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The development of advanced technology for microarray-based chromosomal studies
helped discover increased prevalence of genomic copy number variants (CNVs) in
individuals with autism spectrum disorder (ASD). Chromosomal microarray analysis
(CMA) is now an important tool for clinical investigations in patients with ASD. While
this technology helps identify high proportion of CNV positive individuals among
patients with autism, the clinical interpretation of such genomic rearrangements is often
challenged by inconsistent genotype-phenotype correlations. Possible explanations of
such inconsistencies may involve complex interactions of potentially pathogenic CNV
with additional (secondary) CNVs or single nucleotide variants (SNVs). Other involved
factors may include gender-specific effects or environmental contributions. Development
of risk models for interpreting such complex interactions may be necessary in order to
provide better informed genetic counseling to the affected families.

Keywords: CNV (copy number variant), autism spectrum disorder, clinical evaluation, genomic medicine, genetic
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CNVs IN ASD

The completion of the sequence of the human genome in the beginning of this century made it
possible to develop comprehensive advanced platforms for genomic studies based on microarray
hybridization (Riggs et al., 2014). Chromosomal microarray analysis (CMA) provides an advanced,
high resolution chromosomal evaluation, capable to detect submicroscopic chromosomal
rearrangements smaller than 100 kb. Using CMA, an increased prevalence of copy number
variants (CNVs) were reported in patients with autism. While in the pre-CMA era chromosomal
abnormalities were demonstrated in less than 5% of autism spectrum disorder (ASD; Schroer
et al,, 1998; Lord et al., 2000) with the use of CMA CNVs were reported in up to 11% of ASD
patients in early studies (Sebat et al., 2007; Christian et al., 2008; Marshall et al., 2008). These early
reports suggested that most apparently pathogenic CNVs in autistic patients occurred de novo.
The growing consensus that CMA is the most cost-efficient single genetic test for these patients
led to the recommendation of CMA as a first-tier testing for ASD in expert guidelines (Manning
et al., 2010; Miller et al., 2010; Shen et al., 2010; Schaefer et al., 2013). While CMA is now an
accepted initial test for all patients with ASD, there are still controversies regarding the clinical
interpreting of many such submicroscopic rearrangements, due to significant inconsistencies in
genotype-phenotype correlations.

The initial studies demonstrated higher prevalence of de novo CNVs in sporadic autism
patients and were thus supportive of their pathogenicity since they were not observed in
unaffected family members or in control individuals. However, the studies of multiplex families
showed inconsistencies in genotype-phenotype correlations: presence of CNVs in unaffected family
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relatives of probands or their absence in affected relatives
(Christian et al., 2008; Marshall et al., 2008). For instance, in
one of these reports out of 41 families with inherited CNVs
21 of the affected siblings were concordant and 12 were not
concordant for inheritance of the familial CNV (Christian
et al, 2008). These reports also demonstrated high genetic
heterogeneity—most CNVs were unique for a specific family.
Nevertheless, some recurrent rearrangements were shown to
be consistently associated with ASD in unrelated individuals
and families. Some of the commonly identified in the early
studies recurrent CNVs were duplications 15q11q13, deletions
and duplications 16p11.2 and deletions 22q11.2 (Sebat et al.,
2007; Christian et al., 2008; Marshall et al., 2008). In addition,
genes known to be associated with autism were identified in
autism-associated CNVs. Examples of identified affected genes in
these initial reports are OXY (oxytocin), SHANK3 and NLGN4
(Sebat et al., 2007; Christian et al., 2008; Marshall et al., 2008).
Currently over 40 recurrent CNVs consistently associated with
ASD are identified (Takumi and Tamada, 2018).

RECURRENT CNVs

Some recurrent chromosomal microdeletions associated with
ASD, were characterized prior to the CMA advancement
using more traditional chromosomal tests. Examples of such
rearrangements (microdeletion syndromes) are deletion
15q11-q13 associated with Prader-Willi and Angelman
syndromes, deletion 22q11.2 associated with Velo-Cardio-
Facial syndrome, deletion 22ql3 associated with Phelan-
McDermit syndrome. Typically, these previously known
microdeletions are larger and are in the ASD category
referred to as “syndromic autism” that is, the patients
with such abnormalities tend to have congenital anomalies,
facial dysmorphisms and other clinical manifestations in
addition to autism. These ASD associated microdeletion
syndromes almost always include intellectual disability, early
developmental delays, muscle hypotonia, or other clinically
recognizable manifestations. They are often recognized in
the genetic clinic prior to performing molecular studies and
may be confirmed with more targeted tests (Harony-Nicolas
et al., 2015; Burke and Maramaldi, 2017; Butler et al., 2018;
Prasad et al., 2018).

Some of the more recently discovered recurrent CNVs
associated with ASD were also found to have specific clinical
manifestations in addition to ASD (Bernier et al., 2016; D’ Angelo
et al,, 2016). However, most of them are difficult to suspect
on a clinical basis alone due to the variability of the associated
clinical features and their occasional presence in unaffected
individuals. The recurrent autism associated CNV's do not result
in autism in all carriers. Table 1 shows some of the most
commonly identified recurrent, autism-associated CNVs, the
correspondent prevalence of autism among their carriers and
the approximate proportion of unaffected carrier relatives. The
table illustrates the reduced penetrance for autism, and generally
for cognitive disabilities observed not only in the listed common
rearrangements, but also in the majority of any CMA identified
submicroscopic rearrangement.

CNV ASSOCIATED PATHWAYS

Both deletion and duplication of CNVs may result in decreased
gene expression by gene disruption. Gene duplications may also
lead to gene overexpression. Ultimately, autism associated CNV's
lead to abnormal expression of genes associated with neuronal
development. De novo CNVs that were identified in sporadic
autism individuals were found to often include genes associated
with dominant or X linked neurodevelopmental disorders (Pinto
et al, 2014). These genes converge in networks associated
with neuronal signaling, synapse development and chromatin
regulations (Pinto et al., 2014; Takumi and Tamada, 2018).

CNV INTERPRETATION IN THE AUTISM
CLINIC

The purpose of the clinical genetic evaluation of a child with
autism is to try answering some of the questions for the patient’s
family: Why did this happen? What will happen next? What are
the risks for future pregnancies? If a CNV is identified in patient
with ASD the following issues are consecutively addressed:

e Is this a recurrent rearrangement that was previously
associated with autism?

Identifying such recurrent CNV, previously shown to be
associated with autism facilitates the post-test counseling since
the abnormality may be safely concluded to be likely associated
with the patient’s autism. In most cases when the parents
are not affected, such pathogenic abnormalities are de novo.
Moreover, published studies of patients with such abnormalities
may provide further useful information regarding the disease
course and possible co-morbidities. Potential problems may
occur due to the reduced penetrance of any such recurrent
rearrangement (Table 1). Parental testing is indicated in most
of these cases in order to determine recurrent risks for future
pregnancies. The proportion of individuals affected with autism
is taken into account in the genetic counseling of these families.

e If the identified CNV is not recurrent, the most important first
question is whether the abnormality is de novo or inherited?

The current expert guidelines recommend follow-up
chromosomal studies for parents of children with any identified
chromosomal rearrangements (Manning et al., 2010; Miller
et al,, 2010). Parental studies are done in order to help determine
if the abnormality is pathogenic and to provide the family
with more precise information regarding recurrence risk in
future pregnancies. The value of such parental analysis varies
with the type of the proband’s CNV. For instance, if the
CNV looks likely to be benign (is of small size and does not
include genes associated with neurodevelopment) identifying
it in an unaffected parent supports its benign nature. On
the other hand, if a CNV is likely to be pathogenic (was
previously reported in association with autism, includes genes
associated with neurodevelopment) its presence in an unaffected
parent argues about reduced penetrance and increased risk for
future pregnancies.
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TABLE 1 | Common autism associated CNVs.

Chromosomal locus Genomic coordinates of Proportion of

patients with

Penetrance Source references

ASD
Del 1g21.1 GRCh38/hg38 <10% Reduced, 67% carrier parents are Brunetti-Pierri et al. (2008),
chr1: 147, 105, 904-147, unaffected Mefford et al. (2008), Haldeman-
922, 392 Englert and Jewett (2011) and
Bernier et al. (2016)
Del 15g11.2 GRCh38: 27% Reduced, 65% of carrier parents are Butler (2017)
(BP1-BP2) 15: 20,500,000-25,500,000 unaffected
Del 150113.3 GRCh38/hg38 chri5: 11% Reduced but high, most carrier parents van Bon et al. (2010) and
30,500,000-32,500,000 have some neuropsychological Lowther et al. (2015)
manifestations ) o
Del 16p11.2 GRCh37/hg19 chr16: 24% Reduced but high most carrier parents Miller et al. (2009); Shinawi et al.
29,606,852-30,199,855 have some neuropsychological (2010) and Hanson et al. (2015)
manifestations _
Del 16p12.2 GRCh37/hg19 chr16: 46% Reduced but high, most carrier parents (Girirajan et al. (2010, 2015))

29,606,852-30,199,855

have some neuropsychological
manifestations

Parental studies are often not of much help when the
abnormality is of truly unknown significance. If such
abnormalities are not inherited, the question regarding their
pathogenicity remains unanswered. If they are inherited,
questions regarding reduced penetrance or mildly affected
carrier parent are in place. The clinical geneticist and the genetic
counselor often encounter carrier parents with mild behavioral
characteristics of autism spectrum or of another mental illness.
Therefore, carefully obtained behavioral family history is very
important in such circumstances.

e In non-recurrent CNVs, the most important second question
is whether the abnormality is pathogenic?

In 2011, the American College of Medical genetics published
guidelines for classification of CNVs based on the following
criteria (Kearney et al.,, 2011):

- Overlap with known contiguous gene syndromes

- Size—the larger the size, the more likely for the rearrangement
to be pathogenic

- Gene content—inclusion of coding genes and their function

- Database comparison—other reported individuals with similar
CNVs in the available databases

- The presence of the observed CNV in the general population

The three main delineated categories of CNVs in the
guidelines were “pathogenic,” “uncertain” and “benign.” The
uncertain category was subdivided into “likely pathogenic,”
“likely benign” and “with uncertain clinical significance.”

A CNV is typically reported as variant of unknown
significance (VUS) by the testing laboratory if it is not known
to be associated with abnormal phenotype and if it does not
include genes know to be associated with genetic conditions.
The presence of such abnormality in unaffected parent increases
the likelihood for the aberration to be benign. However parental
inheritance does not definitely confirm the benign nature of such
rearrangement. Further analysis of available databases may help
identify other similarly affected individuals with rearrangements
in the same chromosomal region. Such useful databases are

DECIPHER, ISCA and Autism Chromosome Rearrangement
Database (Firth et al., 2009; Riggs et al., 2013!). Finally, review
of the function of individual genes included in the region of
rearrangement may be also useful. Often after all the above
evaluations, conclusion regarding the role of given CNV for
the patient’s autism still cannot be made. The role of the
geneticist/genetic counselor is to make comprehensive analysis
using all available data from parental studies, database analysis
and parental phenotype analysis and to make an informed
conclusion regarding pathogenicity and recurrence risk, based on
all these factors.

e Is there pleiotropic effect?

Many recurrent CNVs associated with autism were also
associated with schizophrenia, bipolar disorder and other
behavioral disorders (Marshall et al., 2017). The counseling for
such abnormalities is especially challenging for the purpose of
family planning since the clinical outcomes associated these
CNVs may be difficult to predict.

e Is there a need for further genetic studies?

After the mentioned analyses the clinician need to determine
if further genetic studies are warranted in a CNV-positive patient.
The advance of next generation-based sequencing technologies
made whole exome sequencing and more targeted panels for
genetic studies widely available. If the rearrangement is a true
VUS, next-generation based targeted panel studies or whole
exome sequencing should be always considered since such
studies may identify a recessive disorder resulting from mutation
in gene located in the CNV region that is “unmasked” by the
rearrangement (Helbig et al., 2017).

Overall, the interpreting of the clinical significance of a
CNV identified in an autistic patient may be challenging and
unsatisfactory for the patient’s family. Parental confusion
and lack of clear understanding of the test findings
classified as VUS had been demonstrated in parental surveys

Uhttp://projects.tcag.ca/autism/
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(Kiedrowski et al., 2016). Better understanding of the complex
clinical contributions of CNVs and their interaction with other
genomic and environmental factors seem to be of importance.
Currently the role of the genetics specialist is to discuss to
the best of his/her knowledge the implication of the CMA
findings and to suggest studies for further clarification of
the findings.

SUGGESTED MECHANISMS OF THE CNVs
VARIABLE PHENOTYPIC EFFECTS

The following issues addressed in recent studies may help
provide some answers for better clinical interpretation of autism
associated CNVs:

A. Additive effect of CNVs, single nucleotide variants (SNVs) or
other sequence variants for autism risk

Additive contribution of sequence variants, outside the
primary CNV in relevant genes for the overall ASD/cognitive
disability risk load was demonstrated in previous reports.
Suggested mechanisms for such effects are involvement of genes
outside of the CNV or unmasking of recessive disorders affecting
genes within the CNV (Helbig et al., 2017; Demily et al., 2018).
In a recent study (Pizzo et al, 2018), the authors studied a
large cohort of probands and family members with the common
16p11.2 microdeletion. The affected individuals were scored
for cognitive impairment and both carrier and non-carrier
family relatives were studied for rare sequence variants using
whole exome sequencing and Single Nucleotide Polymorphism
analysis. Enrichment for rare sequence variants correlated with
disease manifestations and severity in the affected individuals. In
addition, the load of such “other hits” was higher in families with
stronger family history. Finally, the authors showed that such
rare secondary sequence variants are likely to affect functions of
relevant genes.

The pathogenicity of a given CNV therefore is likely to be
modified by aberrations in other genomic regions.

B. Higher mutational burden in females—the “female protective
model”

The higher prevalence of male individuals affected with ASD
is well known. One possible explanation of such disproportion
may be the suggested “female protective effect” for pathogenic
genomic variants. An excess burden of deleterious autosomal
CNVs in ASD females was previously shown. Moreover, an
excess of maternally inherited deleterious CNVs was also
demonstrated (Jacquemont et al., 2014; Duyzend et al., 2016).
These findings are likely due to gender specific increased
tolerance for genomic aberrations in female individuals. Such
studies may at least partially explain the higher ASD prevalence
in males. For the purpose of clinical evaluations and counseling,
this observation suggests that maternally inherited CNVs from
unaffected mothers may be more likely to be pathogenic than
these inherited from healthy fathers. Another possible associated
conclusion may be that a given CNV is more likely to result
in ASD symptoms if inherited by a male child. A recent
study examined the effects of prenatal exposure to valproic

acid in rodent brains (Konopko et al., 2017). Such exposure is
previously shown to lead to autistic-like behavior with higher
prevalence of manifestations in male animals. The authors
showed that female brains have increased expression of certain
splice variants of gene BDNF in exposed female brains compared
to males. These gene splice variants are suggested to confer better
neuroprotection. Such gender dependent reaction to harmful
agents may also underly the observed female protective effect
in humans.

C. CNVs and environmental factors

Environmental factors have been long implicated in the
etiology of ASD. Such considered environmental risk factors
include maternal or fetal stress during the pregnancy (Gardener
et al, 2011; Jones and Van de Water, 2018). A recent
study suggests that maternal infection during pregnancy
may increase the risk for autism and its severity in CNV
positive individuals (Mazina et al., 2015). Environmental factors
acting in conjunction with genomic predisposition may be a
possible scenario.

FUTURE TRENDS

ASD is believed to be the result of impaired gene expression in
the fetal brain, affecting genes with role in neurodevelopment,
and especially synaptic development and plasticity. Since such
aberrant brain development may be the result of multiple
interacting factors, more complex analyses may be necessary in
order to achieve precise risk estimations, especially regarding
phenotype predictions as part of prenatal counseling.

The developing clinical use of whole genome sequencing
(WGS) may provide an efficient method to screen for CNVs
and SNVs in both coding and non-coding regulatory genomic
regions. WGS was already suggested as a first-tier testing for
patients with developmental disabilities (Lionel et al., 2018).
Advanced technologies for genomic studies may soon provide
the opportunity to rapidly assess multiple genomic factors in the
same ASD individual. Gene expression profiling currently used
as a research tool may soon have application in developmental
disability evaluations. While gene expression in brain tissue is too
invasive for use in routine evaluations, recent study of cord blood
gene expression suggest that such approach may be used to look
for aberration in gene expression and its possible correlation with
postnatal brain functioning (Breen et al., 2018).

Analysis of environmental factors may also be necessary in
order to better predict the risk for ASD. Evaluation of multiple
variables may require more complex risk models. Such risk
estimating models are already widely used in clinical oncology
assays that aim to determine the risk for cancer progression based
on multiple molecular markers (Alexander et al., 2012; Gerami
et al., 2015). Such models may be also necessary in the complex
field of autism genetics.
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