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Mast cell activation plays an important role in stress-mediated disease pathogenesis.
Chronic stress cause or exacerbate aging and age-dependent neurodegenerative
diseases. The severity of inflammatory diseases is worsened by the stress. Mast
cell activation-dependent inflammatory mediators augment stress associated pain and
neuroinflammation. Stress is the second most common trigger of headache due to mast
cell activation. Alzheimer’s disease (AD) is a progressive irreversible neurodegenerative
disease that affects more women than men and woman’s increased susceptibility to
chronic stress could increase the risk for AD. Modern life-related stress, social stress,
isolation stress, restraint stress, early life stress are associated with an increased
level of neurotoxic beta amyloid (Aβ) peptide. Stress increases cognitive dysfunction,
generates amyloid precursor protein (APP), hyperphosphorylated tau, neurofibrillary
tangles (NFTs), and amyloid plaques (APs) in the brain. Stress-induced Aβ persists for
years and generates APs even several years after the stress exposure. Stress activates
hypothalamic-pituitary adrenal (HPA) axis and releases corticotropin-releasing hormone
(CRH) from hypothalamus and in peripheral system, which increases the formation of Aβ,
tau hyperphosphorylation, and blood-brain barrier (BBB) disruption in the brain. Mast
cells are implicated in nociception and pain. Mast cells are the source and target of CRH
and other neuropeptides that mediate neuroinflammation. Microglia express receptor
for CRH that mediate neurodegeneration in AD. However, the exact mechanisms of
how stress-mediated mast cell activation contribute to the pathogenesis of AD remains
elusive. This mini-review highlights the possible role of stress and mast cell activation in
neuroinflammation, BBB, and tight junction disruption and AD pathogenesis.

Keywords: Alzheimer’s disease, amyloid plaques, chronic stress, corticotropin releasing hormone, mast cells,
neurodegenerative disease, neuroinflammation
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INTRODUCTION

Stress is our body’s normal physiological response to any
adverse changes in our environment to deal and overcome these
challenges (Bisht et al., 2018). Chronic diseases can disrupt the
quality of normal life and day-to-day life activities that can lead to
psychological stress. Stress induces the onset and progression of
pain, cognitive disorder, and psychiatric disorders. Stress induces
disease(s) and the disease (s) in turn can exacerbate the stress
severity in a vicious cycle (Justice, 2018). Chronic stress due to
continuous wars, military service, chronic diseases, dementia,
neurotrauma, poor sleep habits, immobilization, isolation, noise,
high workload, unstable job, annoying work environment,
difficult spouse; acute stress due to chronic diseases, modern
life conditions, immobilization, isolation, noise, physical,
visual, emotional, social, environmental, temperatures (hot
and cold), odors, certain foods, new challenges, competitions,
presentation at work, and intermittent fasting can induce
several unwanted changes in the central nervous system (CNS).
These changes include cognitive disorders, neuroinflammation,
altered secretion of growth factors, high proinflammatory
cytokines and chemokines secretion, increased oxidative
stress, blood-brain barrier (BBB) disruption, ultrastructural
and molecular changes in tight junctions, neurovascular unit
(NVU), gliovascular unit (GVU), changes in the brain volume,
and neuroinflammation (Kempuraj et al., 2017a; Lurie, 2018).
Stress can also induce the changes in the peripheral system,
the CNS immune components, and affect immune cells such as
mast cells.

Blood-brain barrier disruption is associated with the
entry of proinflammatory cytokines, chemokines, immune
and inflammatory cells in to the brain, neuroinflammation
and neurodegeneration (Patel and Frey, 2015; Kempuraj
et al., 2017b). Stress and immune system interact bi-
directionally and enhance stress response even in the CNS
(Holzer et al., 2017). Mast cell activation induces glial cells
activation, neuroinflammation, stress response, and pain
signals (Theoharides et al., 2012; Kempuraj et al., 2017b;
Skaper, 2017; Skaper et al., 2017; Gupta and Harvima,
2018; Theoharides and Kavalioti, 2018). Stress conditions
inhibit immune response, but can worsen inflammatory
conditions including neuroinflammation (Esposito et al., 2001a;
Karagkouni et al., 2013). In fact, most of the CNS disorders
show disruption of BBB and tight junction proteins. Mast
cells and neurons are closely associated both anatomically
and functionally throughout the body including the CNS
(Forsythe, 2019). The number, distribution and the activation
status of mast cells in the brain is not constant, but varies due
to environment, behavioral changes and physiological state
(Forsythe, 2019). Neuroinflammation induces NVU and GVU
dysfunctions in many neuroinflammatory diseases (Li et al.,
2017). Increased levels of inflammatory cytokines, chemokines
and microglial activation contribute to the activation of pain
mechanisms (Lurie, 2018). The initial stress and pain responses
protect the body, however, chronic stress and chronic pain
can induce many health problems. In this mini-review, we
highlight the recent knowledge on the possible role of stress,

and mast cell activation in neuroinflammation, BBB and
tight junction disruption, onset, progression and severity of
Alzheimer’s disease (AD).

MAST CELLS, PAIN, AND
NEUROINFLAMMATION

Mast cells are implicated in neuroprotection, pain,
neuroinflammation and neurodegenerative diseases by releasing
several preformed and preactivated inflammatory mediators,
as well as release of newly synthesized cytokines, chemokines,
and neurotoxic molecules (Gordon and Galli, 1990; Kempuraj
et al., 2017b; Conti et al., 2018; Kempuraj et al., 2018a,b,c;
Ocak et al., 2018; Skaper et al., 2018). IL-1 family cytokines
such as IL-1β and IL-33 can activate mast cells and are
implicated in inflammation including neuroinflammation but
IL-37 is anti-inflammatory cytokine that can be used to treat
inflammatory conditions (Tettamanti et al., 2018; Varvara
et al., 2018). Neuroinflammation further leads to the release of
additional inflammatory cytokines, chemokines, prostaglandins,
activation of nociceptors, acute and chronic pain, headache, BBB
dysfunction, neuronal excitability, and glial and neuronal damage
in the CNS (Skaper et al., 2012, 2017; Skaper, 2016). Patients with
neurodegenerative diseases such as AD, and Parkinson’s disease
(PD), Huntington’s disease (HD) show painful symptoms, but
the origin of pain is variable in these patients (de Tommaso et al.,
2017; Matsuda et al., 2018).

About 38–75% of AD patients and 40–86% of PD patients
also show painful symptoms in addition to other clinical
disorders (de Tommaso et al., 2016). The International
Association for the Study of Pain (IASP) describe, “pain is
an unpleasant sensory and emotional experience associated
with actual or potential tissue damage or described in terms
of such damage” (de Tommaso et al., 2016). The origin of
pain in neurodegenerative diseases is multifactorial involving
either nociceptive or neuropathic and sometimes both. The
prevalence of dementia and pain increases with aging (Defrin
et al., 2015). However, severe dementia and AD dementia
patients are unable to report the full extent and the severity
of pain, and therefore pain symptoms are not properly treated
in these patients. About 50% of community dwelling patients
and about 45–83% of dementia patients living in nursing homes
suffer from pain due to various causes including infections.
It is not clear if the drugs such as L-dopa or riluzole used
in the patients are effective in significant pain suppression
(de Tommaso et al., 2017). Therefore, pain management
needs careful evaluation in these neurodegenerative patients
(de Tommaso et al., 2017).

Mast cells may either directly influence nociceptive neurons
or through glial cells, based upon the location of mast cells,
and pain pathways in the brain (Caraffa et al., 2018; Gupta and
Harvima, 2018). Mast cell-derived TNF is known to sensitize
meningeal nociceptors and induce neuroinflammation (Caraffa
et al., 2018). Because of the presence of vicious positive-
feedback mechanism of mast cells and glial cells activation
with inflammatory mediators’ release, even a small number
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FIGURE 1 | Schematic diagram shows bidirectional communications between nociceptor neuron and mast cells during pain and inflammation. Mast cells are located
close to nociceptor/neurons. Several conditions activate mast cells to release preformed preactivated and granule stored neuroactive inflammatory mediators and
growth factors by degranulation or release many newly synthesized neuroactive and neuroinflammatory mediators. Mast cells express several receptors including
CRHR, NK1, S1P1, and S1P2 for the mediators released from the neurons and for the cytokines/chemokines and various growth factors. Similarly, nociceptor
neurons also express receptors including PAR-2, TNF-R, IL-1R, histamine R1/2, and NK-1for mast cell released mediators. Histamine, serotonin, and prostaglandins
released from mast cells induce pain signals. Mast cell-released inflammatory mediators and growth factors induce pain signals and inflammation in many
neuroinflammatory and neurodegenerative diseases. CRHR, corticotropin-releasing hormone receptor; IL-1R, IL-1 receptor; NK-1, neurokinin-1; NGF, nerve growth
factor; PAR-2, protease-activated receptor-2; S1P, sphingosine-1 phosphate; TNFR, TNF receptor; TrkA, Tropomyosin receptor kinase A.

of mast cells can induce significant neuroinflammation in the
brain. In fact, about 50% of histamine and 25% of tumor
necrosis factor-alpha (TNF-α) are from the mast cells in the
rat brain that can cause nociception and pain signals in the
brain (Hendriksen et al., 2017; Gupta and Harvima, 2018).
Mast cell activation leads to the release of many neuropeptides
and inflammatory mediators including histamine, tryptase, and
prostaglandins that can act on nociceptor on sensory neurons
for the pain sensation (Schwartz, 1990; Levy et al., 2012;
Aich et al., 2015; Kempuraj et al., 2017b). Neurons in turn
release various neuropeptides, neuroinflammatory and analgesic
mediators that can activate mast cells in a vicious cycle. This
continuous process leads to an increased vascular permeability,
chronic pain, itch, inflammation, and neuroinflammation (Gupta
and Harvima, 2018; Figure 1). Mast cells are present at the
nerve terminals in the periphery, meninges, and vasculature
in the brain (Gupta and Harvima, 2018). Mast cells-associated
histamine, tryptase, nerve growth factor (NGF), sphingosine-1
phosphate (S1P) are involved in the pain sensation. Mast cell-
released histamine acts on nerve endings through histamine
1 receptor (H1R), H2R, H3R, and H4R. Therefore, anti-
histaminergic drugs show significant reduction in the pain

sensation in the humans. Nociceptive C and A-delta nerve
fibers respond to histamine in the peripheral system and in
the CNS, and transmit nociceptive signals to the thalamus and
then to the cortical and subcortical areas including amygdala
and striatum regions. Neuronal calcitonin gene related peptide
(CGRP) induces mast cells to release histamine. Mast cell
proteinase tryptase acts on nerve endings through protease-
activated receptor-2 (PAR-2) and increases the release of
substance P and CGRP, which in turn induce mast cell
activation and release inflammatory mediators (Figure 1).
Thus, increased mast cell activation is associated with high
levels of tryptase associated with severe pain (Gupta and
Harvima, 2018). Increased mast cell activation also increases
tryptase levels in the blood. Mast cells synthesize and secrete
NGF that can act again on mast cells as well as nerve
endings through its receptor tropomyosin receptor kinase
A (TrkA) and further release histamine and NGF from
mast cells. NGF level has been shown to be increased in
various inflammatory and painful conditions that are associated
with increased mast cell activation. Mast cells also release
S1P that can act on mast cells through S1P1 and S1P2
receptors and induce mast cell activation and degranulation
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(Gupta and Harvima, 2018). These mechanisms induce pain,
mast cells recruitment to the site of inflammation, and
chemokine release. Both NGF and S1P receptor antagonists
are shown to be useful in reducing the severity of pain in
inflammatory disorders. All these findings show that mast cells
are involved in pain sensation including headache associated
with neuroinflammation.

STRESS, PAIN, AND
NEUROINFLAMMATION

Chronic diseases can disrupt normal life and day-to-
day life activities that may lead to psychological stress.
Psychological stress, diet, hormonal fluctuations, and post-
traumatic stress disorder (PTSD) can induce inflammation
including sterile inflammation, oxidative stress, pain, and
neuroinflammation (Ferdousi and Finn, 2018; Garfin et al.,
2018; Ramachandran, 2018; Rometsch-Ogioun El Sount
et al., 2018). Increased BBB permeability causes edema,
increased S100B expression, and neuroinflammation (Koh
and Lee, 2014). Activated mast cells cause both neuronal
response and vascular response, as they are close to BBB
structure and neurons. Stress-induced mast cell activation
in dural vasculature plays an important role in the acute
and chronic headaches (Kandere-Grzybowska et al., 2003;
Shelukhina et al., 2017). Psychological stress conditions activate
neurons to release CGRP, substance P, and neurokinins that
activate mast cells and release many inflammatory mediators.
These inflammatory mediators activate nociceptors and pain
mechanisms (Forsythe, 2019). Recent reports indicate that
stress induces inflammation in many diseases such as allergic
diseases, eczema, fibromyalgia, mast cell activation syndrome,
irritable bowel syndrome, chronic fatigue syndrome, and autism,
and that the intranasal administration of natural flavonoid
compounds such as tetramethoxyluteolin, and luteolin with
Ashwaganda could inhibit inflammation, neuroinflammation
and the severity of neurodegenerative diseases (Theoharides
and Kavalioti, 2018; Theoharides and Tsilioni, 2018). Further,
this report also suggests that interaction of mast cells and
microglia in the hypothalamus could induce stress-mediated
neuroinflammation (Theoharides and Kavalioti, 2018). Other
natural plant products such as thymoquinone is known to
improve cognitive disorders and neuroprotective effects in
cerebral small vessel disease and can protect from stress effects
(Guan et al., 2018).

Chronic stress and chronic pain conditions are considered
as two sides of the same coin due to the similarities between
them, though they are actually different (Abdallah and Geha,
2017). Hypothalamus, hippocampus, amygdala and pre-frontal
cortex (limbic system) are important in learning process.
These regions process incoming nociceptive pain signals as
well as the signals from stress, and make signals for the
specific decision making. Limbic system and hypothalamic-
pituitary adrenal (HPA) axis are interconnected and regulate
stress response of the body. Both chronic stress and chronic
pain affect these regions and impair the functions. Factors

such as low income, poverty, uncompleted education and
unsuccessful occupation account for the socioeconomic stress-
mediated adverse behavior, depression, substance use, crime, and
obesity (Abdallah and Geha, 2017). Both chronic stress and pain
can reduce the hippocampal volume and the stress is a risk
factor for developing pain in the human (Chen et al., 2010;
Mutso et al., 2012; Abdallah and Geha, 2017). Dark microglia,
a newly identified microglia phenotype has been associated
with stress and AD (Bisht et al., 2018). These dark microglia
are structurally different from ionized calcium-binding adapter
molecule 1 (Iba1) expressed microglia, and they are increased at
the site of microglial alteration and activation such as around
amyloid plaques (APs), dystrophic neurons, triggering receptor
expressed on myeloid cells 2 (TREM2), in stress, aging, and
AD (Heneka et al., 2013; Zheng et al., 2017). Chronic stress
can induce BBB disruption and increase neuroinflammation
that can induce and worsen AD pathogenesis. BBB dysfunction
causes decreased beta amyloid (Aβ) entry from brain to
blood circulation. AD induces ultrastructural changes in the
endothelial cells, tight junction proteins, pericytes and astrocytes,
increase oxidative stress, neuroinflammation, and enhance Aβ

level by increasing β and γ-secretase activities. These changes
continue as positive-feedback loop and cause dementia and
cognitive disorders (Cai et al., 2011, 2018). Several acute
stress conditions are associated with severe headache. Migraine
headaches and neuroinflammation are worsened by stress
conditions (Ramachandran, 2018). Migraine is also known
to induce BBB permeability (Dreier et al., 2005). Previous
study has shown that acute immobilization stress induces the
activation of dura mast cells in C57BL/6 mice, but not in
neurokinin-1 receptor deficient (NK-1R KO) mice. Moreover,
stress-induced vascular permeability was reduced in mast cell
deficient mice (Kandere-Grzybowska et al., 2003). These studies
show that mast cells are important in stress-mediated adverse
effects in the CNS.

Corticotropin-releasing hormone (CRH)/corticotrophin
releasing factor (CRF) is expressed in neocortex, basal
ganglia, amygdala and hippocampus in the CNS (Zhang
et al., 2018). CRH released from the brain and peripheral
system can activate mast cells to release neuroinflammatory
mediators that can induce BBB permeability, neuroglial
activation and neuroinflammation (Esposito et al., 2002;
Theoharides and Konstantinidou, 2007; Figure 2). Mast cells
express functional CRH-receptor1 (CRH-R1) and CRH-
R2 receptors for CRH (Cao et al., 2005; Papadopoulou
et al., 2005; Kritas et al., 2014). Mast cells can synthesize
and release CRH that can activate mast cells and glial
cells to release inflammatory mediators (Kempuraj
et al., 2004; Yang et al., 2005). CRH-associated CRHR
activation leads to neuronal death through protein kinase
A (PKA), PKC, Ca++ and nuclear factor-kappa B (NF-
kB) pathways in the neuroglia in the CNS disorders (Chen
et al., 2014; Kritas et al., 2014). Stress-mediated CRH
induces spine loss and inhibit synapse formation and
inhibiting the dural secretion of chemokine (C-C motif)
ligand 5 (CCL5) from glia (Zhang et al., 2018). CRH can
directly affect brain endothelial cells and BBB permeability
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FIGURE 2 | Diagram showing stress can exacerbate neuroinflammation and neurodegeneration and accelerates the pathogenesis of AD. Various chronic stress and
acute stress conditions differentially activates hypothalamus and release CRH in the brain. Stress also activates immune and inflammatory response in the brain that
leads to the activation of immune and inflammatory cells, and glia associated with neuroinflammatory mediator release and pain. Stress increases the generation of
APP, Aβ, hyperphosphorylated tau, induces cognitive disorders, reduce brain volume, decrease growth factor expression, increases oxidative stress, and activates
mast cells and neuroglia. Several mast cell-derived inflammatory mediators induce severe migraine/headache in stress conditions. Stress affects BBB functions,
induces tight junction damage and tight junction protein rearrangements. Chronic stress can shorten the duration to develop AD and dementia and increases its
severity. APP, amyloid precursor protein; Aβ, beta amyloid; BBB, blood-brain barrier; GLUT-1, glucose transporter-1; IL, interleukin; NFTs, GVU, gliovascular unit;
neurofibrillary tangles; NT, neurotensin; NVU, neurovascular unit; ZO, zonula occluden; ICAM-1, intercellular adhesion molecule-1; VCAM-1, vascular cell adhesion
molecule-1.

(Esposito et al., 2003). These reports indicate that stress can
induce neuroinflammatory pathways.

STRESS ASSOCIATED CHANGES IN THE
BBB, NEUROVASCULAR UNIT,
GLIOVASCULAR UNIT, TIGHT
JUNCTION, AND ADHERENS JUNCTION

About 600 km length of capillaries and micro vessels supply
blood to the brain that consists of about 100 billion neurons.
BBB is a special semi-permeable barrier that prevents, restricts
and selectively allows the movement of cells and substances
from the peripheral blood to the brain and brain to the blood
(Stamatovic et al., 2016). BBB mainly maintains and protects
healthy microenvironment in the brain, in addition to blood-
cerebrospinal fluid barrier (BCSFB) and arachnoid barrier.
Studies have shown the effects of acute and chronic stress
on BBB dysfunctions, but the studies on specific molecular
and ultrastructural changes at the tight junction proteins
and adherens junction are insufficient, and thus not clearly
understood (Santha et al., 2015). Oxygen, carbon dioxide,

glucose, and amino acids can pass through BBB, but not
any foreign objects, microorganism and toxins. BBB and tight
junction proteins that exist between the vascular endothelial
cells regulate the passage of large, negatively charged molecules
through paracellular diffusion method, but the transcellular
transportation across the endothelial cells is regulated by many
transporter proteins, by endocytosis, and diffusion methods
(Kealy et al., 2018).

Blood-brain barrier consists of non-fenestrated special type
of endothelial cells, astrocytes, pericytes, innate immune cells,
and basement membrane. BBB with neurons and astrocytes
constitute NVU and GVU, respectively. Both neuroinflammation
and stress conditions can affect NVU and GVU in the brain.
The adjacent endothelial cells contact each other through
tight junction that consists of occludin, claudin-1, claudin-
3, claudin 5, claudin-12; zonula occludens (ZO) ZO-1, ZO-2,
ZO-3; junctional adhesion molecule-A (JAM-A), JAM-B and
JAM-C; adherens junction, and gap junction. Claudin-5 is the
predominant type among claudins (Lochhead et al., 2017). BBB
also includes adherens junction and gap junctions. Adherens
junction consists of transmembrane proteins such as cadherens
(Ve-cadherens, E-cadherens) and catenins (α catenin, β-catenin).
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Gap junction consists of many connexins such as connexin 37,
connexin 40, and connexin 43. Additionally, endothelial cell-
selective adhesion molecule (ESAM), partitioning defective-3
(Par-3), and Par-6 are other junction proteins similar to the
JAMs (Stamatovic et al., 2016; Lochhead et al., 2017). Tight
junction complexes such as claudins and occludins are connected
intracellularly to the actin filaments. Both tight junction and
adherens junction play different roles in BBB functions. Tight
junction provides barrier functions and the adherens junction
connects adjacent endothelial cells, promotes maturation of
these cells, and provides plasticity to the endothelial cells. The
junctional proteins can move and loose network connectivity
in BBB dysfunctions in neurological and neuroinflammatory
disorders. However, specific changes and relocation of junctional
proteins in neurological disorders including AD and in stress is
not yet clearly explored.

This emerging new field of research on BBB junctional
complexes could provide useful information to understand the
mechanism of neurological disorders such as in stress, stroke,
dementia, and AD, and to develop disease specific and efficient
therapeutic options. Pericytes are considered as the gatekeepers
of the BBB and play role in angiogenesis and BBB integrity (Presta
et al., 2018). Tight junctions prevent the flow of solutes through
paracellular route. Substances such as glucose move across BBB
through transcellular route by glucose transporter-1 (GLUT-1).
GLUT-1 is highly expressed in the endothelial cells in the brain
(DeStefano et al., 2018). Chronic social stress can cause BBB
dysfunction associated with the loss of tight junction proteins
such as claudin 5, and the entry of immune and inflammatory
cells and cytokines from the peripheral system to the brain
parenchyma (Menard et al., 2017).

Stress primarily affects hippocampus and frontal cortex in
the brain. Study has shown that restraint stress significantly
decreased claudin-5 and occludin in the hippocampus and frontal
cortex in rats, at different periods of stress exposure (Santha
et al., 2015). The same study also reported that restraint stress
increased GLUT-1 and decreased astrocytic glial fibrillary acidic
protein (GFAP) immunofluorescence in the frontal cortex. No
neuronal changes were observed after immobilization stress, as
determined by NeuN staining. Immobilization stress induces
structural alterations of BBB endothelial cells. These endothelial
cells show protrusions and detachment from the basement
membrane (Santha et al., 2015). Immobilization stress increases
the number of open junctions and damaged tight junctions,
increases the thickness of the basal membrane, and edema
of astrocytes in the hippocampus (Santha et al., 2015). Stress
and aging contribute to the cognitive decline and hippocampal
neurogenesis (Grilli, 2017).

Innate immune cells including granulocytes, macrophages,
microglia and mast cells are important in the regulation of barrier
functions of the BBB (Presta et al., 2018). Astrocytes, pericytes,
and microglia release cytokines and chemokines that influence
immune cells adhesion to the endothelial cells and migrate into
the brain. However, the exact details of interactions and functions
of these cells, and the ultrastructural and molecular mechanisms
involved are not yet clearly understood. Acute stress can activate
mast cells and increase the permeability of BBB (Kempuraj et al.,

2017a). However, deficiency of mast cells or inhibition of mast
cell activation by mast cell stabilizer disodium cromoglycate
(Cromolyn) show reduced BBB permeability indicating mast
cells play an important role in stress-induced BBB disruption
(Esposito et al., 2001a,b). Activated mast cells release TNF-α that
can downregulate the expression of the tight junction proteins
such as occludin, claudin-5, ZO-1 and adherens junction VE-
cadherin (Rochfort and Cummins, 2015). Other studies show that
inhibition of TNF-α protects in vitro model of BBB that consists
of endothelial cells and astrocytes, indicating the role of TNF-α
in the BBB and tight junction dysfunctions (Abdullah et al., 2015;
Rochfort and Cummins, 2015). A recent study show decreased
expression of occludin and claudin 5 in the brain endothelial
cells in vitro when incubated with mast cell tryptase (Zhou et al.,
2018). Stress conditions alter BBB endothelial cells, tight junction
proteins as well as the astrocytic end feet in neurodegenerative
diseases including PD (Dodiya et al., 2018). Stress activates HPA
axis through CRH and increases the release of glucocorticoids
that inhibit immune response in the body (Esposito et al., 2001a).
BBB dysfunction has been reported in many psychiatric disorders
(Kealy et al., 2018). Mind and body practice such as yoga, exercise,
nutritional supplement from plant products can reduce the level
of pro-inflammatory mediators and improve the severity of pain,
depression, anxiety, and cognition (Gu et al., 2018; Lurie, 2018).
Stress is known to accelerate the onset and clinical severity of
the experimental autoimmune encephalomyelitis (EAE) in mice
in which mast cells are activated (Chandler et al., 2002; Brown
and Hatfield, 2012). From the above reports, it is clear that stress
affects BBB, NVU, and GVU in the brain.

STRESS AND ALZHEIMER’S DISEASE

AD is an irreversible neurodegenerative disease characterized
by the presence of extracellular APs, intracellular neurofibrillary
tangles (NFTs) and hyperphosphorylated tau, neuronal loss, loss
of synapses, NVU and GVU changes, and oxidative stress in
the specific brain regions. About 5.7 million AD patients are
currently living in the United States. AD is the sixth leading
cause of death, and AD and AD dementia will cost $277
billion in the United States in 2018 (Alzheimer’s association,
Chicago, IL, United States). Several chronic inflammatory
conditions are associated with AD. There is no disease specific
treatment option for AD, as the disease mechanism, risk
factors, and the comorbid conditions are not yet clearly
understood. Neuroinflammation, activation of glia, elevation of
neuroinflammatory molecules and neuronal death are implicated
in Alzheimer’s disease (Zaheer et al., 2008, 2011; Ahmed et al.,
2017; Raikwar et al., 2018; Thangavel et al., 2018). Although the
deposition of extracellular APs and intracellular formation of
NFTs are traditionally considered as hallmarks of AD pathology
over a long period, extensive recent findings indicate that
several other factors including excessive neuroimmune and
neuroinflammatory components significantly contribute to the
pathogenesis of AD (Liberman et al., 2018; Saito and Saido,
2018). Therefore, the current drugs that target Aβ and NFTs
did not show disease modifying beneficial effects, though they
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improve cognitive dysfunctions to some extent in AD patients
(Fish et al., 2018). Newer approaches that target neuroimmune
and neuroinflammatory components along with NVU and
GVU are currently very active to treat neurodegenerative
diseases including AD.

Chronic stress is one of the risk factors associated with
dementia and AD pathogenesis (Rothman and Mattson, 2010;
Bisht et al., 2018). It has been reported that mild and moderate
stress conditions increase the level of amyloid precursor
protein (APP), generation of Aβ peptide, intracellular NFTs,
intracellular hyperphosphorylated tau, loss of synaptic plasticity,
and extracellular APs that are associated with AD pathogenesis
in the animals (Rothman and Mattson, 2010; Bisht et al., 2018;
Justice, 2018; Figure 2). Chronic mild stress in APPswe/PS1de9
mice show depressive behaviors, reduced sociability, excessive Aβ

level, glial cell activation and neuroinflammation in the brain
(Gao et al., 2018). Another recent study showed that chronic
noise stress altered gut microbiota, cognitive impairment, Aβ

deposition in young senescence-accelerated mouse prone 8
(SAMP8) (Cui et al., 2018). Stress can exacerbate cognitive
dysfunction and affect the functions of the hippocampus in
the brain. Increased levels of Aβ is reported, even after 1 h
of restraint stress. Further, stressful conditions such as modern
life stress, chronic isolation stress, chronic social stress, chronic
immobilization stress, and stress at early age show increased
level of APs in the animals, indicating that these stressors are
clearly associated with the pathogenesis of AD (Justice, 2018).
Increased phosphorylation of tau and NFTs formation in many
stress conditions lead to the damage of neurons and neuronal
loss in AD and dementia (Sierra-Fonseca and Gosselink, 2018).
The level of cortisol (corticosterone in rodents) is increased
in stress conditions as well as in patients with dementia and
cognitive impairment, indicating the relationship of stress and
AD (Justice, 2018). One long term study, for over 50 years,
with thirteen thousand patients reported that late-life depression
increases the risk of dementia and AD (Barnes et al., 2012).
Prolonged glucocorticoid levels in chronic stress can induce Aβ

and tau deposition in AD pathogenesis in humans (Dong and
Csernansky, 2009). Chronic stress also activates microglia that
contribute to AD pathogenesis (Satoh et al., 2017). Gender and
brain region-specific effects of stress has been reported previously
(Devi et al., 2010; Bisht et al., 2018). Chronic restraint stress or
repeated social defeat stress affects the release of neurotrophins
and decreases the level of brain-derived neurotrophic factor
(BDNF) that are important in neuronal growth, prevention of
synaptic loss and maintenance of neuronal plasticity (Roth et al.,
2011; Chiba et al., 2012). Pre-clinical stages in AD patients show
reduced levels of pro-BDNF and BDNF (Peng et al., 2005).
BBB dysfunction can activate β and γ secretase and generate
and increase Aβ level in AD (Cai et al., 2018). Aβ transport
through BBB is regulated by low density lipoprotein-1 (LRP-1)
and receptor for advanced glycation end products (RAGE)
expressed on the surface of the endothelial cells (Fei et al., 2018).
Loss of pericytes and astrocyte abnormalities increases Aβ level
in AD brains. Neurodegenerative diseases including AD show
structural alterations in the tight junction proteins. Increased
levels of RAGE associated Aβ toxicity induce damage to tight

junctions in AD. BBB tight junction proteins ZO-1, occludin,
claudin-1, claudin-3, claudin-5, claudin-12 and claudin-19 are
implicated in AD pathogenesis. Occludin expression is increased
in dementia and AD. Matrix metalloproteinases (MMPs) and
apolipoproteinE4 (ApoE4) affect tight junction integrity in AD.
Loss of tight junction integrity leads to increased permeability,
edema, micro hemorrhage, and neuronal death (Yang et al.,
2018). However, molecular and ultrastructural changes in BBB
and tight junction proteins in AD is not yet clearly studied.
Additionally, these changes in stress associated AD pathogenesis
is much more complicated and currently not clearly understood.
Moreover, studies also report that there is no association
between Aβ and BBB dysfunctions. Aβ increases the expression
of vascular adhesion molecules that are associated with the
recruitment of inflammatory cells into the brain in AD. Increased
hyperphosphorylation of tau generates NFTs that promote
neuroinflammation, neuronal damage and BBB dysfunctions in
AD. Childhood stress is associated with the development of
dementia, cognitive impairment and neurodegeneration in late
life in men (Donley et al., 2018). Further, a recent report indicate
that early life stress is associated with late-onset-AD dementia
(Lemche, 2018). However, it is not clear how the childhood stress
continues to influence the body to develop neurological disorders
in the late life. It is interesting to know if this effect is gender based
or any population specific.

It has been shown that stress also increases cognitive
dysfunctions in animals. Though several reports from animal
studies support the concept that stress induces and worsens
neuroinflammatory conditions including neurodegenerative
diseases, the exact mechanism and the direct evidence are not yet
clearly demonstrated, especially in the human diseases. This is
because the exact mechanism of stress and AD pathogenesis is
not yet clearly understood. Moreover, there are also significant
differences in the stress response in the humans. Additionally,
transgenic AD animal models show abnormal and aggressive
behaviors with different degrees/severity of stress effects (Justice,
2018). Thus, animal models are not very suitable models to
assess the stress effects that are much different in humans. It
is very difficult to compare the results obtained from animal
models of stress with the human patients due to these differences.
Recently, it has been suggested that stress hormone CRH can
be manipulated to reduce the risk of AD pathogenesis (Justice,
2018). Physical activities are associated with decreased risk of
developing many chronic diseases in the aged. A recent study
demonstrated that physical activity can reduce the chronic
effects of restraint stress and the severity of AD in the animal
model of AD (Yuede et al., 2018). There are several hypotheses
and mechanisms proposed to explain how stress can accelerate
AD pathogenesis. Aβ can activate neurons in the HPA axis
that can induce stress effects and AD pathogenesis through
cortisol. Mast cell activation-mediated inflammatory mediators
play an important role in neuroinflammation (Kempuraj et al.,
2016, 2017b; Hendriksen et al., 2017). Activation of neuroglia,
inflammatory mediator release and neuroinflammation induce
cognitive disorders, neurodegeneration and AD (Dansokho
and Heneka, 2017; Swanson et al., 2018). We and others have
previously reported that acute and chronic stress conditions can
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activate mast cells and that the increased mast cell activation
can induce the onset and progression of neurodegenerative
diseases including AD through the activation of neuroglia and
increased BBB permeability (Shaik-Dasthagirisaheb and Conti,
2016; Kempuraj et al., 2017a). In fact, mast cell inhibitor drug
Masitinib used as an adjunct therapy for mild to moderate AD
in clinical trial has been shown to improve cognitive functions
(Piette et al., 2011).

CONCLUSION AND POTENTIAL FUTURE
DEVELOPMENT

Mast cells are associated with inflammation and pain.
Stress conditions can activate mast cells and augment
neuroinflammation through the activation of glial cells and
neurons. Stress can induce HPA activation and mast cell
activation that lead to neuroinflammation, BBB disruption
and tight junction damage in the brain. Stress can induce the
generation of APP, hyperphosphorylation of tau, NFTs, Aβ

peptide, APs, oxidative stress, cognitive dysfunction, synaptic
loss, neuronal loss, inflammatory mediator expression, and

dementia in AD pathogenesis. Though several studies have
shown the association of stress with BBB dysfunction, and
tight junction protein alterations, the exact ultrastructural and
molecular changes in these structures are not yet clearly known.
Therefore, no effective therapeutic options are currently available
to treat these conditions. Elaborate and sustained studies are
needed to better understand these changes in stress associated
AD pathogenesis in humans.
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