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Cognitive impairment affects about 50% of multiple sclerosis (MS) patients, but the
mechanisms underlying this remain unclear. The default mode network (DMN) has been
linked with cognition, but in MS its role is still poorly understood. Moreover, within
an extended DMN network including the cerebellum (CBL-DMN), the contribution of
cortico-cerebellar connectivity to MS cognitive performance remains unexplored. The
present study investigated associations of DMN and CBL-DMN structural connectivity
with cognitive processing speed in MS, in both cognitively impaired (CIMS) and
cognitively preserved (CPMS) MS patients. 68 MS patients and 22 healthy controls
(HCs) completed a symbol digit modalities test (SDMT) and had 3T brain magnetic
resonance imaging (MRI) scans that included a diffusion weighted imaging protocol.
DMN and CBL-DMN tracts were reconstructed with probabilistic tractography. These
networks (DMN and CBL-DMN) and the cortico-cerebellar tracts alone were modeled
using a graph theoretical approach with fractional anisotropy (FA) as the weighting
factor. Brain parenchymal fraction (BPF) was also calculated. In CIMS SDMT scores
strongly correlated with the FA-weighted global efficiency (GE) of the network [GE(CBL-
DMN): ρ = 0.87, R2 = 0.76, p < 0.001; GE(DMN): ρ = 0.82, R2 = 0.67, p < 0.001;
GE(CBL): ρ = 0.80, R2 = 0.64, p < 0.001]. In CPMS the correlation between these
measures was significantly lower [GE(CBL-DMN): ρ = 0.51, R2 = 0.26, p < 0.001;
GE(DMN): ρ = 0.48, R2 = 0.23, p = 0.001; GE(CBL): ρ = 0.52, R2 = 0.27, p < 0.001]
and SDMT scores correlated most with BPF (ρ = 0.57, R2 = 0.33, p < 0.001). In a
multivariable regression model where SDMT was the independent variable, FA-weighted
GE was the only significant explanatory variable in CIMS, while in CPMS BPF and
expanded disability status scale were significant. No significant correlation was found
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in HC between SDMT scores, MRI or network measures. DMN structural GE is related
to cognitive performance in MS, and results of CBL-DMN suggest that the cerebellum
structural connectivity to the DMN plays an important role in information processing
speed decline.

Keywords: default mode network (DMN), cerebellum, multiple sclerosis (MS), symbol digit modalities test (SDMT),
connectomics, tractography, diffusion weighted imaging (DWI), magnetic resonance imaging (MRI)

INTRODUCTION

Multiple sclerosis (MS) is an inflammatory, demyelinating, and
neurodegenerative disease of the central nervous system and the
most frequent non-traumatic cause of permanent neurological
disability in young adults (Inglese, 2006). Cognitive impairment
occurs in about 50% of MS patients independently of physical
disability (Chiaravalloti and DeLuca, 2008; Dineen et al., 2009;
Hulst et al., 2013), but the mechanisms underlying this are still
poorly understood and roles of the specific brain networks in
MS are not clearly identified. Information processing speed is
known to be one of the core deficits in MS (Chiaravalloti and
DeLuca, 2008) and the SDMT (Smith, 1982) assesses this. When
compared with other cognitive measures the SDMT has been
shown to better distinguish MS patients and HCs (Strober et al.,
2009; Benedict et al., 2017) and correlate with MRI metrics
(Christodoulou et al., 2003; Stankiewicz et al., 2011; Rao et al.,
2014; Benedict et al., 2017). Moreover, the SDMT has been tested
against extensive batteries of neuropsychological tests specifically
developed to detect general cognitive impairment within an MS
population like the Neuropsychological Battery for MS (Rao et al.,
1991) and the Minimal Assessment of Cognitive Functioning in
MS (Benedict et al., 2002): the SDMT has been proposed as a
sentinel test to detect general cognitive impairment in MS with
91% sensitivity and 60% specificity (Parmenter et al., 2007; Van
Schependom et al., 2014).

Information processing speed, and SDMT performance, is
associated with activity in the default mode network (DMN)
(Rocca et al., 2010; Sumowski et al., 2010; Forn et al., 2013;
Bonavita et al., 2015), which deactivates when cognitively
demanding tasks are performed (Buckner et al., 2008; Broyd
et al., 2009). However, the DMN’s role in MS-related cognitive
impairment is not clear and the structural changes leading to
dysfunction are not fully captured yet.

In MS, previous studies mostly focused on functional
connectivity of individual DMN cortical regions or on structural
alterations of individual white matter (WM) bundles connecting
the DMN nodes (Rocca et al., 2010; Bonavita et al., 2011, 2016;
Weier et al., 2014, 2015; Wojtowicz et al., 2014; Zhou et al.,
2014). However, given the widespread nature of MS pathology,
a global approach for the assessment of the DMN structural

Abbreviations: BPF, brain parenchymal fraction; CBL-DMN, extended DMN
including cerebellar nodes; CIMS, cognitively impaired MS patients; CPMS,
cognitively preserved MS patients; EDSS, expanded disability status scale; FA,
fractional anisotropy; GE, global efficiency of a network; GE(. . .), global efficiency
of the specified network; HADS, hospital anxiety and depression scale; NART,
national adult reading test; NAWM, normal-appearing white matter; SDMT,
symbol digit modalities test; TDI, track density imaging; WM-FA, white matter
average FA; WM-LL, white matter lesion load.

network integrity may provide a more meaningful explanation of
its performance and functioning.

Network science enables us to assess global network
features, including properties such as efficiency, connectedness,
modularity (Bullmore and Sporns, 2009; Rubinov and Sporns,
2010; Kaiser, 2011), all which are abnormal in people with MS
(Gamboa et al., 2014; Shu et al., 2016). In the motor network,
network efficiency have been shown to correlate more closely
than conventional whole brain and regional MRI measures with
disability (Pardini et al., 2015). We believe that there is an unmet
need to assess the contribution of the DMN structural network,
as an integrated system, to cognition in MS and to assess whether
the DMN network properties capture cognitive impairment for
future clinical translation.

Brain regions classically known to be involved in the DMN
are the precuneus/posterior cingulate cortex, medial frontal
cortex, middle temporal gyri and angular gyri. Some reports
also show that the DMN functional network extends to include
cerebellar nodes (CBL-DMN) (Habas et al., 2009; Krienen and
Buckner, 2009; Stoodley and Schmahmann, 2010; Buckner et al.,
2011; Castellazzi et al., 2018a,b). Measures of network integrity
and topology will differ depending on which brain regions are
included (Kaiser, 2011), and associations with clinical outcomes
may also be affected if functionally relevant regions are omitted.
While the cerebellum was classically thought of as a key region
underlying sensorimotor function only, it’s role in cognition has
been increasingly recognized (Ramnani, 2006; Strick et al., 2009;
Tedesco et al., 2011; D’Angelo and Casali, 2013; Koziol et al.,
2014; Sokolov et al., 2017) and it has been proven to be involved in
SDMT functions (Forn et al., 2011). Moreover, it has been shown
that MS lesions in the cerebellum and cortico-cerebellar pathways
can result in cognitive deficits (Weier et al., 2015) and there is
clear evidence of cerebellar involvement in other central nervous
system diseases, such as Alzheimer’s, Parkinson’s, and autism
(Fatemi et al., 2012; Wu and Hallett, 2013; Jacobs et al., 2018).

The purpose of this study was to investigate the role of the
DMN in MS-related cognitive impairment considering also its
structural connections with the cerebellum. We used a network
approach to assess whether or not structural alterations, as
assessed using diffusion weighted MRI scans, might explain
differences in information processing speed. We investigated
whether the inclusion of cortico-cerebellar loops within the
model of the DMN-CBL network can better explain the
derangement of information processing functions caused by MS
pathology. Noting the recent proposal of a “network collapse”
hypothesis in MS, suggesting that as structural damage reaches a
critical threshold detectable symptoms of cognitive impairment
become apparent (Schoonheim et al., 2015; Shu et al., 2016),
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we also examined DMN network efficiency in CIMS and
CPMS MS patients.

MATERIALS AND METHODS

Subjects and Clinical Assessment
For this study 68 consecutive patients with relapse-onset MS,
attending routine clinical appointments, and a group of 22 HC
with no known neurologic or psychiatric condition were enrolled.
Patients who had had a relapse or received corticosteroids in
the preceding 4 weeks were excluded from the study. The study
was approved by the local institutional ethics committee (NRES
Committee London – Queen Square) and all subjects provided
written informed consent.

All participants had a series of neuropsychological tests,
including the SDMT, the HADS-A and HADS-D (Zigmond and
Snaith, 1983) and the NART. Expanded disability status scale
scores were also assessed.

An SDMT score of 40 points was shown to be the optimal
cut-off value to detect general cognitive impairment in a cohort
of 359 MS patients (Van Schependom et al., 2014). Within this
context, this threshold was used to divide the cohort of MS
patients in CIMS (20 subjects) and CPMS (46 subjects) groups.
It is important to note that cognitive impairment is here to be
interpreted as “cognitive impairment detected with SDMT.”

MRI Acquisition
All participants underwent a brain 3T MRI scan session
using a 3T Philips Achieva MRI scanner (Philips Healthcare,
Best, Netherlands) with dual transmit and a 32-channel
receive head-coil.

The MRI acquisition protocol included a sagittal high-
resolution 3DT1-weighted fast field echo scan (TE = 3.1 ms,
TR = 6.9 ms, TI = 824 ms, 1 mm × 1 mm × 1 mm
resolution, 256 × 256 acquisition matrix, 180 sagittal slices) and
an axial anterior commissure – posterior commissure oriented
dual echo PD/T2 scan (TE = 19/85 ms, TR = 3500 ms,
1 mm × 1 mm × 3 mm resolution, FOV = 240 mm × 240 mm).
Diffusion weighted images were acquired with a cardiac-
gated axial spin echo EPI high angular resolution diffusion
imaging scan aligned with the anterior commissure – posterior
commissure line (TE = 68 ms, TR ∼ 24 s depending con cardiac
rate, 2 × 2 × 2 mm resolution, SENSE factor = 3.1, acquisition
matrix = 96 × 112, reconstruction matrix = 112 × 112, 72
slices with no gap, 61 isotropically distributed directions with
b = 1200 s/mm2, 7 volumes with b = 0 s/mm2).

Data Processing
Image Pre-processing
Diffusion images were pre-processed with FSL (Jenkinson et al.,
2012) (FMRIB Software Library1) and MRtrix (Tournier et al.,
2012)2 tools:

1http://www.fmrib.ox.ac.uk/fsl/
2http://www.mrtrix.org

• correction for eddy-current distortions and subsequent
diffusion vector realignment were applied;
• non-brain tissue was removed;
• The diffusion tensor was reconstructed and FA maps

generated for each subject;
• The fiber orientation density function was evaluated using

constrained spherical deconvolution (Tournier et al., 2007)
and high-resolution TDIs (Calamante et al., 2010) were
generated seeding the whole brain for the generation
of 2.5 × 106 tracks. TDI maps provide improved
resolution and WM contrast with respect to diffusion tensor
maps: these advantages were later exploited for precise
positioning of both automatic and manually-drawn regions
of interest (ROIs).

Following a pre-defined pipeline (Muhlert et al., 2013),
registration steps were computed using NiftyReg tools3 in order
to register atlas ROIs from MNI152 standard space at 1 mm
resolution to the TDI space of each subject. In particular, the
MNI152 T1 template was non-linearly registered to the subject-
specific T1-weighted space that was in turn rigidly registered to
a pseudo-T1 generated by subtracting the PD-weighted from the
T2-weighted data, thus providing images with similar WM – gray
matter (GM) contrast to the T1 scan. The pseudo-T1 volume
is inherently co-registered to the T2-weighted one, which was
non-linearly registered to the native diffusion b = 0 space of
the subject. A rigid transformation was computed from the
native diffusion space to the TDI space of the subject. Inverse
transformation matrices were also computed.

For MS subjects, the WM-LL was evaluated on PD/T2
images using JIM (Xinapse Systems4). The BPF (Rudick et al.,
1999) was evaluated on lesion filled 3DT1 images using LEAP
(Chard et al., 2010).

A WM mask was also segmented with SPM5 from the 3DT1
applying a 90% threshold.

ROIs Selection
A map of the DMN provided in the MNI152 standard space at
2 mm resolution by a previous study (Smith et al., 2009) was
binarised and rigidly registered to MNI152 1 mm resolution
standard space.

The DMN mask was then divided into eight ROIs
corresponding to the nodes of the resting state network
and divided between right and left hemispheres. The resulting
ROIs correspond to:

• Left and right medial frontal cortex;
• Left and right angular gyrus;
• Left and right precuneus/posterior cingulate cortex;
• Left and right middle temporal gyrus

Since the available DMN map did not include cerebellar nodes
a map of the cerebellum was obtained from the SUIT atlas
(Diedrichsen, 2006; Diedrichsen et al., 2009), binarised, divided

3http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
4http://www.xinapse.com
5http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 1 | Default mode network (DMN) nodes. Medial frontal cortex
(orange), angular gyri (yellow), precuneus/posterior cingulate cortex (green),
middle temporal gyri (blue), cerebellum (red).

into right and left hemispheres and considered as a further ROI
for the study. Thus the CBL-DMN consisted in 10 network
nodes (Figure 1).

Further masks were created for tractography seeding,
inclusion and exclusion: from the JHU ICBM-DTI-81 atlas,
provided with FSL in MNI152 standard space at 1 mm resolution,
masks of the superior cerebellar peduncles, of the middle
cerebellar peduncles, of the cerebral peduncles and of the corpus
callosum were selected.

All binary masks were registered to the TDI space of each HC
applying the previously obtained transformation.

Cortical masks in the TDI space of each HC were then dilated
toward the inner part of the brain and intersected with the
WM mask previously obtained in order to create seed masks
containing only voxels at the WM – GM interface.

Exclusion masks were also created for the medulla
oblongata to exclude fibers heading toward the spinal cord
and for ventricles.

Tractography and Network Mask
Probabilistic tractography was performed using MRtrix and the
following constraints were adopted for an anatomically plausible
reconstruction of all tracts:

• tractography of fibers connecting pairs of homolateral brain
cortex ROIs was performed seeding the smaller of the
two; the cerebellum, the brainstem, the ventricles, the
corpus callosum, and the opposite cerebral hemisphere
were considered as exclusion ROIs.
• tractography of fibers connecting pairs of contralateral

brain cortex ROIs was performed seeding the corpus
callosum; the cerebellum, the brainstem, and the ventricles
were considered as exclusion ROIs.
• tractography of fibers connecting contralateral middle

temporal gyri was performed seeding the anterior
commissure the cerebellum, the brainstem and the
ventricles were considered as exclusion ROIs.
• tractography of cerebello-thalamo-cortical fibers projecting

from the cerebellum to contralateral brain cortex areas was
performed by seeding the superior cerebellar peduncles and
including the contralateral brain cortex ROIs (Palesi et al.,

2015); with respect to the considered superior cerebellar
peduncle the contralateral cerebellum, the homolateral red
nucleus, the ventricles, the corpus callosum and the medulla
oblongata were considered as exclusion ROIs.
• tractography of cortico-ponto-cerebellar fibers projecting

from brain cortex areas to the contralateral cerebellum was
performed seeding the cerebral peduncles and including
the homolateral brain cortex ROIs and the contralateral
middle cerebellar peduncles (Palesi et al., 2017); with
respect to the considered cerebral peduncle the homolateral
cerebellum, the ventricles, the corpus callosum and the
medulla oblongata were considered as exclusion ROIs.

Resulting tracts from 22 HC were registered back to the
MNI152 standard space at 1 mm resolution following the inverse
registration algorithm and binarised. A population map of each
tract was created by adding the tracts in standard space and
applying a 50% probabilistic threshold to select only voxels
belonging to at least 50% of the subjects.

As per previous works, the resulting masks of the tracts were
registered to the FA maps of CIMS and CPMS patients and HC
(Pagani et al., 2005; Rocca et al., 2007, 2010) and intersected once
again with WM mask. Then, for each subject, the mean and the
standard deviation of FA was computed for each tract. In order
to fully capture overall tissue alterations induced by pathology at
network level, we decided not to separate tissue in lesional and
non lesional masks.

Evaluation of Network Measures
Mean FA values were used as link weights in the construction of
connectivity matrices, where an entry is the average FA value of
the tract connecting the two corresponding nodes (Figure 2). For
each participant, the network models were built as follows:

• Fibers linking pairs of cortical regions follow the same
pathways, regardless of the directionality of signal
transmission. Therefore, the DMN was represented with
a symmetric (or undirected) 8 × 8 matrix as shown in
Figure 2A.
• Cerebellar input and output signals, instead, follow distinct

pathways from and to the brain cortex respectively (cortico-
ponto-cerebellar and cerebello-thalamo-cortical pathways).
Therefore, cortico-cerebellar loops were modeled with an
asymmetric (or directed) 10 × 10 matrix as shown in
Figure 2B, where the two rows and columns represent
cerebello-thalamo-cortical projections and cortico-ponto-
cerebellar projections respectively. All other connections
not strictly belonging to the cortico-cerebellar loop (e.g.,
cortico-cortical connections) are not included within
this model.
• The DMN-CBL network model represents the union of the

two previous ones (DMN and CBL) and it was obtained
by merging the two previous matrices. The result is an
asymmetric (or directed) 10 × 10 matrix as depicted in
Figure 2C, where the asymmetric elements are only those
corresponding to cortico-cerebellar loop tracts.
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FIGURE 2 | Connectivity matrix of the DMN (A), CBL (B), and CBL-DMN network (C). Symmetric entries of the matrix are shown in yellow and they represent
bi-directional bundles of fibers linking network nodes like those tracts connecting DMN regions in the brain cortex. Asymmetric entries are shown in orange and they
represent bundles of fibers where the signal is mono-directional like those tracts projecting from the cerebellum to the cerebral cortex. In gray are shown
anatomically non-existent connections between nodes and existent connections which are neglected in a specific model, like connections between cortical regions
in the model of the cortico-cerebellar loops (B); all of these are numerically represented by zero-elements. The elements along the principal diagonal that would
represent self-connections are displayed in white. L/R = left/right. MFC, medial frontal cortex; AG, angular gyrus; PCC, precuneous/posterior cingulate cortex; MTG,
middle temporal gyrus; CBL, cerebellum.

In all matrices of DMN, CBL, and CBL-DMN models
(Figures 2A–C), an empty entry of the matrix represents a tract
that is not anatomically plausible or that is not included in the
model (as for cortico-cortical connections in CBL).

No FA threshold was applied to connectivity matrices. These
were then analyzed with the Brain Connectivity Toolbox (BCT)
(Rubinov and Sporns, 2010) as implemented in Matlab (The
MathWorks, Inc., Natick, MA, United States6). Among all the
possible measures provided by network science (Barabási, 2016),
GE was chosen as an exemplary measure of the emerging
properties of a network. For each subject, the FA-weighted
GE was computed for each one of the three network models.
Furthermore, the FA average value of the whole WM mask was
computed for each subject (WM-FA).

Statistical Analysis
Statistical analysis was carried out using SPSS (IBM, Armonk,
NY, United States7). We adopted the standard Tukey’s
criterion (interquartile range multiplied by 1.5) to identify
outliers (Tukey, 1977).

6https://www.mathworks.com
7https://www.ibm.com

The following analysis is organized in three main categories:
differences (between groups of subjects), associations (between
measures within group), and regression (between measures
within group).

Differences
A general linear model (GLM) was used to ascertain SDMT
differences between the two groups of patients (CIMS and
CPMS), correcting for EDSS.

T-test and one-way ANOVA were performed to assess
differences of the following quantities between groups of subjects
(T-test between HC and MS; ANOVA between HC, CIMS,
and CPMS):

• Demographic and clinical data (age, disease duration,
EDSS, SDMT, HADS-A, HADS-D, NART);
• MRI metrics (BPF, WM-LL, WM-FA, FA mean values of

individual tracts);
• Network measures [GE(DMN), GE(CBL),

GE(CBL-DMN)];

Post hoc tests (LSD) were run between pairs of groups. The
ANOVA was not run to test differences of SDMT scores between
CIMS and CPMS that were defined on the basis of SDMT itself
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or for disease-related measures that were not performed in HC;
T-tests were, instead, run for the relevant group pairs.

Associations
Associations between SDMT and all other measures
(demographic, clinical, MRI, and network) were examined
computing the Pearson correlation coefficients for HC, MS,
CIMS, and CPMS.

Comparisons between correlation coefficients were performed
by applying Fisher z-transformation.

In order to assess a possible influence of physical disability on
SDMT performance, a partial correlation analysis between SDMT
and GE was also performed correcting for EDSS in the MS group
and, subsequently, in CIMS and CPMS.

In order to assess the possibility that a bias in FA variability
between cortico-cortical and cortico-cerebellar tracts might affect
results obtained from our correlation analysis, the mean of the
standard deviation of all tracts (S̄), of cortico-cortical tracts
(S̄DMN ), and of cortico-cerebellar tracts (S̄CBL ) were computed
for each subject. Partial correlation analysis was then performed
between SDMT scores and GE(CBL-DMN) in MS, CIMS, and
CPMS groups correcting for S̄, S̄DMN , and S̄CBL individually.

Regression
Values of network GE along with demographic and clinical
data (age, EDSS, HADS-A, HADS-D, NART, disease duration)
were used in a multiple regression analysis of SDMT variability
considering the whole MS population and, subsequently, CIMS
and CPMS groups separately.

After that, MRI (BPF, WM-LL, WM-FA), demographic and
clinical variables (age, EDSS, HADS-A, HADS-D, NART, disease
duration) were individually treated as predictors along with
network GE in a multiple regression analysis conducted for the
CIMS and CPMS groups to evaluate their contribution to SDMT
variation in a multivariable model.

Furthermore, in order to assess the possibility that a bias in FA
variability between cortico-cortical and cortico-cerebellar tracts
might affect results obtained from our regression analysis, also
S̄s̄, S̄DMN , and S̄CBL were individually treated as predictors along
with network GE in a multivariable model of SDMT.

RESULTS

The most significant result of this study is that the DMN
structural connectivity as assessed by GE explains speed
processing impairment in MS subjects, and that in CIMS subjects
damage to the extended CBL-DMN is the only predictor of
SDMT impairment in a multivariate model, while in CPMS also
BPF and EDSS contribute to SDMT scores.

A detailed report of all findings is given here below, starting
from a report of tractography results, followed by results of
statistical analysis organized in three categories (differences,
associations, and regression) as in Section “Statistical Analysis.”

Tractography
All tracts were successfully reconstructed and visually checked
by a certified neurologist (MP) for assessment of anatomical

plausibility. Figure 3 reports an example of tract population
maps (red-yellow color scale) with the resulting thresholded tract
masks (light blue). In particular, it shows the superimposition
of all tracts involved in cortico-cerebellar loops of the left
hemisphere of the cerebellum. It can be noted that these
tracts originate from (left: cerebello-thalamo-cortical tracts)
and project to (right: cortico-ponto-cerebellar tracts) the
posterior lobe of the cerebellum, which is involved in cognitive
functions (Habas et al., 2009; Buckner et al., 2011). Figure 4
shows the thresholded masks for all 32 tracts that constitute
the CBL-DMN.

Differences
• One HC outlier was identified on the basis of the

distribution of SDMT scores within our HC population.
The outlier was removed from subsequent analysis.
However, we also ran the analysis including this subject,
but this did not significantly change our results and
conclusions.
• A summary of the demographic, clinical, MRI, and

network variables for each group is given in Table 1
(for one HC and two MS subjects not all tests could
be administered).

FIGURE 3 | Tractography results from HC were registered to MNI152
standard space at 1 mm resolution to create a population map for each tract.
Here are shown the superimposed population maps of the tracts connecting
the left hemisphere of the cerebellum to the DMN regions of the right cerebral
cortex. On the left are shown cerebello-thlamo-cortical tracts, while on the
right are shown cortico-ponto-cerebellar tracts. The voxel color (from dark red
to yellow) represents the frequency of occurrence in the specific tract. Light
blue regions identify the most consistent part of the tracts, which are common
to at least 50% of HC. In the unthresholded population maps, it can be noted
that these tracts originate from (cerebello-thalamo-cortical tracts) and project
to (cortico-ponto-cerebellar tracts) the posterior lobe of the cerebellum that is
associated to cognitive functions.
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FIGURE 4 | The population map of each tract is thresholded at 50% to select
its most consistent part across subjects and to eliminate spurious streamlines.
Here are shown all 32 resulting tract masks in MNI 1 mm standard space.
These tract masks were subsequently registered to MS patients to compute
tract-averaged diffusion FA. Tracts connecting cerebral nodes are displayed in
blue, while cortico-cerebellar connections are displayed in red.

TABLE 1 | Summary of demographic and clinical data and MRI and network
variables.

HC MS CIMS CPMS

Participants
(M/F)

10/12 24/44 7/13 16 / 30

Age (years) 36.5 ± 10.8 46.7 ± 11.0 50.3 ± 10.6 45.3 ± 11.0

Disease
duration (years)

n.a. 16.7 ± 10.4 21.9 ± 12.6 14.6 ± 8.5

Median EDSS
(range)

n.a. 4.5 (1–8.5) 6.0 (1–8.5) 2.0 (1–7.5)

SDMT 62.6 ± 10.8 47.1 ± 12.5 32.1 ± 5.9 53.6 ± 8.3

HADS-A 5.4 ± 4.2 6.6 ± 4.0 6.9 ± 4.0 6.3 ± 3.8

HADS-D 3.0 ± 4.0 5.9 ± 3.6 6.8 ± 3.3 5.4 ± 3.6

NART-predict 108.9 ± 9.3 107.4 ± 10.8 103.2 ± 9.8 109.2 ± 10.8

BPF 0.82 ± 0.02 0.80 ± 0.02 0.79 ± 0.02 0.80 ± 0.02

WM-LL (ml) n.a. 8.08 ± 9.74 11.85 ± 14.02 6.34 ± 6.72

WM-FA 0.36 ± 0.04 0.24 ± 0.02 0.23 ± 0.03 0.24 ± 0.02

GE(CBL-DMN) 0.34 ± 0.04 0.29 ± 0.03 0.28 ± 0.04 0.29 ± 0.02

GE(DMN) 0.36 ± 0.04 0.29 ± 0.04 0.27 ± 0.04 0.30 ± 0.03

GE(CBL) 0.13 ± 0.02 0.12 ± 0.01 0.11 ± 0.01 0.12 ± 0.01

Results are shown as mean ± standard deviation unless otherwise reported.

Significant differences between groups are highlighted in
Figures 5, 6 and Table 2. HC controls and MS patients mainly
differed in the SDMT and HADS-D scores, while EDSS proved to
be the most significantly different measure between CIMS and
CPMS. However, the GLM showed that the subdivision of the
MS population in CIMS and CPMS based on SDMT scores is
significant even when correcting for EDSS (p < 0.001).

All MRI measures, and GE in particular, resulted to be
significantly different between HC and MS, whereas only BPF
showed a significant difference between CIMS and CPMS.

Supplementary Table 1 reports the FA mean value and
population standard deviation for each tract in each condition.
Statistically significant differences of mean FA values between
HC and MS were found for most tracts, while only few of them
significantly distinguish between CIMS and CPMS: in particular,
the most significant differences were found for those tracts
linking the right MTG and AG with the right PCC and for the

part of the corpus callosum connecting the left and right AG.
FA mean values of each tract are reported for each group also
in Supplementary Figure 1, where error bars were obtained by
applying the standard propagation of error.

Associations
No significant correlation between SDMT scores and MRI,
demographic or clinical variables was observed in HC (Table 3).
In MS, however, highly significant correlations (ρ ≈ 0.5 and
p < 0.001) were found for FA-weighted metrics, EDSS and BPF
and significant correlations were also found for age, disease
duration and WM-LL, although with lower coefficients (ρ ≈ 0.3
and p< 0.01). In the CIMS group: the strongest correlations with
SDMT performance were found for GE(CBL-DMN), GE(DMN),
and GE(CBL) (ρ > 0.8 and p < 0.001); significant and high
correlations were also found for WM-FA and BPF; no significant
correlation was found between SDMT and EDSS. In the CPMS
group: BPF showed the best association with SDMT performance
(ρ = 0.57 and p < 0.001); significant correlations were found also
for GE(CBL-DMN), GE(DMN), GE(CBL), and EDSS. Figure 7
graphically shows the association between SDMT and GE(CBL-
DMN) for HC, CIMS, and CPMS.

In the CIMS group, GE(DMN) and GE(CBL) explained 67
and 64% of SDMT variance respectively, while GE(CBL-DMN)
increased this value to 76%. However, in the CPMS group
network GE could explain only 23% (DMN), 27% (CBL), and 26%
(CBL-DMN) of the SDMT variability (Table 3).

Since the CBL-DMN represents the most comprehensive
model and since the results it provided in both CIMS and
CPMS were better than or similar to those obtained with DMN
and CBL separately (Table 3), we considered only GE(CBL-
DMN) for the following partial correlation analysis and, later, for
regression analysis.

Partial correlation analysis showed that the statistical
significance of the correlation between SDMT and GE(CBL-
DMN) is preserved within each group of patients also when
controlling for EDSS, S̄, S̄DMN, or S̄CBL (Supplementary Table 2).

Regression
The multivariable regression analysis of SDMT variability that
considered GE(CBL-DMN) and clinical scores (age, EDSS,
HADS-A, HADS-D, NART, disease duration) as explanatory
variables in a single model showed that this model was statistically
significant within the whole MS group (p < 0.001, R2 = 0.51,
R2 corrected = 0.45) and also within CIMS (p = 0.002,
R2 = 0.81, R2 corrected = 0.70) and CPMS (p = 0.002, R2 = 0.43,
R2 corrected = 0.32) subgroups. In particular, significant
contributions were provided by GE(CBL-DMN) (p = 0.002),
NART scores (p = 0.007), and EDSS scores (p = 0.034) for MS,
while GE(CBL-DMN) resulted the only significant predictor of
SDMT variability for both CIMS and CPMS (p < 0.001 and
p = 0.004 respectively).

Multivariable models of SDMT variability built with pairs of
explanatory variables, where GE(CBL-DMN) is tested against
each clinical and MRI variable, showed that in CIMS GE(CBL-
DMN) remained the only significant predictor of the SDMT
variability (Table 4). However, for CPMS patients EDSS and
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FIGURE 5 | Boxplots representing the summary of clinical scores in the different groups of subjects. Statistically significant differences between groups are indicated
with ∗p < 0.05 and ∗∗p < 0.01 according to results obtained with ANOVA post hoc tests or T-tests according to the specific case (see section “Statistical Analysis”
and Table 2). It can be observed that SDMT and depression (HADS-D) are significantly different in MS patients and HC. EDSS and, to a lesser extent, disease
duration and NART can discriminate between CIMS and CPMS.

FIGURE 6 | Boxplots representing the summary of MRI metrics in each group of subjects. Statistically significant differences between groups are indicated with
∗p < 0.05 and ∗∗p < 0.01 according to results obtained with ANOVA post hoc tests or T-tests according to the specific case (see section “Statistical Analysis” and
Table 2). It can be observed that all measures can distinguish between MS patients and HC. BPF is significantly reduced in CIMS with respect to CPMS. Despite the
absence of statistical significance, a similar trend can be observed also for GE and WM-FA.
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TABLE 2 | T-test and one-way ANOVA were used to test differences between
groups.

T-test (HC
vs. MS)

ANOVA F (HC vs.
CIMS vs. CPMS)

ANOVA
post hoc

T-test
(CIMS vs.

CPMS)

T-test (HC vs.
CIMS, HC vs.

CPMS)

Age ∗∗ F (2,83) = 7.90 ∗∗ ∗∗a,b / /

Disease
duration

/ / / ∗ /

Median
EDSS

/ / / ∗∗ /

SDMT ∗∗ / / / ∗∗ (HC-CI)
∗∗ (HC-CP)

HADS-A n.s. F (2,83) = 0.76 n.s. n.s. / /

HADS-D ∗∗ F (2,83) = 6.04 ∗∗ ∗b
∗∗a

/ /

NART-
predict

n.s. F (2,83) = 2.46 n.s. ∗c / /

BPF ∗∗ F (2,82) = 9.93 ∗∗ ∗c
∗∗a,b

/ /

WM-LL / / / n.s. /

WM-FA ∗∗ F (2,83) = 216.03 ∗∗ ∗∗a,b / /

GE(CBL-
DMN)

∗∗ F (2,83) = 27.53 ∗∗ ∗∗a,b / /

GE(DMN) ∗∗ F (2,83) = 37.79 ∗∗ ∗∗a,b / /

GE(CBL) ∗∗ F (2,83) = 10.53 ∗∗ ∗b
∗∗a

/ /

A T-test was first run between HC and MS and results are reported in the first
column (∗∗p < 0.01, ∗p < 0.05, n.s.: not significant). One-way ANOVA was used
to test differences between HC, CIMS, and CPMS. F- and p-values are reported
in the second column, while the third column reports results obtained from ANOVA
post hoc tests (LSD) between pairs of groups (within this column only significant
findings are reported). The ANOVA was not run to test differences of SDMT
scores between CIMS and CPMS that were defined on the basis of SDMT itself
or for disease-related measures that were not performed in HC; T-tests were,
instead, run for the relevant group pairs. The fourth column reports results for
CIMS-CPMS comparisons of disease-related measures. The last column shows
significant differences in SDMT scores between HC and CIMS and between HC
and CPMS resulting from T-tests. aSignificant difference between HC and CIMS;
bSignificant difference between HC and CPMS; cSignificant difference between
CIMS and CPMS.

BPF also contributed to the model by increasing the R2 value
from 0.26 obtained with the only GE(CBL-DMN) to 0.34
and 0.37 respectively.

Multivariable regression analysis of SDMT variability
performed considering GE(CBL-DMN) and individual measures
of FA variability of tracts (S̄, S̄DMN , and S̄CBL) as explanatory
variables showed that none of these last variables provides a
significant contribution to the model in any group of patients.

DISCUSSION

In this study we demonstrate that diffusion FA and GE of the
DMN-CBL network better explains cognitive performance of MS
compared to GE of DMN or CBL on their own; this confirms
the importance of the overall structural integrity of the extended
DMN-CBL in supporting healthier cognition as measured by
SDMT. Indeed, in CIMS patients the DMN structural GE emerges
already as the best predictor of cognitive performance with

respect to other MRI metrics and clinical scores, and extending
the DMN to include the cerebellar nodes increases further the
strength of such association. Interestingly, in CPMS patients
SDMT performance is better explained by brain atrophy and,
to a lesser extent, disability. The greater association between GE
and SDMT in CIMS compared with CPMS is consistent with
the concept of network collapse, as proposed by Schoonheim
et al. (2015), which would be very interesting to confirm with
longitudinal studies.

Multiple sclerosis has multiple effects on brain tissue including
hindered neuronal communication, which has been already
proposed as a key mechanism for the development of cognitive
impairment in MS (Dineen et al., 2009; Bozzali et al., 2013):
results from regional observations in MS indicate that when
the structural integrity of DMN WM bundles (as assessed,
for example, by diffusion tensor metrics) is compromised, this
reflects on cognitive performance (Roosendaal et al., 2009, 2010;
Rocca et al., 2010; Hawellek et al., 2011; Zhou et al., 2014).
However, damage in MS is highly subject-specific and evidence
of alterations of the tissue diffusion properties of individual WM
bundles could provide only modest correlations.

Therefore, it became clear that a local approach is not
sufficient to describe the decline of a specific cognitive domain.
Moreover, given the nature of the MS damage and the interactive
behavior of brain networks, one could hypothesize that different
subjects with different portions of the DMN structure affected,
may even result having a similar global derangement.

The level of alteration of a network can be assessed
through the application of network science methods: when
applied to brain networks they can summarize local damage
affecting different tracts linking network nodes in a number
of comprehensive metrics. Network science has already been
applied to study brain networks topology in MS at different
scales (He et al., 2009; Shu et al., 2011, 2016; Pardini et al.,
2015; Llufriu et al., 2017), thus proving that network metrics
can capture MS-induced abnormalities and outperform non-
network-based MRI measures in the prediction of disability
(Pardini et al., 2014, 2015).

Brain functions are thought to be supported by specific sub-
networks and, therefore, the structural pathological correlates
of specific impaired functions are expected to lie in the
corresponding sub-network (Menon, 2011; Griffa et al., 2013).
Hence, this work focused on the DMN, a sub-network that
has been associated with information processing speed (Rocca
et al., 2010; Sumowski et al., 2010; Forn et al., 2013; Bonavita
et al., 2015), rather than addressing the whole-brain network,
which may be more appropriate to characterize the macroscopic
patterns of the disease. Moreover, the whole-brain network
approach may not be sufficiently specific to link the clinical
performance and the structural alterations induced by MS
(Cercignani and Gandini Wheeler-Kingshott, 2018).

Within this framework, several metrics could be used. Indeed,
GE was chosen as it is a measure of network integration, thus
capturing overall network damage and evaluating the efficiency of
communication between distant regions of the DMN connected
by long association fibers. Directed nodal strength would convey
very similar results as GE (Supplementary Table 5), while
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TABLE 3 | Correlations of MRI measures and clinical data with SDMT.

HC MS CIMS CPMS

GE(CBL-DMN) 0.13 (0.597) 0.02 0.54 (<0.001) 0.29 0.87 (<0.001) 0.76 0.51 (<0.001) 0.26

GE(DMN) 0.15 (0.524) 0.02 0.57 (<0.001) 0.33 0.82 (<0.001) 0.67 0.48 (0.001) 0.23

GE(CBL) 0.07 (0.785) <0.01 0.53 (<0.001) 0.28 0.80 (<0.001) 0.64 0.52 (<0.001) 0.27

WM-FA 0.16 (0.508) 0.02 0.47 (<0.001) 0.22 0.73 (<0.001) 0.53 0.37 (0.012) 0.13

Age −0.09 (0.692) 0.01 −0.32 (0.009) 0.10 −0.17 (0.469) 0.03 −0.28 (0.056) 0.08

EDSS n.a. n.a. −0.52 (<0.001) 0.27 −0.04 (0.861) <0.01 −0.46 (0.001) 0.21

Disease duration n.a. n.a. −0.35 (0.004) 0.12 −0.27 (0.246) 0.07 −0.12 (0.416) 0.02

WM-LL n.a. n.a. −0.39 (0.002) 0.15 −0.45 (0.055) 0.20 −0.31 (0.050) 0.09

BPF −0.13 (0.599) 0.02 0.55 (<0.001) 0.31 0.63 (0.004) 0.39 0.57 (<0.001) 0.33

NART-predict 0.04 (0.873) <0.01 0.32 (0.010) 0.10 0.21 (0.376) 0.04 0.18 (0.221) 0.03

HADS-A 0.23 (0.330) 0.05 −0.09 (0.476) 0.01 −0.17 (0.469) 0.03 −0.03 (0.872) <0.01

HADS-D 0.09 (0.695) 0.01 −0.30 (0.016) 0.09 −0.29 (0.220) 0.08 −0.24 (0.109) 0.05

Person correlation coefficients are reported along with p-values (in brackets) and the corresponding R2 (each second column). Correlations with p-value < 0.01 are
highlighted in bold.

TABLE 4 | Linear regression analysis in CIMS and CPMS patients.

Model predictors R R2 R2 corrected Significance of GE(CBL-DMN) Significance of the other variable

CIMS GE(CBL-DMN), Age 0.87 0.76 0.74 <0.001 0.793

GE(CBL-DMN), EDSS 0.87 0.76 0.74 <0.001 0.851

GE(CBL-DMN), Disease duration 0.87 0.76 0.74 <0.001 0.931

GE(CBL-DMN), WM-LL 0.88 0.77 0.74 <0.001 0.630

GE(CBL-DMN), WM-FA 0.88 0.78 0.75 <0.001 0.326

GE(CBL-DMN), BPF 0.88 0.78 0.75 <0.001 0.634

GE(CBL-DMN), NART-predict 0.87 0.76 0.74 <0.001 0.804

GE(CBL-DMN), HADS-A 0.87 0.76 0.74 <0.001 0.847

GE(CBL-DMN), HADS-D 0.88 0.78 0.75 <0.001 0.296

CPMS GE(CBL-DMN), Age 0.57 0.32 0.29 <0.001 0.063

GE(CBL-DMN), EDSS 0.59 0.34 0.31 0.004 0.025

GE(CBL-DMN), Disease duration 0.51 0.26 0.23 <0.001 0.867

GE(CBL-DMN), WM-LL 0.52 0.27 0.23 0.004 0.944

GE(CBL-DMN), WM-FA 0.51 0.26 0.23 0.009 0.990

GE(CBL-DMN), BPF 0.61 0.37 0.35 0.087 0.008

GE(CBL-DMN), NART-predict 0.53 0.28 0.25 <0.001 0.319

GE(CBL-DMN), HADS-A 0.51 0.26 0.23 <0.001 0.813

GE(CBL-DMN), HADS-D 0.54 0.29 0.26 <0.001 0.192

Symbol digit modalities test is considered as the dependent variable and GE(CBL-DMN) is tested against each other MRI or clinical variable. The second last column
reports the p-values associated with GE(CBL-DMN) within each model and the last column reports the p-value associated with each second predictor. GE(CBL-DMN)
holds as the only significant predictor against each other variable in CIMS, while in CPMS EDSS and BPF are also significant predictors of SDMT performance.

betweenness centrality (which is another local network measure
that assumes discrete values) would result in very skewed data
when assessed over a limited number of nodes like in our case,
hence loosing sensitivity to subtle differences in pathological
presentations (Supplementary Table 4). Similarly, several edge-
weights could have been chosen for this work. Mean FA
was considered most favorably as link weight because of its
recognized sensitivity to MS-induced damage in both focal
lesions and NAWM (Werring et al., 1999; Kutzelnigg et al.,
2005). The widespread microstructural damage affecting NAWM
has been linked to disability in MS (Dineen et al., 2009; Hulst
et al., 2013; Deppe et al., 2015); moreover, such damage is
independent of WM lesion location and, in the framework
of connectomics, it could impact the function of networks

as much as focal lesions (Cercignani and Gandini Wheeler-
Kingshott, 2018). Our results indeed suggest that FA-weighted
GE captures MS-related damage affecting the DMN circuit
and that it significantly correlates with SDMT performance
in MS. Consistently with previous studies, we found that
other measures like WM-FA, BPF and EDSS also contribute
to SDMT scores (Louapre et al., 2014; Deppe et al., 2015),
suggesting that altered microstructure, atrophy and the disease
course influence cognition in MS. It remains to be discussed
whether the DMN connectivity to the cerebellum can further
strengthen the results.

The cerebellum has been shown to have an impact on
MS-related cognitive impairment (Weier et al., 2014, 2015):
in particular, a link has been established between information
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FIGURE 7 | Scatter plots representing SDMT vs. GE (CBL-DMN) for HC (left), CPMS (center), and CIMS (right). Solid black lines represent the linear regression
model fit, while dashed red lines represent 95% confidence intervals. It is noteworthy that GE (CBL-DMN) predicts SDMT performance progressively better going
from HC (no significant correlation) to CPMS (ρ = 0.51, p < 0.001) to CIMS (ρ = 0.87, p < 0.001). The difference between correlation coefficients for CPMS and
CIMS is statistically significant (p < 0.01), as verified by applying Fisher z-transformation.

processing speed deficit, posterior lobules of the cerebellum
and cerebellar peduncles (Forn et al., 2011; Moroso et al.,
2017a,b). Moreover, it has been hypothesized that the alteration
of the cortico-cerebellar pathways supporting automation and
attention processes may lead to poor cognitive performance
(Valentino et al., 2009; Bonnet et al., 2010). Our correlation
analysis shows that GE(CBL-DMN) contribution to SDMT
variance is greater than (in CIMS) or comparable to (in CPMS)
the contribution provided by GE(DMN) or GE(CBL) alone.
In particular, the inclusion of the cerebellum and of cortico-
cerebellar tracts increased the explained SDMT variance R2 from
67 and 64% respectively obtained with GE(DMN) and GE(CBL)
to 76% in CIMS patients, while GE(CBL-DMN), GE(DMN), and
GE(CBL) provided almost equal contribution to SDMT variance
for CPMS, respectively R2 = 0.26, R2 = 0.23, and R2 = 0.27.
This indicates that the DMN network connectivity with the
cerebellum, rather than the cortical or the cerebellar pathology
per se, is functionally relevant to SDMT performance in MS
and highlights the need to address networks as a whole rather
than focusing on separate components (see also Supplementary
Table 3). Furthermore, these results also point to the fact that
the role of specific networks may evolve during the course of
a disease: the DMN, in fact, seems to have a different weight
on cognitive performance at different stages of the disease. In
patients with preserved cognitive functions (e.g., in CPMS), the
damage accumulated since the disease onset might affect the
DMN network partially, hence preserving its functioning. When
presenting with worse cognitive functions (e.g., as in CIMS),
captured by a worse SDMT score, the accumulated structural
damage to the DMN reaches a critical threshold, beyond which
the network functioning collapses and the cognitive performance
worsens more rapidly (Schoonheim et al., 2015; Shu et al., 2016;
Cercignani and Gandini Wheeler-Kingshott, 2018).

Here, interestingly it is to notice that per se GE(CBL-
DMN) is not significantly different when comparing directly
CIMS and CPMS, result which might depend on a number
of factors, including differences in group size (Figure 6). FA

variability along tracts may represent a possible confounding
factor. However, partial correlation and regression analysis
showed that tract FA variability, as expressed by S̄, S̄DMN ,

and S̄CBL, does not drive the different trend of associations
between SDMT and GE observed in CIMS and CPMS. The
CIMS and CPMS groups have also significantly different median
EDSS, although the EDSS range is comparable between both
groups and no correlation was found between SDMT and
EDSS scores in CIMS. WM-FA and GE(CBL-DMN) are key
factors of the poor SDMT performance in CIMS patients,
with unmatched ρ correlation coefficients ranging respectively
from 0.73 to 0.87 (p < 0.001). The network efficiency alone
provided R2 = 0.76 and linear regression analysis showed
that GE(CBL-DMN) is the best predictor of poor cognitive
performance, while no other variable adds a relevant contribution
to the percentage of the explained SDMT variance. However,
in CPMS patients, BPF and EDSS have also got a positive
effect on SDMT performance, as shown by results of the
linear regression model that includes these variables as well
as GE; such results may be interpreted by stating that SDMT
performance in CPMS patients is driven by both a “milder”
alteration of the network efficiency and the general disease
course captured by EDSS and BPF. Therefore, we believe this
defines a possible distinct role of the CBL-DMN network in
SDMT performance at different cognitive stages. In particular,
our results show that the association between GE(CBL-DMN)
and SDMT performance is progressively strengthened with
increasing network derangement. In keeping with this statement,
in HC the CBL-DMN structural integrity as assessed by
GE(CBL-DMN) is untouched and the SDMT performance
is completely unrelated to GE; in CPMS, the SDMT scores
are only partially dependent on GE(CBL-DMN) as other
factors associated with the general disease course contribute
to performance; in CIMS the association between GE(CBL-
DMN) and SDMT scores becomes much stronger (Figure 7)
implying that CBL-DMN assumes a more prominent role in
cognitive performance.
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Limitations
Our work is not without limitations. Here, we
report an important association between GE(CBL-
DMN) and SDMT performance in MS, but this is
a cross-sectional study, so causality between network
microstructural damage and SDMT worsening can only
be hypothesized and a longitudinal study is warranted in
the future.

Network science provides many different measures and
in brain network studies several different link weights
can be used, but it is not clear yet which combination
could be the best to capture clinically relevant network
abnormalities in MS. Here, we chose FA-weighted GE as an
exemplary measure to capture the overall network damage.
We also addressed local network measures like the directed
nodal strength and the betweenness centrality, but these
measures did not provide further information to our results
(Supplementary Tables 4, 5). Further work is required
to clarify which network measures are most sensitive to
pathological damage and which are most associated to MS-
related impairment.

With regards to link weights, the diffusion tensor
model that we used has been shown to be sensitive
but not-specific to the different pathological substrates of
MS (Cercignani and Gandini Wheeler-Kingshott, 2018).
Alternative frameworks, like model-free approaches or
higher-order diffusion models, could provide metrics
more specific to pathology-related microstructural damage:
these metrics combined with network measures could
give a better insight into the mechanisms leading from
pathology alterations at the cellular level to subsequent
functional impairment.

In the present study we only used one measure (FA) to
weight DMN connection, but multimodal approaches using
different imaging modalities, for example combining different
structural measures (Pardini et al., 2015) or structural and
functional imaging (Zhou et al., 2014; Romascano et al., 2015)
have been proposed and may further improve our ability to
explain cognitive outcomes. This could be scoped in future work
and composite weights could be adopted.

Finally, a single neuropsychological test (the SDMT) was here
used to divide the MS population in CIMS and CPMS groups
of patients. The SDMT was tested against extensive batteries
of neuropsychological tests developed to detect cognitive
impairment in MS and it provided very promising results
(Parmenter et al., 2007; Van Schependom et al., 2014). However,
it is also clear that a single test cannot capture disability in all
cognitive domains and further studies are demanded to validate
results presented here considering more extensive assessments of
patients’ cognitive status.

CONCLUSION

We found that DMN structural GE [in particular GE (CBL-
DMN)] is reduced in MS and this is increasingly linked

with SDMT performance as cognitive impairment becomes
apparent. Concurrently, with increasing cognitive impairment,
GE(CBL-DMN) dominates over more global measures of
brain pathology (WM-FA and BPF) or disability (EDSS).
We showed that connections between the cerebellum and
the DMN are relevant to SDMT performance: cortico-
cerebellar connections within the DMN play an important
role in the network organization and their MS-related
structural alteration affects cognitively-relevant network
functioning. These results warrant future longitudinal studies
to assess the clinical translation potential of network
measures for the early detection of cognitive processing
speed decline.
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