established as to whether autophagy plays a protective or
destructive role (Fang and Xiao, 2014; Youn et al., 2015; Li
et al., 2018; Yin et al., 2018). Furthermore, understanding how
autophagy is regulated during CDDP ototoxicity also remains
elusive. In view of these findings and questions, we investigated
the effects of autophagy in CDDP-induced cytotoxicity. To
confirm our results, several models have been employed,
including the auditory cell line HEI-OC1 (Kalinec et al., 2016),
the lateral line hair cell of zebrafish (Jiang et al., 2014), and the
C57BL/6 mice.

Sirtuin 1 (SIRT1), the most conserved member among
a family of NAD+-dependent protein deacetylases, has
been proven to have protective effects in various common
neurodegenerative disorders (Herskovits and Guarente, 2014).
In our previous study, we also demonstrated that decreased
SIRT1 level was correlated with age-related hair cell loss and
hearing loss in C57BL/6 mice (Xiong et al., 2014, 2015), although
the detailed mechanism remains elusive. Interestingly, the effect
of SIRT1 in the modulation of autophagy has been proven
by the fact that SIRT1 could directly deacetylating multiple
autophagy-related proteins, including ATG5, ATG7 and ATG8
(Lee et al., 2008). Therefore, in the present study we aimed
to explore SIRT1’s modulation of autophagy during CDDP
ototoxicity.

MATERIALS AND METHODS

Cell Culture
Since the HEI-OC1 cell line displays a variety of markers for
sensory hair cells, including math1, myosin7a and prestin, it
becomes a common cell line used for the elucidation of hair
cell pathology. HEI-OC1 cells (kindly provided by F. Kalinec at
the House Ear Institute, Los Angeles, CA, USA) were cultured
in high-glucose Dulbecco’s Modified Eagle’s Medium (DMEM;
Gibco BRL, Grand Island, NY, USA), supplemented with 10%
fetal bovine serum (FBS; Gibco BRL, Grand Island, NY, USA)
at 33◦C and 10% CO2 in a humidified atmosphere without
antibiotics. For in vitro cisplatin (CDDP) toxicity test, HEI-OC1
cells were exposed to CDDP at indicated concentrations for
indicated hours for cell viability analysis. HEI-OC1 cells were
pretreated with different agents for 24 h and then exposed to
CDDP at 20 µM for 24 h.

Materials
Cisplatin (CDDP, Selleck, S1166, Huston, TX, USA), Rapamycin
(RA, Selleck, S1039, TX, USA), 3-Methyladenine (3-MA, S2767,
Selleck, Huston, TX, USA), SRT1720 (SRT1720, S1129, Selleck,
Huston, TX, USA). Chloroquine (CQ, C6628, Sigma-Aldrich,
MO, USA), LC3-II/LC3B (#3868, Cell Signaling Technology,
Boston, MA, USA), SIRT1 (#9475, Cell Signaling Technology,
Boston, MA, USA), p62 (#5114, Cell Signaling Technology,
Boston, MA, USA), β-actin (#4970, Cell Signaling Technology,
Boston, MA, USA), p53 (#2524, Cell Signaling Technology,
Boston, MA, USA), Acetyl-p53 (#2525, Cell Signaling
Technology, Boston, MA, USA), Western Antibody Dilution
Buffer (RM00016, ABclonal, Cambridge, UK).

Protein Extraction and Western Blot
Images of HEI-OC1 cells treated with different reagents were
captured by optical microscope. Then, the total proteins
of treated cells or tissues were extracted by RIPA lysis
buffer (Thermo, 89901, USA), in which proteinase inhibitor
(1:100, Selleck, TX, USA) was added. After the concentration
measurements by BCA assay kit (Beyotime Biotechnology,
Shanghai, China), equal amounts of protein were denatured
and then separated by 12% SDS-PAGE electrophoresis, followed
by transfer to polyvinylidene fluoride membranes (PVDF,
Millipore, Darmstadt, Germany). The membranes were blocked
in 5% non-fat milk for 1 h at room temperature. After
washing with TBS containing 0.05% tween 20 (TBST) three
times, the membranes were incubated with related primary
antibodies (1:1,000) in TBST with 5% BSA overnight. Then, they
were incubated with secondary antibodies (1:5,000–1:10,000)
for 1 h after three washes with TBST. Finally, the protein
signals were detected by use of the ECL kit (Millipore,
WBKLS0010, Darmstadt, Germany) and analyzed by ImageJ
software.

Cell Viability Assay
Cells were seeded at the density of 2,000 cells/well in a 96-well
plate and allowed to attach overnight for 16 h. After treatment
with or without SRT1720 (0.5 µM) or RA (0.5 µM) for 24 h,
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they were exposed to CDDP (20 µM) with or without 3-MA
(5 mM) for another 24 h. Next, 10 µl CCK-8 reagent (Beyotime
Biotechnology, Shanghai, China) was added to each well and
reacted for 2 h. Absorbance at 450 nm was detected through
the MultiskanMK3microplate reader (Labsystems, USA) for cell
viability.

Transfection of Cells With Fluorescent LC3
The lentivirus containing the green fluorescent protein (GFP)-
LC3 fusion gene was purchased from Hanbio (Shanghai, China).
The HEI-OC1 cells were transfected with lentivirus-mediated
GFP-LC3 to generate GFP-LC3-expressing cells. HEI-OC1
cells were seeded into six-well dishes (1∗105 cells per well)
and infected with the recombinant lentivirus following the
manufacturer’s instructions (a MOI of 100). After 48 h, cells
were selected by culture in the presence of puromycin for
2 weeks. Cells were treated with SRT1720 (0.5 µM) or CQ
(10 µM) with or without CDDP (20 µM) injury. Observation
of autophagosome formation was determined after fluorescent
staining by evaluating the number of GFP puncta (puncta/cell
was counted).

Assessment of Apoptosis by Flow
Cytometry
Cell apoptosis was also measured by a FITC Annexin V
Apoptosis Detection Kit (BD, Franklin Lakes, NJ, USA). Briefly,
cells were harvested and washed twice by cold PBS solution, and
resuspended with 100µl 1× binding buffer softly. Ten microliter
Annexin V and 5 µl propidium iodide (PI) were added to each
group and incubated in dark room for 15 min. Approximately
10,000 cells of each group were measured by a FACS Calibur
system (BD Biosciences, Franklin Lakes, NJ, USA).

Zebrafish Breeding
Zebrafish embryos of the ET4 transgenic wildtype hair cells that
are specifically labeled produced adult fish and maintained at a
density of 50 embryos per 100 mm Petri dish in 28.5◦C embryo
medium (15.0 mM NaCl, 0.5 mM KCl, 1.0 mM CaCl2, 1.0 mM
MgSO4, 0.14 mM KH2PO4, 0.06 mM Na2HPO4, and 0.5 mM
NaHCO3).

Lateral Line Hair Cell Counting in Zebrafish
Five days post-fertilization (dpf) zebrafish larvae were used for
experiments. The experiment was set as eight groups, including
control group (DMSO), CDDP group, RA group, CDDPwith RA
pre-treatment for 1 h, CDDP with RA group, SRT1720 group,
CDDP with SRT1720 pre-treatment for 1 h and CDDP with
SRT1720 group. The concentration of CDDP was 600 µM, RA
10 µM and SRT1720 5 µM. By using a 12-hole plate, with
eight larvae per hole, each group set up two holes. After the
CDDP exposure for 12 h and 24 h, 6 zebrafish larvae of each
group were selected to fix at 4◦C in 4% paraformaldehyde
(PFA) for 0.5 h, flushed with PBST, then mounted in glycerin
on 25 × 60 mm Non-slip off coverslips. We then determined
the counts of three hair cell aggregations of lateral line hair
cells in each zebrafish using a confocal microscope (Carl Zeiss,

Germany) and calculated the average count of lateral line hair
cells.

Animals
Forty-eight C57BL/6 mice at the age of 7 weeks were obtained
from Laboratory Animal Center, Sun Yat-sen University. After
a hearing test to exclude hearing abnormal mice, the rest of
them were randomly divided into six groups, a ‘‘Control’’ group
(DMSO intraperitoneal injection), a ‘‘CDDP’’ group (16 mg/kg,
intraperitoneal injection), two drug groups (rapamycin,
7.5 mg/kg, intraperitoneal injection; SRT1720, 100 mg/kg,
intragastric administration) and two ‘‘CDDP+drug’’ groups.
Auditory brainstem response (ABR) were tested 72 h after
CDDP administration. Animal care and experimental treatment
were carried out in accordance with the recommendations
of Constitution of Animal Ethical and Welfare Committee
(AEWC). The protocol was approved by the Animal Research
Committee at Sun Yat-sen University.

Auditory Brainstem Response
ABR measurements were performed when mice were
anesthetized with intraperitoneal injection (100 mg/kg ketamine
and 10 mg/kg xylazine mixture). Three needle electrodes were
inserted sub-dermally at the vertex (active), under the left ear
(reference), and the back (ground). The acoustic signals were
generated, and the responses were processed with Tucker-Davis
Technologies (TDT System III, Alachua, FL, USA) hardware
and software. Ten-millisecond (ms) tone bursts with a 1 ms
rise or fall time were presented at 4, 8, 16 and 32 kHz at a rate
of 21.1/s. The average response to different sound intensity at
4 kHz, 8 kHz, 16 kHz and 32 kHz was collected and processed
by TDT by attenuating the sound intensity 5 dB intervals from
100 dB to 0 dB. The hearing threshold was defined as the lowest
stimulation dB level at which a positive wave in the evoked
response trace was evident (Pang et al., 2016).

Animal Drug Administration
Cisplatin (CDDP, Selleck, S1166, Huston, TX, USA) was
dissolved in DMSO and intraperitoneally injected (16 mg/kg).
Rapamycin (RA, Selleck, S1039, TX, USA) was dissolved
in DMSO, and intragastric administration (7.5 mg/kg) was
performed three times 24 h before and after CDDP exposure, and
1 h before CDDP exposure. SRT1720 (Selleck, S1129, Huston,
TX, USA) was dissolved in normal saline (NS; 5 mg/ml) and
intragastric administration (100 mg/kg) was performed three
times, 12 h and 1 h before CDDP exposure and immediately after
CDDP exposure.

Tissue Preparation
After ABR recordings, the deeply anesthetized mice were
decapitated, and the cochleae were taken out under microscope
to fix in 4% PFA overnight at 4◦C on the shakers. The cochleae
were decalcified in 4% sodium ethylenediaminetetraacetic acid
for 48 h, and then the osseous labyrinth, stria vascularis, spiral
ligament, Reissner’s and tectorial membrane were carefully cut
away under the microscopy, and the remaining basal membrane
were subjected to immunofluorescent staining.
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Hair Cells Counting
Cochlear sections were incubated in 3% Triton X-100 for
45 min at room temperature on the shaker, washed with
PBS three times and blocked with blocking solution (10%
goat serum in PBS) for 1 h. Specimens were counterstained
with 4’,6-diamidino-2-phenylindole (DAPI; 10 mg/ml, Sigma-
Aldrich, MO, USA) for 10 min. The tissues were mounted on
glass slides in 50% glycerol. Cochlear samples were observed
and imaged with an Olympus BX63 microscope. Hair cells were
counted from the apex to the base along the entire length of
the cochlear epithelium. The percentage of hair cell loss in each
0.5 mm length of epithelium was plotted vs. cochlear length as a
cytocochleogram.

Statistical Analysis
All values were shown as mean ± SEM. and analyzed by
one-way analysis of variance (ANOVA) with Fisher post hoc
test or independent t-test. Values of p < 0.05 were considered
statistically significant.

RESULTS

SIRT1 and Autophagy Increase in CDDP
Induced Cell Death in HEI-OC1 Cells
CDDP-induced cytotoxicity was measured by monitoring cell
viability and using annexin V and PI staining in the auditory
cell line HEI-OC1. In our experiments, HEI-OC1 cells started to
have a decreased survival rate when exposed to 20 µM CDDP
at 24 h, and this aggravated at 36 h and 48 h (Figure 1A).
Then we exposed the cells to various CDDP concentrations
for 24 h. Dose-dependent HEI-OC1 cell death increased by
47.0 ± 10.1% at 20 µM with a 50% of maximal effect
(EC50) being ∼20µM (Figure 1B). In agreement with these

findings, FACS analysis showed that CDDP induced apoptosis
(Figures 1C,D). In the mRNA levels, CDDP only increased
LC3B expression (Supplementary Information 1 Figure S1),
but not p62. As an autophagosome marker, LC3-II increased,
while the autophagic degeneration marker p62 decreased.
Interestingly, CDDP significantly increased SIRT1, accompanied
with autophagy (Figures 1E,F).

Rapamycin Promotes HEI-OC1 Cell
Survival After CDDP-Induced Damage
Rapamycin (RA), a well-known mTOR inhibitor, has been
widely reported to induce autophagy both in vivo and in vitro
(Tanemura et al., 2012). The cell death attenuated when
co-treated with RA compared with the single CDDP exposure.
Around 20%–30% of total cells did not experience death
(Figure 2A). CDDP exposure caused more detached cells, while
RA attenuated the ototoxicity (Figure 2B). Although the mRNA
levels of LC3B and p62 did not change in RA treatment with or
without CDDP (Supplementary Information 1 Figure S1), in
the protein levels, LC3-I to LC3-II conversion further increased
in RA treatment, while p62 protein decreased even in CDDP
exposure (Figures 2C,D). These findings revealed that autophagy
activated by RA could attenuate CDDP mediated ototoxicity.

SIRT1 Activates Autophagy and Promotes
HEI-OC1 Cells Survival After
CDDP-Induced Damage
SRT1720, a new synthetic small molecule, has been confirmed
as the selective activator of SIRT1 (Yao et al., 2012; Sun et al.,
2018). Previous biochemical studies have shown that the affinity
of SIRT1 to SRT1720 is approximately 1,000 times as strong
as that with another SIRT1 activator resveratrol. To examine
the activation from SRT1720, the protein expression of p53,

FIGURE 1 | CDDP induces cell death and increases both sirtuin 1 (SIRT1) and autophagy in HEI-OC1 cells. (A) The CCK8 assay was performed to examine cell
viability of HEI-OC1 cells in CDDP (20 µM) exposure from 0 h to 48 h (n = 3 individual experiments). (B) The CCK8 assay was performed to examine cell viability of
HEI-OC1 cells in CDDP exposure from 0 µM to 100 µM for 24 h (n = 3 individual experiments). (C,D) Apoptosis measured by annexin V and propidium iodide (PI)
staining for HEI-OC1 cells in CDDP (20 µM) exposure for 24 h (n = 3 individual experiments) and its analysis. (E,F) Western blots and densitometry analysis for
SIRT1 and autophagy marker LC3-II and p62 in CDDP (20 µM) exposure for 24 h (n = 3 individual experiments). Data represent the mean ± SEM. ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001. CDDP, cisplatin.
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FIGURE 2 | Rapamycin promotes HEI-OC1 cell survival after cisplatin-induced damage. (A) The CCK8 assay was performed to examine cell viability of HEI-OC1
cells following CDDP (20 µM) exposure for 24 h with or without RA (0.5 µM; n = 3 individual experiments). (B) The image of HEI-OC1 cells following CDDP (20 µM)
exposure for 24 h with or without RA (0.5 µM; n = 3 individual experiments). (C,D) Western blots and densitometry analysis for autophagy marker LC3-II and p62 in
CDDP (20 µM) exposure for 24 h with or without RA (0.5 µM; n = 3). Data represent the mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. CDDP, cisplatin; RA,
rapamycin.

FIGURE 3 | SIRT1 activates autophagy and promotes HEI-OC1 cell survival after cisplatin-induced damage. (A) The CCK8 assay was performed to examine cell
viability of HEI-OC1 cells following CDDP (20 µM) exposure for 24 h with or without SRT1720 pre-treatment for 24 h (0.5 µM; n = 3 individual experiments).
(B,C) The fluorescence image of green fluorescent protein (GFP)-LC3 HEI-OC1 cells after CDDP (20 µM) exposure with or without SRT1720 (0.5 µM) and CQ
(10 µM). Scale bar, 10 µm. Quantity analysis of green puncta was detected in five cells/experiment (n = 3 individual experiments). (D,E) Western blots and
densitometry analysis for SIRT1 and autophagy marker LC3-II and p62 in CDDP (20 µM) exposure for 24 h with or without SRT1720 pre-treatment for 24 h (0.5 µM;
n = 3 individual experiments). Data represent the mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. CDDP, cisplatin; SRT, SRT1720.

and ac-p53 as a deacetylated target of SIRT1, were measured
by western blotting. The ratios of acetylated p53 to total
p53 attenuated inHEI-OC1 cells (Supplementary Information 1
Figure S2). Then, we found that SRT1720 could reduce cell
death in CDDP exposure. Around 40% of total cells were
prevented from experiencing cell death (Figure 3A). In the
mRNA levels, LC3B and p62mRNA had no significant difference
in SRT1720 treatment with or without CDDP exposure
(Supplementary Information 1 Figure S1). To robustly
demonstrate the modulation that SIRT1 activates autophagy,
GFP-LC3 HEI-OC1 cells were employed to describe the
modulation with autophagic degradation blocker chloroquine

(CQ). CDDP or SRT1720 treatment could increase the formation
of LC3, and blocker CQ captured even more. Then, the
green puncta were the highest in SRT1720 treatment with
CDDP exposure (Figures 3B,C). Meanwhile, SRT1720 could
also further increasing LC3-II in CDDP exposure in western
blot. In contrast, p62 expression decreased in CDDP exposure
and further decreased with SRT1720 treatment (Figures 3D,E).
These results suggest that althoughHEI-OC1 cells might increase
SIRT1 to activate autophagy against CDDP damage that may not
be enough for cells to pull through. Therefore, we find that the
external activation of autophagy and SIRT1 prevent cells from
death.
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SIRT1 Reduces CDDP Induced Ototoxicity
Through Autophagy in HEI-OC1 Cells
To confirm whether SIRT1 reduced CDDP induced ototoxicity
through autophagy, we employed the phosphatidylinositol-3-
kinase inhibitor (3-MA), the most widely used autophagy
inhibitor (Seglen and Gordon, 1982), to suppress autophagy. As
expected, autophagy inhibition accelerated CDDP-induced cell
death. Moreover, we found that the prevention of autophagy
diminished the SIRT1 activation-mediated HEI-OC1 survival
in the CDDP exposure (Figure 4). These results imply that
the effects of SIRT1 in cell survival protection were nearly
abolished in the autophagic inhibition by 3-MA. Collectively,
SIRT1 reduced CDDP mediated ototoxicity via the induction of
autophagy.

Autophagy Activation Promotes the Lateral
Line Hair Cell Survival After CDDP-Induced
Damage in Zebrafish
The lateral line of zebrafish can sense water motion and initiate
the appropriate behavioral response for capturing prey and
avoiding predators. The lateral line hair cells are located in the
skin and easy to observe. Both lateral line and ear hair cells
are the sensory hair cells, and they develop and differentiate
by similar developmental mechanisms. Mutations in genes
disrupting hair cell function in the zebrafish lateral line and
vestibular system also cause deafness in humans (Nicolson,
2005). Since both the lateral line and ear hair cells share the
similar genetic background, and the lateral line accessibility
makes it easier in experimental manipulation and visualization,
the zebrafish recently has been recognized as an excellent model

FIGURE 4 | SIRT1 protects against cisplatin-induced cell death via autophagy
in HEI-OC1 cells. The CCK8 assay was performed to examine cell viability of
HEI-OC1 cells in CDDP (20 µM) exposure for 24 h combined with 3-MA
(5 mM) treatment with or without SRT1720 pre-treatment for 24 h (0.5 µM;
n = 4 individual experiments). Data represent the mean ± SEM. ∗∗∗p < 0.001.
CDDP, cisplatin; SRT, SRT1720; 3-Methyladenine, 3-MA.

for discovering and functionally characterizing genes crucial for
hair cell pathology (Behra et al., 2009; Brignull et al., 2009;
Liang et al., 2012; Rubel et al., 2013; Jiang et al., 2014). The
analysis of hair cell survival allowed us to draw comparisons
between CDDP exposure with or without RA at 12 h and
24 h (Figure 5A). At 12 h after CDDP treatment, more than
half of hair cells were eliminated. As expected, nearly half of
hair cells remained in the pre-treat or with RA or SRT1720 in
CDDP exposure. Although at 24 h after CDDP exposure, nearly
all hair cells were eliminated, while pre-treatment with RA or
SRT1720 significantly attenuated cisplatin-induced hair cell loss
(Figures 5A–C).

Autophagy Activation Promotes Hair Cell
Survival After CDDP-Induced Damage in
C57BL/6 Mice
To demonstrate the major role that the activation of autophagy
plays in CDDP-mediated hearing loss, we examined the effect
of RA on CDDP-induced hearing loss. C57BL/6 mice at
7 weeks old developed a significant ABR threshold shift after
CDDP exposure at various frequencies (26.0 ± 6.5 dB at
4 kHz, 26.3 ± 2.5 dB at 8 kHz, 23.0 ± 5.7 dB at 16 kHz
and 20.0 ± 7.1 dB at 32 kHz). To supplement with RA
at 20 mg/kg 24 h before and after CDDP exposure, plus
1 h before CDDP exposure, we used intraperitoneal injection.
RA significantly reduced CDDP-mediated auditory threshold
shifts at various frequencies (10.0 ± 5.0 dB at 4 kHz,
5.0 ± 0.0 dB at 8 kHz, 3.3 ± 2.9 dB at 16 kHz and
8.8± 2.5 dB at 32 kHz; Figure 6A). Additionally, RA significantly
decreased OHC loss in CDDP exposure (Figures 6B,C). Taken
together, these results support that RA strengthened OHCs’
survival in CDDP ototoxicity in both zebrafish and mice.
Moreover, RA attenuated CDDP-mediated hearing loss in
C57BL/6 mice.

SIRT1 Activation Attenuates
CDDP-Induced Hair Cell Loss and Hearing
Loss in C57BL/6 Mice
As proven before, SIRT1 also raised HEI-OC1 cells survival
via autophagy in CDDP exposure. To demonstrate whether the
activation of SIRT1 attenuates CDDP-mediated hearing loss in
mice, we examined the effect of SRT1720 on CDDP-induced
hearing loss. In agreement with the experiment before,
CDDP developed a severe hearing loss at various frequencies
(36.0 ± 11.4 dB at 4 kHz, 30.0 ± 8.9 dB at 8 kHz,
32.1 ± 11.5 dB at 16 kHz and 28.3 ± 4.0 dB at 32 kHz;
Figure 7A). To supplement with SRT1720 at 100 mg/kg 12 h
before and after, plus 1 h before CDDP exposure, we used
gavage. SRT1720 significantly reduced CDDP-mediated auditory
threshold shifts at various frequencies (8.8 ± 4.8 dB at 4 kHz,
5 ± 5 dB at 8 kHz, 5.5 ± 3.7 dB at 16 kHz and 5 ± 5 dB
at 32 kHz; Figure 7A). Additionally, SRT1720 significantly
decreased OHC loss in CDDP exposure (Figures 7B,C).
Collectively, SRT1720 strengthens OHC survival to attenuate
CDDP induced hearing loss in C57BL/6 mice.
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FIGURE 5 | Autophagy activation promotes hair cell survival after cisplatin-induced damage in zebrafish lateral line. (A) Hair cell counts obtained from CDDP
exposure for 12 or 24 h with or without RA or SRT1720 treatment (n = 6 zebrafish larvae). Scale bar, 10 µm. (B) The hair cells were counted at 12 h after CDDP
exposure. (C) The hair cells were counted 24 h after CDDP exposure. Data represent the mean ± SEM. ∗∗∗p < 0.001. Control, zebrafish larvae cultured in the same
dose DMSO as the CDDP and RA group; RA, zebrafish larvae cultured in RA; CDDP, zebrafish larvae cultured in CDDP; pre-RA+CDDP, zebrafish larvae cultured in
RA for 1 h followed by exposure to CDDP; RA + CDDP, zebrafish larvae cultured in CDDP and RA. SRT1720, zebrafish larvae cultured in SRT1720;
pre-SRT1720+CDDP, zebrafish larvae cultured in SRT1720 for 1 h followed by exposure to CDDP; SRT1720 + CDDP, zebrafish larvae cultured in CDDP and
SRT1720. CDDP, cisplatin; RA, rapamycin; SRT, SRT1720.

DISCUSSION

Although the relationship between autophagy and cell death
has been extensively investigated in the past decade, whether
the activation of autophagy induces the cell death or survival
in diseases is still controversial. Autophagy is known to be
a general cellular process to strengthen cell ability to survive
under starvation or stress conditions (Klionsky et al., 2016).
However, excessive activation of autophagy leads to autophagic
cell death (Yu et al., 2004; Ryter et al., 2014), such as
cardiac myocyte death during ischemia/reperfusion (Liu et al.,
2016). In contrast, the activation of autophagy also plays a
positive role during various pathological and physiological states
(Rubinsztein et al., 2015; Deng et al., 2017; Song et al., 2017),
including aminoglycoside-induced and age-related hearing loss
(He et al., 2017; Pang et al., 2017). Recent work has shown
that the role of activation of autophagy in CDDP ototoxicity
is still being debated. Autophagy, more specifically mitophagy,
alleviated CDDP-induced ototoxicity (Fang and Xiao, 2014; Yang
et al., 2018). In addition, the increase of the key autophagy
protein Beclin-1 was observed in the model of attenuating
ototoxicity induced by CDDP (Fang and Xiao, 2014; Yang et al.,
2018). These results suggest that autophagy is important in
preventing CDDP-induced ototoxicity. In contrast, autophagy

was significantly increased after exposure to CDDP for 48 h
along with cell death (Youn et al., 2015). At that moment, the
autophagy inhibitor can help to decrease CDDP-induced cell
apoptosis (Li et al., 2018). However, the significant apoptosis
starts at 24 h, the same as our current work, and the excessive
activation of autophagy occurred 48 h after CDDP exposure,
which made it difficult to account for the apoptosis. Perhaps
the excessive activation of autophagy along with cell death was
only part of the progress at the later stage. To thoroughly
determine the role of activation of autophagy at the early
stage of CDDP-induced injury, when we could intervene,
we employed three different models, an auditory cell line of
HEI-OC1 cells, the lateral line hair cells of zebrafish, and
C57BL/6 mice. We found that the induction of autophagy was
markedly increased when the CDDP-induced cell death started
in HEI-OC1 cells. Then, enhancing or blocking autophagy with
autophagy activators or inhibitors could help us to understand
the role of autophagy in CDDP ototoxicity. With the activator
of autophagy rapamycin, the CDDP induced cell death was
alleviated in HEI-OC1 cells, which agrees with the results in
the lateral line hair cells of zebrafish. Meanwhile, the inhibitor
of autophagy 3-MA promoted CDDP-induced HEI-OC1 cells
death. Following CDDP exposure, the mice developed severe
hearing loss, which is consistent with the results of other
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FIGURE 6 | Autophagy activation attenuates cisplatin-induced hair cell loss and hearing loss in C57BL/6 mice. (A) Auditory brainstem response (ABR) thresholds
decreased with RA (7.5 mg/kg, intraperitoneal injection pre-24 h, pre-1 h, post-24 h) treatment mice in CDDP (16 mg/kg, intraperitoneal injection) exposure
compared with the CDDP groups at 4, 8, 16 and 32 kHz (n = 6 mice). (B,C) Surface preparations were stained with 4′,6-diamidino-2-phenylindole (DAPI). Hair cell
counts obtained for the CDDP and CDDP+RA group (n = the right cochlea of six mice). Scale bar, 10 µm. Data represent the mean ± SEM. ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001. Control, mice were intraperitoneally injected with the same dose DMSO as the CDDP group; RA, mice were intraperitoneally injected with rapamycin
three times; CDDP, mice were intraperitoneally injected with CDDP; CDDP+RA, mice were intraperitoneally injected with CDDP once and rapamycin three times.
CDDP, cisplatin; RA, rapamycin; Apical, the apical turn; Middle, the middle turn; Basal, the basal turn; Red asterisks, lost hair cells.

FIGURE 7 | SIRT1 activation attenuates cisplatin-induced hair cell loss and hearing loss in C57BL/6 mice. (A) ABR thresholds decreased with SRT1720 (100 mg/kg,
intragastric administration pre-12 h, pre-1 h, post-12 h) treatment mice following CDDP (16 mg/kg, intraperitoneal injection) exposure compared with the CDDP
group at 4, 8, 16 and 32 kHz (n = 6 mice). (B,C) Surface preparations were stained with DAPI. Hair cell counts obtained from the CDDP and CDDP+SRT1720 group
(n = the right cochlea of six mice). Scale bar, 10 µm. Data represent the mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Control, mice intraperitoneally injected
with the same dose DMSO as the CDDP group; SRT1720, mice gavage SRT1720 three times; CDDP, mice intraperitoneally injected with CDDP; CDDP + SRT1720,
mice intraperitoneal injected with CDDP once and gavage SRT1720 three times. CDDP, cisplatin; SRT, SRT1720; Apical, the apical turn; Middle, the middle turn;
Basal, the basal turn; Red asterisks, lost hair cells.

studies observing a 35 dB–55 dB threshold shift at 4, 8, 16 and
32 kHz (Kim et al., 2014; Benkafadar et al., 2017; Breglio et al.,
2017). However, our ABR results showed no difference between
different frequencies, while one study indicated higher levels
of severity at the highest frequencies (Breglio et al., 2017).

Furthermore, the activator of autophagy rapamycin alleviated
the CDDP-maintained hair cell death in C57BL/6 mice and
attenuated hearing shift. These findings suggest that autophagy
plays a protective role against CDDP injury as the way to rescue
itself until the point where the damage breaks through its limit.
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It has been postulated that the generation of excessive ROS
is considered to be one of the major causes of CDDP-induced
ototoxicity, in particular the sensory cells of the organ of Corti
(Kopke et al., 1997; Dehne et al., 2001; Korver et al., 2002;
Hyppolito et al., 2006; Hill et al., 2008). Antioxidants showed
good promise against CDDP-induced hearing loss (Borse et al.,
2017). On the basis of what has been reported so far, autophagy
could suppress ROS accumulation in cells by the p62 delivery
pathway (Wang et al., 2018) and its specific mitophagy pathway
(Kim et al., 2007). To promote cell survival, induced autophagy
decreases ROS concentration and reduces the oxidative damage
to biomolecules and organelles (Filomeni et al., 2015; Van
Erp et al., 2017). Additionally, in neomycin or gentamicin
ototoxicity, autophagy mediates its protective effects by reducing
levels of ROS (He et al., 2017). Although the experimental
conditions differ between reports in different tissue and our
study, our data in HEI-OC1 cells, the lateral line hair cells
of zebrafish and the cochlea hair cells in mice are consistent
with these studies regarding the activation of autophagy against
cytotoxicity, especially CDDP-induced ototoxicity.

Since autophagy activation is an important contributor
to alleviate CDDP-induced ototoxicity, the underlying
modulator-induced autophagy is not fully understood. SIRT1,
the well-studied NAD+-dependent deacetylase, has been proven
to have protective effects in various common neurodegenerative
disorders (Herskovits and Guarente, 2014). Besides, SIRT1 can
extend lifespan in lower organisms (Finkel et al., 2009; Burnett
et al., 2011). According to recent studies, in addition to the
FoxO-mediated mechanisms (Hariharan et al., 2010; Kume et al.,
2010), SIRT1 could also directly deacetylate autophagy proteins,
including ATG5, ATG7 and ATG8, to induce autophagy (Lee
et al., 2008). Therefore, SIRT1 is one of the modulators of
autophagy. In our previous study, we found that the hearing loss
is associated with the expression of SIRT1 in the hair cells of
C57BL/6 mice (Xiong et al., 2014). SIRT1 plays a protective role
to prevent hair cell death in age-related hearing loss (Xiong et al.,
2015). As expected, the levels of SIRT1 significantly increased
in the hair cell after CDDP exposure, which was accompanied
by autophagic induction in the current work. We speculated
that SIRT1 might function upstream of autophagy and protect
cells against hair cell toxicity and cell death during the early
stage of CDDP-induced injury since the hair cells are eager to
survive. By enhancing SIRT1 activity with its specific activator
SRT1720, the autophagic cavity further improved. Moreover, the
CDDP-induced cell death was alleviated in HEI-OC1 cells, in
the lateral line hair cells of zebrafish and in cochlear hair cells of
C57BL/6 mice. Nevertheless, the protective effect on cell survival
was almost diminished by the autophagy inhibitor. These results
reveal that the mechanism of increasing SIRT1 to activate
autophagy is the way hair cells attenuate CDDP-induced cell
death. To our knowledge, this is the first study that describes the
modulation between SIRT1 and autophagy in CDDP exposure
in hearing.

Apart from the induction of autophagy, rapamycin can
modulate other cellular processes (Martin et al., 2017). We have
performed immunoblot experiments to detect autophagy via
the combined analysis of LC3-II and p62 levels. Rapamycin’s

ability to alleviate CDDP-induced ototoxicity is at least partly
due to its effect on autophagy. For further study, a specific
autophagy modulator needs to be employed. In the previous
studies, rapamycin and SRT1720 were applied to animals by
systemic administration. However, considering that these agents
might inhibit CDDP’s chemotherapeutic efficacy (Lawenda et al.,
2008), local application should be considered as the way to
intervene in the SIRT1/autophagy activation.

In conclusion, this study shows that CDDP injury activates
SIRT1 and autophagy in HEI-OC1 cells. We report for the first
time that there is a protective way for the sensory hair cells to
rescue themselves by raising SIRT1 and autophagy at the early
stage of CDDP injury. Both SIRT1 and autophagy play important
roles in hair cell survival after CDDP exposure in HEI-OC1 cells,
the lateral line hair cells of zebrafish, and in C57BL/6 mice.
Our results suggest that SIRT1 modulates autophagy in CDDP
ototoxicity, and provide new insights into the interplay between
autophagy and CDDP-induced cell death. On the basis of the
present results, we can suggest potential therapeutic strategies for
overcoming the CDDP-induced ototoxicity through SIRT1 and
autophagy activation.
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