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Huntington’s disease (HD) is a neurodegenerative disease caused by an expanded CAG
repeat in the huntingtin (HTT) gene, causing the protein to misfold and aggregate.
HD progression is characterized by motor impairment and cognitive decline associated
with the preferential loss of striatal medium spiny neurons (MSNs). The mechanisms
that determine increased susceptibility of MSNs to mutant HTT (mHTT) are not fully
understood, although there is abundant evidence demonstrating the importance of
mHTT mediated mitochondrial dysfunction in MSNs death. Two main transcription
factors, p53 and peroxisome proliferator co-activator PGC-1a, have been widely studied
in HD for their roles in regulating mitochondrial function and apoptosis. The action of
these two proteins seems to be interconnected. However, it is still open to discussion
whether p53 and PGC-1a dependent responses directly influence each other or if they
are connected via a third mechanism. Recently, the stress responsive transcription factor
HSF1, known for its role in protein homeostasis, has been implicated in mitochondrial
function and in the regulation of PGC-1a and p53 levels in different contexts. Based on
previous reports and our own research, we discuss in this review the potential role of
HSF1 in mediating mitochondrial dysfunction in HD and propose a unifying mechanism
that integrates the responses mediated by p53 and PGC-1a in HD via HSF1.
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INTRODUCTION

Mitochondria are critical organelles that control energy production, lipid metabolism, and Ca?*
signaling and buffering. Decreased mitochondrial function has been implicated in multiple cellular
processes, linking dysfunctional mitochondria to a wide range of human diseases, including
metabolic, cardiovascular, and neurological disorders (Ballinger, 2005; Lin and Beal, 2006; Bhatti
et al,, 2017). The specific role of mitochondrial dysfunction in the context of Huntington’s disease
(HD) has been the subject of numerous reviews in recent years (Quintanilla and Johnson, 2009;
Reddy et al., 2009; Jin and Johnson, 2010; Oliveira, 2010; Costa and Scorrano, 2012; Dubinsky,
2017). Now, new findings have provided evidence for a novel role of Heat Shock transcription
Factor 1 (HSF1) in directly regulating both mitochondrial function and HD pathology. Therefore,
we discuss in this article the molecular mechanisms that contribute to mitochondrial dysfunction
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in HD and speculate on the possible role of HSF1 in mediating
this defect.

HD is an inherited neurodegenerative disease caused by
a CAG triplet (encoding glutamine) repeat expansion in
the huntingtin (HTT) gene that causes HTT protein to
misfold and aggregate (MacDonald, 1993; DiFiglia et al,
1997). HD is manifested by progressive behavioral and
motor impairment accompanied by cognitive decline. In
HD, striatal GABAergic medium spiny neurons (MSNs) are
particularly vulnerable. Progressive dysregulation of MSNs is
strongly correlated with motor symptoms onset and severity
(Ferrante et al., 1991).

Altered mitochondrial morphology is a hallmark of HD
and different abnormalities can be seen in different cell types.
In peripheral tissues (lymphoblast, myoblast and fibroblasts)
mitochondria present an enlarged morphology, while neurons
are characterized by increased mitochondrial fragmentation
(Panov et al., 2002; Squitieri et al., 2006, 2010; Kim et al.,
2010; Jin et al., 2013). Altered mitochondrial structure correlates
with mitochondrial dysfunction in all HD cells which is
manifested by decreased electron transport chain activity,
oxygen consumption, Ca?>* buffering and decreased ATP and
NAD+ production (Oliveira, 2010). It has been proposed that
mutant HTT (mHTT)-mediated mitochondrial abnormalities
significantly affect MSNs due to the high-energy demand of this
neuronal subtype (Ferrante et al., 1991; Pickrell et al., 2011).
This is one hypothesis that explains the increased vulnerability
of MSNs in HD (Ferrante et al., 1991; Mitchell and Griffiths,
2003). In support of this hypothesis, mitochondria isolated from
the striatum of adult rats showed higher sensitivity to Ca**"
induced membrane permeabilization than mitochondria from
the cerebral cortex, suggesting that striatal neurons are selectively
vulnerable to metabolic stress (Brustovetsky et al., 2003). Other
factors that contribute to this cell-selective neuropathology
include; cell-type specific processing or localization of mHTT
(Li et al,, 2000; Menalled et al., 2002), abnormal interactions
between mHTT and brain region specific protein partners and
tissue specific differences in CAG instability (Kennedy et al,
2003; Goula et al.,, 2012). All these processes play important
roles in promoting MSN degeneration, and although they could
also contribute to increase mitochondrial stress, they are not the
subject of this review.

HD patients and mouse models of HD exhibit well-described
metabolic defects (Mochel and Haller, 2011; Mochel et al., 2012;
Dubinsky, 2017). Metabolic analysis in presymptomatic patients
using positron emission tomography (PET) and proton nuclear
magnetic resonance (1H-NMR) showed that striatal glucose
uptake and pyruvate utilization were reduced years before the
onset of the motor symptoms, suggesting that mitochondrial
alteration may be an early cause of disease progression (Antonini
et al., 1996; Feigin et al., 2001). Other studies conducted in
HD mouse models showed that MSN dendritic alterations
appear even before mitochondrial respiratory defects can be
observed, thus suggesting that energy deficits are a consequence
of neuropathological changes (Guidetti et al, 2001). It is
agreed that, either as a cause or as consequence, mitochondrial
dysfunction is a key player in HD pathogenesis and progression.

In recent years there has been a tremendous effort in developing
therapeutic strategies towards improving mitochondrial function
such as those aimed to stabilize mitochondria by boosting
the production of ATP, decreasing membrane permeability
and/or preventing oxidative damage (Reddy and Reddy, 2011;

Corona and Duchen, 2016).

One additional function of mitochondria is to act as a
reservoir for pro-apoptotic factors and therefore regulating
cell death (Suzuki et al, 1999; Dumollard et al., 2009).
Mitochondrial dysfunction, Ca?* overload, and accumulation
of reactive oxygen species (ROS) causes the mitochondrial
permeability transition pore (mPTP) to open. mPTP opening
triggers the intrinsic apoptotic pathway associated with the
mitochondrial outer membrane permeabilization, cytochrome ¢
release, and activation of caspase-3 (Choo et al., 2004; Quintanilla
et al, 2017). The dysregulation of two main transcription
factors p53 and PGC-la has been extensively studied in
HD for their roles in mediating mitochondrial dysfunction,
apoptosis, and neurodegeneration (reviewed by Oliveira, 2010).
We will briefly review these mechanisms of action and
their crosstalk and discuss the potential role of HSFI as a
converging mechanism that integrates the responses mediated by
p53 and PGC-1a.

ROLE OF p53 AND PGC-1a IN
MITOCHONDRIAL DYSFUNCTION

Transcriptional dysregulation and mitochondrial dysfunction
are interconnected processes in HD governed by the crosstalk
between p53 and the mitochondrial biogenesis factor PGC-1a
(peroxisome proliferator-activated receptor y co-activator log
Steffan et al., 2000; Jin and Johnson, 2010).

P53 is a transcription factor known for its role as a tumor
suppressor through the regulation of several target genes with
diverse biological functions including cell cycle arrest, DNA
repair, metabolism, and apoptosis. p53 protein levels and activity
are induced in the brain of HD patients and in cell and mouse
models of HD3?, explaining at least in part, the low tumor
incidence observed in HD patients (Sorensen et al.,, 1999; Bae
et al, 2005). mHTT strongly interacts with p53, and it has
been proposed that such interaction impairs the recruitment of
the E3 ligase Mdm?2, thus increasing p53 stabilization (Steffan
et al, 2000; Bae et al, 2005). Up-regulation of p53 leads to
induced expression of different mitochondria associated proteins
(e.g., Bax and Puma, linked to mitochondrial depolarization)
and activation of apoptosis (Chipuk et al., 2004; La Spada and
Morrison, 2005). The role of p53 in mediating mitochondrial
dysfunction in HD was confirmed when primary neurons
expressing mHTT were treated with the p53 inhibitor pifithrin-
a and showed improved mitochondrial membrane potential
(MMP) and increased cell viability (Bae et al., 2005). Recently,
p53 was shown to also participate in mediating mitochondrial
related necrosis and fragmentation in HD via direct interaction
with mitochondrial fission protein Drpl (dynamin related
protein; Guo et al, 2013, 2014). However, the molecular
mechanism by which p53 inhibition exerts neuroprotection is
still poorly understood.
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PGC-1a represents another major player in the link between
mHTT, transcriptional dysregulation, and mitochondrial
dysfunction (Johri et al, 2013). PGC-1a is a transcriptional
coactivator that governs the expression of nuclear-encoded
mitochondrial genes and regulates several metabolic
processes, including mitochondrial biogenesis and oxidative
phosphorylation (Wu et al., 1999; Puigserver and Spiegelman,
2003). Strikingly, PGC-1o null mice manifest HD-like features
including, striatal neuronal loss, hypothermia and motor
alterations (Weydt et al., 2006; Lucas et al., 2012). The expression
of PGC-1a is significantly downregulated in MSNs compared
to other striatal cells in HD patients and transgenic mouse
models (Cui et al., 2006; Weydt et al., 2006). PGC-1a expression
impairment in HD is due, at least in part, to the interference
of mHTT with the CREB/TAF4 signaling pathway (Cui et al,,
2006), which is considered the major regulator of PGC-
la expression (Herzig et al., 2001). However, chromatin
immunoprecipitation analysis conducted in murine striatal-like
cells derived from WT (STHdhY) and HD (STHdAhQ!)
mice did not show differences in CREB/TAF4 binding to
the PGC-1a promoter between the two cell types (Cui et al,
2006) suggesting that additional mechanisms may be involved
in PGC-la expression impairment (discussed elsewhere in
this review).

Down-regulation of PGC-la in HD is accompanied by
decreased expression of several PGC-1la-dependent targets and
MSN markers (Weydt et al., 2006; Lucas et al., 2012). Studies
aimed to induce the expression of PGC-1a in transgenic models
of HD showed that PGC-1a promoted not only mitochondrial
biogenesis but also provided neuroprotective effects by activating
autophagy and increasing the turnover of mHTT aggregates
(Tsunemi et al., 2012). These studies demonstrated the important
role of PGC-la in HD, and have motivated the generation
of several pharmacological activators due to its therapeutic
potential (reviewed by Johri et al., 2013).

However, recent transcriptomic analyses comparing different
HD mouse models with either PGC-1a null mice or mice lacking
PGC-1a in MSNs revealed many differences between their
transcriptional profiles, particularly in mitochondrial-related
genes (Lucas et al., 2012; McMeekin et al., 2018). Unexpectedly,
HD knock-in mice showed up-regulation of several PGC-1a-
dependent genes in an age-dependent manner. These data
suggest that further studies in other mouse models will be
necessary to clarify the exact role of PGC-la in regulating
mitochondrial gene dysregulation in HD.

Different reports have suggested that p53 and PGC-la
may operate together in controlling mitochondrial function,
although the relationship between these two transcription factors
differs depending on the physiological context. Studies in
transgenic mice overexpressing the mitochondrial monoamine
oxidase-A (MAO-A), an enzyme related to cardiomyopathies,
showed that transgenic hearts exhibited p53 accumulation and
downregulation of PGC-1a (Villeneuve et al., 2013), similar to
what is observed in HD neurons. However, additional studies
conducted in SH-SY5Y neuroblastoma cells upon glutathione
shortage, showed that p53 binds to the PGC-1a promoter and
positively regulates its expression (Aquilano et al., 2013), while in

liver carcinoma cells Hep2G, p53, and PGC-1a proteins interact
with each other and modulate their transactivation functions
(Sen et al,, 2011). These studies highlight the complexity in the
regulatory mechanisms of these two transcription factors and
open up the possibility to alternative regulatory pathways not
yet described.

HSF1 AS A PHYSIOLOGICAL REGULATOR
OF MITOCHONDRIAL ACTIVITY

HSF1 is well known as the major transcriptional regulator
of the heat shock response (Anckar and Sistonen, 2011).
However, in the last decade a rising number of studies have
proposed HSF1 to be a multifaceted factor involved in the
regulation of many different cellular processes including but not
limited to cell proliferation, inflammation, synapse formation,
and energy metabolism (reviewed by Gomez-Pastor et al,
2017b). Here, we will discuss recent studies that have placed
HSF1 in the spotlight for its role in mitochondrial function
and neurodegeneration.

Benjamin and colleagues Yan et al. (2002) were the first to
report a major role of HSF1 in regulating mitochondrial activity
by studying the heart of Hsfl /= mice. Their studies showed
that lack of HSF1 results in increased mPTP and increased ROS
production. Additional studies in Hsfl~/~ oocytes confirmed
the role of HSF1 in maintaining mitochondrial function
and integrity by exhibiting mitochondrial ultrastructural
abnormalities, functional defects, and activation of the apoptotic
protein caspase-3 (Bierkamp et al.,, 2010). More recently, studies
in Hsf1 =/~ hepatocytes also revealed decreased ATP and NAD+
production and mitochondrial abnormalities attributed to
altered Drpl function (Qiao et al., 2017). However, whether
these mitochondrial alterations were directly regulated by
HSF1 or indirectly as a result of chaperone down-regulation is
somewhat unclear.

Very elegantly, Nakai and colleagues Tan et al. (2015) showed
that in primary mouse embryonic fibroblasts (MEFs) exposed to
proteotoxic stress conditions, HSF1 recruits the mitochondrial
SSBP1 factor (involved in replication of mitochondrial DNA)
to the nucleus where they both co-operate to control the
expression of several cytoplasmic/mitochondrial genes. Further
studies in cancer cells also revealed that HSF1 directly regulates
the expression of SMAC (mitochondria-derived activator of
caspase) and other mitochondrial genes inhibiting mitochondrial
apoptosis (Liang et al., 2017). These studies propose HSF1 as
a novel mitochondrial responsive transcription factor
(Lee et al., 2015).

Lack of HSF1 has also been associated with reduced
neurogenesis, neuronal demyelination, and severe astrogliosis,
leading to motor and cognitive deficits in aged mice (Santos and
Saraiva, 2004; Homma et al., 2007; Uchida et al., 2011). Viability
studies conducted in primary cortical astrocytes and neurons
isolated from Hsfl1 =™/~ mice exposed to different oxidative stress
conditions revealed that both cell types were more sensitive
than cells isolated from WT mice. Protein oxidation is also
greater in Hsfl /= primary cultures (Homma et al., 2007). These
results suggest that mitochondrial function could be impaired
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FIGURE 1 | Heat Shock transcription Factor 1 (HSF1) regulates mitochondrial membrane potential (MMP) in striatal cells. (A,B) Murine immortalized striatal
STHAh®" and STHAh®'"" cells were transfected with scramble (Scr.; Santa Cruz, sc-37007) or 5 wM siHSF1 (Santa Cruz, sc-35612). After 24 h, cells were
incubated with 5 WM JC-1 dye (Invitrogen T3168) for 30 min at 37°C in PBS. MMP was determined by measuring fluorescence intensity at excitation 550 nm,
emission 600 nm for red fluorescence (energized mitochondria) and at excitation 485 nm and emission 535 nm for green fluorescence (depolarized mitochondria).
Representative fluorescence images are shown. Ratio red/green fluorescence was calculated for each condition and levels were relative to STHAh?” cells. A total of
three independent experiments were performed. (C) Cell viability was quantified using CYQUANT XTT (ThermoFisher, X12223) after 24 h of transfection with scr. or
siHSF1 following manufacturer’s instructions. Statistical analyses were performed using T-test, *p-value < 0.05, **p < 0.01, n.s. (no significant).

in different cell types in the brain of Hsfl ™/~ mice, although
no reports have addressed this issue yet. Whether the neuronal
effects observed in HSF1 null mice are caused by mere chaperone
depletion or directly related to HSF1-dependent regulation of
mitochondrial gene transcription remains uncertain.

Recent studies conducted in adipose tissue revealed that
HSF1 directly activates PGC-la transcription by binding to
a non-canonical Heat Shock Element (HSE) identified in its
promoter sequence (Ma et al, 2015). This study highlighted
the potential role of HSF1 in directly regulating mitochondrial
function via regulation of PGC-1a. It is known that adipose tissue
from HSF1 null-mice display mitochondrial gene expression
deficits (Ma et al, 2015). However, lack of transcriptional
studies in those cells impedes to determine whether lack of
HSF1 specifically affects PGC-1a -dependent gene expression.
In order to answer that question, further studies comparing the
transcriptional profiles of HSF1 null mice and PGC-1 null mice
will be necessary.

On the other hand, HSF1 and PGC-la proteins interact
and co-localize on several HSF1 target promoters co-operating
in the regulation of different genes under hyperthermia
(Xu et al, 2016). In fact, PGC-la null cells showed
down-regulation of several heat shock proteins, similar to
those observed in HSF1-null mice (Trinklein et al., 2004; Xu
et al, 2016). Intriguingly, PGC-1a also acts as a repressor
of HSFl-mediated transcriptional program in hepatocytes

and in cancer (Minsky and Roeder, 2015). Therefore, despite
the evidence demonstrating the crosstalk between HSF1 and
PGC-1a, the regulatory mechanisms that control PGC-1a and
HSF1 interactions in different cell types or disease conditions
is unclear.

HSF1 ROLE IN MEDIATING
MITOCHONDRIAL DYSFUNCTION IN HD

HSF1 plays a fundamental role in HD pathogenesis (recently
reviewed by Gomez-Pastor et al, 2017b). Studies where
HSF1 null mice were crossbred with the R6/2 mice revealed
that lack of HSF1 worsens neurodegeneration and disease
progression (Hayashida et al., 2010) while HD transgenic mice
overexpressing a constitutive active form of HSF1 significantly
ameliorated HD symptoms (Fujimoto et al., 2005). The levels of
HSF1 and its activity are strongly depleted in the striatum of
patients with HD and in cell and mouse models of HD (Hay
etal., 2004; Labbadia et al., 2011; Chafekar and Duennwald, 2012;
Riva et al., 2012; Maheshwari et al., 2014; Gomez-Pastor et al.,
2017a). HSF1 depletion is caused by inappropriate up-regulation
of MSNs in two proteins, the Protein Kinase CK2a” and E3 ligase
Fbxw7, that phosphorylate and ubiquitylate HSF1, respectively,
signaling the protein for proteasomal degradation (Gomez-
Pastor et al, 2017a). It is believed that decreased levels
and activity of HSF1 contribute to neuronal dysfunction and
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FIGURE 2 | HSF1 binds to PGC-1a promoter and regulates its expression in Huntington’s disease (HD) cells. (A) Western blot analysis in STHdh®” cells treated
with scramble (Scr.) or siRNA for 24 h. Cell lysates were prepared in lysis buffer (25 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS) and a
total of 25 pg protein was loaded. (B) Diagram of PGC-1a promoter containing the non-canonical Heat Shock Element (HSE*; Ma et al., 2015). (C) HSF1 chromatin
immunoprecipitation in STHadh®” and STHah®'!" cells using 1 g anti-HSF1 antibody (Bethyl Laboratories, A303-176A) and primers described by Ma et al. (2015;
forward TTCATGGATGTGCTGGGTTA, reverse TTACAGATGGTTGCTTGCACT) for the PGC-1a promoter (Ma et al., 2015). Obtained values were normalized using %
of input and fold enrichment over IgG (negative control) for each strain. Data was then expressed as fold change binding relative to STHAh®’ cells. (D) gRT-PCR for
PGC-1a expression (forward ATGTGTCGCCTTCTTGCTCT, reverse ATCTACTGCCTGGGGACCTT) performed 36 h after transfection with empty-pcDNA or
HSF1-pcDNA overexpressing plasmid. At least three independent experiments were carried out for each analysis. Statistical analyses were performed using T-test,
*p-value < 0.05. *p-value < 0.05 (compared to STHAhQ7-pcDNA), #p-value < 0.05 (compared to STHdhQ7-HSF1).
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pathogenesis, suggesting HSF1 as a potential therapeutic target
for HD intervention (Sittler et al., 2001; Neef et al., 2011).
This hypothesis is supported by CK2a’ allele knock-out studies
in the HD KIQ175 mouse model, which resulted in increased
HSF1 levels and neuronal chaperone expression, rescued MSNs
morphology and synapse formation, and ameliorated weight loss
associated to HD (Gomez-Pastor et al., 2017a).

Due to previous studies linking HSF1 to mitochondrial
function and PGC-la expression (described above), it is
reasonable to hypothesize that depletion of HSF1 could also
contribute to the mitochondrial dysfunction and abnormalities
reported in HD. Current research in our lab supports this
hypothesis. We present here unpublished data evaluating the
effects of silencing HSF1 in the MMP of murine striatal
STHAhY cells and how MMP alterations under these conditions
mirror the deficits observed in scramble STHdhQ!!! treated cells
(Figure 1). The effect on MMP was determined using the JC-1
assay, a fluorescence dye that distinguishes between energized
(JC-1 red) and depolarized (JC-1 green) mitochondria. We
observed increased mitochondrial depolarization (determined by
the ratio JC-1 red/JC-1 green signals) in STHdhU! compared
to STHdhY cells, as previously described (Ruan et al., 2004;

Figure 1A). More importantly, silencing HSF1 in STHdhY
cells resulted in a strong mitochondrial depolarization compared
to scramble, similar to the results obtained in untreated
STHAhR!! cells. Cell viability analyses using CyQUANT XTT
assay (Thermo Fisher X12223) demonstrated that decreased
MMP in STHdhY cells treated with siHSF1 is not secondary to
cell death since no significant changes were observed between
scramble and siHSF1 conditions (Figure 1B). On the contrary,
cell viability was reduced in STHdh?'!! compared to STHdhY
cells, as previously described using similar assays (Singer et al,,
2017). This defect was exacerbated upon silencing HSF1. This
data suggests that mitochondrial dysfunction contributes to
exacerbating the HD phenotype although it is not sufficient to
cause cell death.

Decreased MMP in STHdhY cells treated with siHSF1 was
accompanied by a decrease in the levels of PGC-1a (Figure 2A).
We then conducted HSF1 chromatin immunoprecipitation
analysis on the promoter of PGC-la. We demonstrated that
HSF1 binds to the non-canonical HSE present in the promoter of
PGC-1a in both STHdhY and STHAh?'!! cells (Figures 2B,C).
However, HSF1 binding was reduced in STHdh!! cells
(Figure 2C) correlating with the previously reported depletion
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FIGURE 3 | Model for p53-HSF1-PGC1a integrated responses in HD. Crosstalk between the transcription factors p53, HSF1 and PGC-1a regulate transcription,
protein homeostasis, mitochondrial function and apoptosis. Different pathways (CREB/TAF4, CK2a'/Fbxw7 and Mdm2) are altered in the presence of mutant HTT
(mHTT) that independently lead to the deregulation of the levels and functions of all three transcription factors. However, HSF1 becomes a key player in the
subsequent regulation of the levels of both p53 and PGC-1a by directly regulating transcription of PGC-1a and controlling p53 protein stability in HD. The potential
role of p53 in the regulation of the HSF1 degradation pathway in HD would add a positive feedback into the p53-HSF1-PGC-1a axis triggering mitochondrial

dysfunction and neuronal death.

of HSF1 and the reduced expression of PGC-la in those
same cells (Cui et al., 2006; Chafekar and Duennwald, 2012;
Gomez-Pastor et al,, 2017a). In line with HSF1 playing a
role in the regulation of PGC-1a, overexpression of HSF1 in
STHAhU! cells rescued the expression of PGC-1a (Figure 2D).
These results suggest that depletion of HSF1 protein levels
in HD (Gomez-Pastor et al., 2017a) could be responsible, at
least in part, for the expression impairment of PGC-la. In
support of this hypothesis, we have previously observed that
increasing HSF1 levels in the striatum of HD mice elevated
the expression of PGC-1a and its downstream targets such as
the cytochrome ¢ and the mitochondrial transcription factor
TFAM (Gomez-Pastor et al., 2017a). All this data provides
evidence for the role of HSF1 degradation in contributing
to mitochondrial dysregulation in HD. However, further
experiments in vivo will be necessary to establish the direct
connection between HSF1 depletion, mitochondrial impairment
and PGC-1a down-regulation in HD.

CROSSTALK BETWEEN HSF1 AND
p53-PGC1u AXIS

Different reports have revealed HSF1 crosstalk with the
p53 pathway by directly regulating p53 stabilization and nuclear
translocation (Li et al., 2008; Jin et al, 2009; Logan et al.,
2009; Oda et al., 2018; Figure 3). In human diploid fibroblasts,
acute depletion of HSF1 induces cellular senescence independent
of chaperone-mediated protein homeostasis but dependent on
activation of the p53-p21 pathway. This is partly because of
the increased expression of dehydrogenase/reductase 2 (DHRS2),
a putative MDM?2 inhibitor. MDM2 regulates p53 degradation
and its inhibition contributes to increased p53 levels and
activation of apoptosis (Oda et al., 2018). A different study
also reported increased levels of p53 in Hsfl~/~ MEFs (Jin
et al., 2009). However, the authors proposed an alternative
HSF1 dependent mechanism for the up-regulation of p53 levels.
They showed that af-crystallin, an HSF1-gene target, is necessary
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to recruit the E3 ligase Fbx4 that ubiquitylates p53 and controls
p53 degradation. In the absence of HSF1, reduced levels of af-
crystallin results in the stabilization of p53.

On the other hand, p53 has been shown to directly regulate
the expression of the human E3 ligase Fbxw7, by binding to
regulatory elements contained within the Fbxw7 coding sequence
(Kimura et al., 2003; Mao et al., 2004). Since Fbxw?7 is involved in
HSF1 ubiquitylation (Kourtis et al., 2015; Gomez-Pastor et al.,
2017a) it is possible that increased p53 levels in HD participates
in the degradation of HSF1 by up-regulating Fbxw7 during
disease progression. If this hypothesis is correct, this would
establish a vicious cycle where depletion of HSF1 contributes
to the stabilization of p53 levels, which in turn potentiates
HSF1 degradation (Figure 3).

As we previously discussed, p53 and PGC-1a pathways are
also interconnected processes where the levels of one factor
influences the levels and activity of the other (Sen et al., 2011;
Aquilano et al., 2013; Villeneuve et al., 2013). Considering all the
evidence that connects HSF1, p53, and PGC-1a, we speculate
on the existence of a p53-HSF1-PGC-1a axis that integrates
transcriptional dysregulation and mitochondrial dysfunction
into one single pathway (Figure 3). However, it will be necessary
to conduct further research to put together all the pieces of
the puzzle and connect these three transcription factors in the
context of HD.

FUTURE DIRECTIONS

Numerous studies now demonstrated the role of HSF1 in
regulating mitochondrial dysfunction in different contexts
including HD. However, many questions still remain unresolved.
First, it would be necessary to uncover whether elevation
of p53 is responsible for the degradation of HSF1 in HD
and whether the neuroprotection exerted by p53 inhibition
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