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17β-estradiol (E2) induces axonal growth through extracellular signal-regulated kinase
1 and 2 (ERK1/2)-MAPK cascade in hypothalamic neurons of male rat embryos
in vitro, but the mechanism that initiates these events is poorly understood. This study
reports the intracellular Ca2+ increase that participates in the activation of ERK1/2 and
axogenesis induced by E2. Hypothalamic neuron cultures were established from 16-
day-old male rat embryos and fed with astroglia-conditioned media for 48 h. E2-induced
ERK phosphorylation was completely abolished by a ryanodine receptor (RyR) inhibitor
(ryanodine) and partially attenuated by an L-type voltage-gated Ca2+ channel (L-VGCC)
blocker (nifedipine), an inositol-1,4,5-trisphosphate receptor (IP3R) inhibitor (2-APB),
and a phospholipase C (PLC) inhibitor (U-73122). We also conducted Ca2+ imaging
recording using primary cultured neurons. The results show that E2 rapidly induces
an increase in cytosolic Ca2+, which often occurs in repetitive Ca2+ oscillations. This
response was not observed in the absence of extracellular Ca2+ or with inhibitory
ryanodine and was markedly reduced by nifedipine. E2-induced axonal growth was
completely inhibited by ryanodine. In summary, the results suggest that Ca2+ mobilization
from extracellular space as well as from the endoplasmic reticulum is necessary for
E2-induced ERK1/2 activation and axogenesis. Understanding the mechanisms of brain
estrogenic actions might contribute to develop novel estrogen-based therapies for
neurodegenerative diseases.
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INTRODUCTION

For many years, estrogens have been recognized as one of the main orchestrators of the sexual
differentiation of the brain, acting during critical periods of development to organize neural
circuits in a way that determines the modulatory/activational effects of gonadal hormones in
adulthood. Testosterone secreted by male rodent testes during development is aromatized in
neurons to 17β-estradiol (E2), which displays multiple cellular processes that finally set the
masculine phenotype (McCarthy, 2008; Wright et al., 2010). More recently, accumulating evidence
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indicates that E2 is not only a reproductive hormone but
also a brain-derived neuroprotective factor, coordinating
multiple signaling mechanisms that protect the brain from
neurodegenerative diseases, affective disorders and cognitive
decline (Arevalo et al., 2015). These beneficial actions in the brain
have positioned estrogens as promising therapeutic compounds
against different brain pathologies such as Parkinson and
Alzheimer diseases, schizophrenia, multiple sclerosis, stroke,
neuroinflammation, among others (Dye et al., 2012; Villa et al.,
2016; McGregor et al., 2017; Giatti et al., 2018).

Classical estrogenic actions are mediated via intracellular
estrogen receptors (ERs) that function as ligand-activated
transcription factors to regulate the expression of estrogen-
responsive genes. Additionally, estrogens generate a wide
diversity of rapid ‘‘non-classical’’ effects, which occur in a range
from some seconds to a few minutes via membrane-initiated
mechanisms (Arevalo et al., 2012), including the triggering of
Ca2+ signals (Beyer and Raab, 1998; Picotto et al., 1999; Wong
et al., 2012), and the activation of several signaling pathways, such
as phospholipase C (PLC)/inositol 1,4,5-trisphosphate (IP3) and
diacylglycerol (Le Mellay et al., 1997; Chaban et al., 2004), nitric
oxide synthase/nitric oxide (Kelly and Levin, 2001), adenylate
cyclase/AMPc/protein kinase A (PKA; Beyer and Karolczak,
2000), phosphoinositide-3 kinase (PI3K; Garcia-Segura et al.,
2010), PKC, and extracellular signal-regulated kinase 1 and 2
(ERK1/2) cascades (Wu et al., 2005).

Currently, it is known that E2 prevents cell death, promotes
neuronal survival, and enhances neuritogenesis and synaptic
plasticity in the brain (Carroll and Pike, 2008; Spence et al.,
2013; Acaz-Fonseca et al., 2014; Khan et al., 2015; Lai et al.,
2017; Céspedes Rubio et al., 2018). The induction of neurite
outgrowth by E2 was first demonstrated by Toran-Allerand
(1976, 1980) and Toran-Allerand et al. (1983) working with
organotypic explant cultures of the preoptic area, hypothalamus,
and cerebral cortex. This neuritogenic effect of the hormone
was then observed in other brain regions, both directly related
and unrelated with reproduction (Nishizuka and Arai, 1981;
Reisert et al., 1987; Cambiasso et al., 1995; Murphy and
Segal, 1996). Hypothalamic neurons in vitro undergo several
intermediate stages of development from unpolarized to fully
polarized cells (Díaz et al., 1992). Most of the neuritogenic
effects of E2 were demonstrated in polarized neurons (stage
III of development), which are characterized by the presence
of axon (Díaz et al., 1992; Cambiasso et al., 1995). Previous
studies from our laboratory have shown that E2 induces axonal
growth through ERK1/2 activation in hypothalamic neurons
of male embryos in vitro. Both axogenesis (Cambiasso and
Carrer, 2001) and ERK1/2 activation (Gorosito and Cambiasso,
2008) mediated by the hormone are dependent on a membrane-
initiated mechanism since E2-bovine serum albumin (BSA;
a membrane-impermeable conjugate of E2) was as effective
as free E2. Interestingly, decreasing intracellular Ca2+ by
the Ca2+-chelator BAPTA-AM or blocking Ca2+-dependent
PKC isoforms by Ro 32-0432 significantly decreased these
E2 effects (Gorosito and Cambiasso, 2008). These findings
strongly suggested an important role for Ca2+ in E2-induced
ERK1/2 pathway activation and axonal growth; however, the

results did not provide the mechanism of E2-induced Ca2+

signaling in hypothalamic neurons.
In this study, we found that E2 evoked activation of Ca2+

entry via L-type voltage-gated Ca2+ channels (L-VGCCs) and
promoted Ca2+ release through ryanodine receptors (RyRs). This
early Ca2+ response underlies E2-induced ERK1/2 activation and
axogenesis in hypothalamic neurons. Altogether, these results
bring new insights about the mechanism of brain estrogenic
actions and might contribute to developing novel estrogen-based
therapies for neurodegenerative diseases.

MATERIALS AND METHODS

Animals and Cell Cultures
Embryos were obtained from pregnant Wistar rats at embryonic
day 16 (E16). The day of vaginal plug was set as E0.
Experimental procedures for handling and sacrificing animals
were approved by the Animal Care and Use Committee
at our institution (CICUAL-IMMF, INIMEC-CONICET-UNC;
Córdoba, Argentina) and followed the NIH guidelines for
care and use of laboratory animals. The minimum number of
animals required was used for these experiments and suffering
was minimized. Primary neuronal and astroglial cultures were
prepared as previously described in Cambiasso et al. (2000).
Pregnant rats were sacrificed by cervical dislocation under CO2
anesthesia, and the fetuses were dissected from the uterus. The
male fetuses used for cultures were identified by visualization
of the spermatic artery on the developing testes. Ventromedial
hypothalamic and mesencephalic regions were dissected out
and stripped off the meninges for primary neuronal and glial
cultures, respectively. At E16, the axogenic effect of E2 is
contingent on the presence of astroglia (Cambiasso et al.,
1995) or astroglia-conditioned media from a target region
(Cambiasso et al., 2000; Cambiasso and Carrer, 2001; Brito
et al., 2004). The basal medium (BM) was (1:1) DMEM:Ham’s
F12 Nutrient Mixture, supplemented with 0.043% l-alanyl-l-
glutamine (GlutaMAX I), 0.15% glucose, 100 U/ml penicillin
and 100 µg/ml streptomycin. All cultures were raised under
phenol red-free conditions to avoid ‘‘estrogen-like effects’’
(Berthois et al., 1986). For neuronal cultures, the dissociated
cell suspension was seeded on different supports pre-coated
with 1 mg/ml poly-D-lysine depending on the experiment:
60 mm × 15 mm dishes (Corning Life Science, Tewksbury, MA,
USA) for protein assays, 25 mm coverslips (Assistent, Germany)
for Ca2+ imaging, and 12 mm coverslips (Assistent, Germany)
for morphological studies.

Western Blot
Hypothalamic neurons derived from male fetuses plated 1–2 h
before were fed with astroglia-conditioned media for 2 days
in vitro (DIV). After a 2 h washout period using BM, neuronal
cultures were treated for 1 h with nifedipine (2 µM; Sigma-
Aldrich, St. Louis, MO, USA), inhibitory ryanodine (50 µM;
Santa Cruz Biotechnology, Santa Cruz, CA, USA), 2-APB
(100 µM; Santa Cruz Biotechnology, Santa Cruz, CA, USA) or
U-73122 (10 µM; Sigma-Aldrich, St. Louis, MO, USA), and then
pulsed with 100 nM E2 (Sigma-Aldrich, St. Louis, MO, USA)
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for 15 min. Hormone concentration used was determined by
dose dependence (1–100 nM) experiments previously performed
by our group (Gorosito and Cambiasso, 2008; Gorosito et al.,
2008). ERK phosphorylation was maximally increased after the
application of 100 nM E2. This dose was then used for all further
acute stimulation studies. We have used compounds at final
concentrations that did not alter cell viability or morphology in
control conditions.

After treatment, hypothalamic neurons were washed and
harvested at 4◦C in RIPA buffer [150 mM NaCl, 0.1% NP40,
0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS),
50 mM Tris, pH 7.5] with protease and phosphatase inhibitors
(1 µg/ml aprotinin, 1 µg/ml leupeptin, 1 µg/ml pepstatin A,
5 µg/ml chymostatin, 5 µg/ml antipain, 100 µg/ml PMSF,
50 µM NaF, 10 µM Na4P2O7, and 1 mM NaVO4). Protein
samples (20 µg/lane) were separated by 10% SDS-PAGE and
transferred onto polyvinylidene fluoride membrane (Bio-Rad,
Hercules, CA, USA). ERK1/2 phosphorylation was detected by
using a rabbit monoclonal anti-phospho-p44/42 MAPK (Cell
Signaling Technology, Danvers, MA, USA), which specifically
detects both Thr202 and Tyr204 ERK phosphorylation forms
of ERK [molecular masses (kDa) for ERK1 and ERK2 are
44 and 42, respectively]. Total ERK1/2 was detected by using a
mouse anti-p44/42 MAPK (Cell Signaling Technology, Danvers,
MA, USA). Secondary antibodies conjugated to horseradish
peroxidase (Jackson, West Grove, PA, USA) were used for the
detection by enhanced chemiluminescence on X-ray film. After
incubation with the antibody against phospho-ERK1/2, blots
were stripped and then re-probed with anti-total ERK1/2 to
ensure equal protein loading. The resulting film samples were
scanned and analyzed with an image analysis program (ImageJ;
NIH, Bethesda, MD, USA). Data are presented as a ratio
of phospho-ERK1/2/total-ERK1/2 of 3–4 different experiments
(independent cultures) performed in duplicate.

Ca2+ Imaging
After 2 DIV, hypothalamic neurons were treated (or not) with 50
µM ryanodine or 2 µM nifedipine for 1 h and incubated with
3 µM acetoxymethyl (AM) ester form of the organic Ca2+-dye
Cal-520 (AAT Bioquest, Sunnyvale, CA, USA) for 30 min at
37◦C in a Ca2+-containing HEPES buffered salt solution (Ca2+-
HBSS) composed of (mM): 135 NaCl, 5.4 KCl, 2 CaCl2, 1 MgCl2,
10 HEPES, and 10 glucose; pH = 7.4 set with NaOH at RT.
Following loading, neurons were washed twice with warm Ca2+-
HBSS and were imaged in the same buffer. To analyze the
participation of extracellular Ca2+, the cells were resuspended
in an EGTA-containing buffer composed of (mM): 135 NaCl,
5 KCl, 0.5 CaCl2, 1.2MgCl2, 5 HEPES, 14 NaHCO3, and 1 EGTA;
pH = 7.4 set with NaOH at RT.

Imaging of cytosolic Ca2+ signals was performed using a 60×
oil immersion objective of anOlympus IX81 invertedmicroscope
[equipped with a Disk Spinning Unit (DSU), epifluorescence
illumination (150 W Xenon Lamp), and a microprocessor],
an ORCA AG (Hamamatsu) CCD camera and OSIS software.
Frames were collected at a continuous rate of 2.5 per second
during 5 min (790 frames). Cal-520 was excited at a wavelength
of 492 nm, and emitted fluorescence was collected at 514 nm.

E2 (100 nM) was added 30 s after starting the recording. 10
µM thapsigargin (tg) was added at 3 min of recording as a
positive control of normal endoplasmic reticulum Ca2+ content.
The fluorescence intensity of the Ca2+ indicator was analyzed
using ImageJ (NIH, Bethesda, MD, USA) software and plotted
as the change in fluorescence (∆F) of 2 × 2 pixels divided by
mean resting fluorescence [(Fo;∆F/Fo)] over time.Wemeasured
both the peak fluorescence value and the integrated area under
the ∆F/Fo curve with OriginPro 8 SR0 software (OriginLab
Corporation, Northampton, MA, USA). The integrated area
roughly corresponds to the total amount of Ca2+ released over
the recording period.

Immunocytochemical Staining
To analyze the effect of ryanodine in E2-stimulated axon
growth without affecting the normal polarization of neurons, we
performed the experiment after 1 DIV (stage III of development).
After 2 h in absence of E2, the cultures were treated for 1 h
with 50 µM ryanodine before the addition of 10 nM E2 for an
additional 24 h. The hormone concentration used to study the
neuritogenic effect of E2 was chosen based on previous studies of
our laboratory (Gorosito et al., 2008; Scerbo et al., 2014).

After 2 DIV, neuronal cultures were fixed for 20 min with
warm 4% paraformaldehyde in PBS containing 0.12 M sucrose
and rinsed in PBS. Neurons were immunocytochemically
stained with antibodies against β-tubulin class III (SDL.3D10).
The details of the immunocytochemical procedure were
as specified by Díaz et al. (1992). Briefly, the fixed cells
were permeabilized in 0.2% Triton X-100 for 5 min at RT,
preincubated with 5% BSA, incubated in mouse anti-β-tubulin
class III (Sigma-Aldrich, St. Louis, MO, USA), rinsed in
PBS, and finally incubated with appropriate biotinylated
secondary antibody. Incubation with secondary antibody
was followed by washing in PBS, incubation for 2 h in
VECTASTAIN ABC immunoperoxidase reagent (Vector
Laboratories, Burlingame, CA, USA), and a final reaction with
1.4 mM 3,3’-diaminobenzidine in phosphate buffer with H2O2.
Coverslips were then dehydrated with ethanol, cleared with
xylene, and mounted on glass slides for morphometric analysis.
No immunostaining was detected when primary antibodies were
replaced by 5% BSA.

Morphometric Analysis
The morphometric analysis of stained neuronal cultures was
performed on digitized video images using JAVA as an image
processor (Jandel Inc., Richmond, CA, USA) controlled by a host
computer. Images were acquired through an optic microscope
(Carl Zeiss, Germany). Microscope slides were coded, and the
person conducting the analysis was blind to the experimental
group. All labeled cells that could be identified as one individual
neuron were measured in random fields at 40× magnification.
Neural processes were classified as minor processes or axons
according to accepted morphological criteria (Dotti et al., 1988;
Blanco et al., 1990; Díaz et al., 1992). Minor processes are
two or three short neurites that emerge from the cell body;
axons are much longer, unique, thin, and relatively uniform in
diameter. Neurons were considered to have developed an axon
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FIGURE 1 | E2-induced extracellular signal-regulated kinase 1 and 2 (ERK1/2) activation depends on cytosolic Ca2+ increase mainly mediated by ryanodine
receptors (RyRs). Effects of (A) 2 µM nifedipine, (B) 50 µM ryanodine, (C) 100 µM 2-APB or (D) 10 µM U-73122 on E2-induced ERK phosphorylation. After
washing for 2 h, the cultures were treated with the inhibitors for 1 h and were then pulsed for 15 min with 17β-estradiol (E2) and harvested for Western blotting. Top:
ratio of readings for pERK/ERK bands in arbitrary densitometric units. Bottom: examples of immunoblots showing a decrease of hormone-induced ERK
phosphorylation in cultures pretreated with the inhibitors. Molecular masses (kDa) for ERK1 and ERK2 are 44 and 42, respectively. Blots shown are representative of
the mean ± SEM of 3–4 different cultures. (A) Nifedipine: ANOVA F(2,10) = 52.78; p ≤ 0.001. Least significant differences (LSDs) test indicated ∗∗∗p < 0.001 vs.
control and ��p < 0.01 vs. E2. (B) Ryanodine: ANOVA F(2,6) = 5.856; p = 0.04. LSDs test indicated ∗p = 0.05 vs. control and �p = 0.05 vs. E2. (C) 2-APB: ANOVA
F(2,6) = 27.203; p ≤ 0.001. LSDs test indicated ∗∗∗p < 0.001 and ∗p = 0.05 vs. control and ��p = 0.01 vs. E2. (D) U-73122: ANOVA F(2,6) = 34.891; p ≤ 0.001.
LSDs test indicated ∗∗∗p < 0.001 and ∗∗p = 0.01 vs. control and �p ≤ 0.05 vs. E2.

if they showed one neurite three to five times longer than the
rest (stage III of development). Soma area, length of minor
processes, total axonal length, and the number of neurites per
cell were recorded. At least 60 neurons were measured for every
experimental condition in each culture; at least three separate
cultures were made for every condition.

Statistical Analysis
Data were statistically evaluated by one-way ANOVA, followed
by Fisher’s Least Significant Difference (LSD) post hoc test

(Statistica; StatSoft Inc., Tulsa, OK, USA) where p < 0.05 was
considered statistically significant.

RESULTS

E2-Induced ERK1/2 Activation Is Mainly
Mediated by RyRs
Our previous results suggested that E2-induced
ERK1/2 phosphorylation is Ca2+-dependent. Here, we further
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FIGURE 2 | 17β-estradiol (E2) induces Ca2+ oscillations. (A) Hypothalamic neurons were loaded with Cal-520 AM for 30 min at 37◦C, maintained in a
Ca2+-containing buffer (Ca2+-HBSS) and changes in cytosolic Ca2+ concentration were measured using confocal microscopy [Olympus IX81 inverted microscope
equipped with a Disk Spinning Unit (DSU)]. Time series of Cal-520 pseudocolor images is shown, before and after the addition of E2 and thapsigargin (tg).
Pseudocolor scale bar: 0.3–0.001 arbitrary units. Length scale bar: 20 µm. (B) Representative Ca2+ traces [regions of interest labeled 1–4 in (A)] plotted as changes
over time in fluorescence intensity of the indicator (∆F) respect to resting values (Fo). Arrows indicate the addition time of E2 (30 s) and tg (3 min). Data are from one
representative experiment out of six independent experiments.

investigated the Ca2+ response involved in ERK activation
mediated by E2. Hypothalamic cultures grown with E2 for
48 h were washed in BM for 2 h and pre-treated with specific
compounds for 1 h before a pulse of E2 for 15 min. In agreement
with previous reports, E2 induced a strong phosphorylation of
ERK at 15 min (Figure 1). This effect was completely abolished
by inhibitory ryanodine (Figure 1B) and partially attenuated by
nifedipine (Figure 1A), IP3R inhibitor 2-APB (Figure 1C), and a
PLC inhibitor U-73122 (Figure 1D).

E2 Induces Rapid Ca2+ Increase
Depending on Ca2+ Influx and RyRs
As E2-activation of the ERK1/2 signaling cascade depends on
extracellular as well as intracellular Ca2+ stores, we decided to
characterize the Ca2+ signal generated by the hormone. The
addition of agonist to cell cultures, loaded with the indicator
Cal-520 AM and imaged in a Ca2+-containing buffer, induced
fluorescence changes that were observed in neuronal soma
as well as in minor processes (Figure 2). Seventeen out of
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FIGURE 3 | Ryanodine, external Ca2+ and nifedipine modulate E2-induced Ca2+ increase. (A) Mean values of maximal ∆F/Fo for Ca2+ mobilized by 17β-estradiol
(E2) in hypothalamic neurons recorded either in the presence or absence of extracellular Ca2+ (Ca2+-HBSS/EGTA-containing buffer, named High Ca2+/Low Ca2+),
or after a pre-incubation period (1 h) with ryanodine or nifedipine. ANOVA F(3,41) = 22.94; p ≤ 0.001. LSDs test indicated ∗∗∗p < 0.001 vs. Ca2+-HBSS. (B) Mean
values of integrated area under ∆F/Fo curve (AUC) after thapsigargin (tg) addition during Ca2+ imaging [same conditions as (A)]. ANOVA F(3,26) = 9.18; p ≤ 0.001.
LSDs test indicated ∗∗∗p < 0.001 and ∗∗p = 0.01 vs. ryanodine. Bars represent mean ± SEM; n = 4–6 different cultures.

76 neurons (22.4%) from six independent experiments imaged in
Ca2+-HBSS responded to E2 pulses within 15–100 s of treatment
(average = 46.8 ± 6.60 s). These Ca2+ events often occur
in repetitive oscillations, which display interspike intervals of
21.58 ± 8.83 s (9 out of 17 neurons). The amplitude in terms
of ∆F/Fo was 0.154± 0.01. The total amount of Ca2+ mobilized,
measured as the integrated area under the curve (AUC) for all
E2-generated peaks, was 4.69 ± 1.03, which was 90.6% with
respect to the control [remained endoplasmic reticulum Ca2+

content released by tg, a sarco/endoplasmic reticulum Ca2+-
ATPase (SERCA) inhibitor].

This E2-induced Ca2+ signal was not observed in the absence
of extracellular Ca2+. Moreover, we found that pre-incubation
of neuronal cultures with inhibitory ryanodine suppressed
E2-evoked Ca2+ release (Figure 3A). Importantly, under these
conditions, the tg was able to mobilize amounts of Ca2+,
measured as AUC, of 14.69 ± 3.45 (EGTA-containing buffer)
and 35.05 ± 11.54 (ryanodine pre-incubation), five and nine
times greater, respectively, than the amounts of Ca2+ mobilized
by tg in E2-induced control neurons (Figure 3B). Moreover,
nifedipine reduced the E2-induced Ca2+ increase more than 50%
(∆F/Fo = 0.065 ± 0.011; and AUC = 10.779 ± 1.159, n = 4),
which strongly suggests the participation of L-VGCCs in this
signal (Figures 3A,B). Representative Ca2+ traces plotted as
∆F/Fo vs. time for EGTA, ryanodine, and nifedipine conditions
are provided in Supplementary Figure S1.

Taken together, these results indicate that both Ca2+ influx
and mobilization from intracellular stores contribute to the
response.

E2-Induced Axonal Growth Depends on
Ca2+ Signal Generated by RyRs
Finally, we tested whether the RyR-induced Ca2+ response is
part of the signaling cascade that mediates the axogenic effect

of E2. Neurons grew under the following conditions: in the
presence and absence of E2 and pretreated with inhibitory
ryanodine. After these treatments, the cells were grown for
an additional 24 h period with (E2) or without E2 (control).
In agreement with previous results, the morphometric analysis
indicated that neurons grown under hormonal treatment show
longer axons than neurons in control conditions without
E2 (Figure 4A). Remarkably, blocking RyRs with ryanodine
completely inhibited the E2-induced axogenesis (Figure 4B).
Moreover, no significant differences were observed in the
number of primary neurites, length of minor processes, or
soma area per neuron resulting from E2 or ryanodine treatment
(Table 1), confirming that the hormonal effect is restricted to
axonal growth (Díaz et al., 1992; Cambiasso et al., 1995, 2000;
Brito et al., 2004).

DISCUSSION

In the present study, results from ERK1/2 phosphorylation,
Ca2+ imaging and neuronal growth consistently pointed to
RyRs as the Ca2+ channels necessary to mediate activation of
the MAPK/ERK pathway and the final axogenic effect induced
by E2. Inhibitory ryanodine completely blocked E2-mediated
Ca2+ transients, ERK1/2 phosphorylation and axonal outgrowth,
which provides valuable evidence to propose that E2 mobilizes
endoplasmic reticulum stores of Ca2+ through RyRs to activate
the signaling cascades that finally affect the axonal elongation of
hypothalamic neurons.

In regard to the impact of functional RyRs on cellular
response, Dr Hidalgo’s group showed that BDNF-induced neural
plasticity requires functional RyRs activated by the Ca2+-
induced Ca2+ release (CICR) mechanism to evoke the larger
Ca2+ signaling needed to maintain changes during long-term
memory storage (Adasme et al., 2011). CICR is a positive
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FIGURE 4 | RyR activity is required to the E2-induced axogenesis. (A) Representative images of male hypothalamic neurons cultured for 48 h with (E2) or without
(control) 10 nM 17β-estradiol in combination or not with 50 µM ryanodine (Ry) for the last 24 h of incubation (arrows indicate the axons of some neurons). (B) Mean
of axonal length for each condition in (A). ANOVA F(3,12) = 4.51; p = 0.02. LSDs test indicated ∗p = 0.05 vs. control and ��p = 0.01 vs. E2. Data represent the
mean ± SEM; n = 4 independent cultures. Scale bar: 100 µm.

TABLE 1 | Number of primary neurites, soma area, and length of minor processes of male hypothalamic neurons grown with or without 17β-estradiol (E2) in 3
combination or not with ryanodine.

Variable Treatment

Control E2 E2 + Ryanodine Ryanodine

N◦ of neurites 4.2 ± 0.2 4.4 ± 0.2 4.3 ± 0.4 4.2 ± 0.2
Soma area (µm2) 118.9 ± 13.2 116.6 ± 4.5 119.5 ± 10.0 126.2 ± 9.0
Minor processes length (µm) 107.2 ± 7.7 115.6 ± 8.9 94.0 ± 11.5 92.6 ± 5.8

Data represent the mean ± SEM; n = 4 independent cultures.

feedbackmechanism bywhich cytoplasmic Ca2+ stimulates Ca2+

release from the endoplasmic reticulum through RyRs or IP3Rs
(Bezprozvanny et al., 1991; Berridge et al., 2003; Seo et al., 2015).

Moreover, several studies have indicated a regulatory role for
estrogens on RyRs activity, for instance, in the human eccrine
sweat gland cell line NCL-SG3 (Muchekehu and Harvey, 2008),
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ventricular myocytes (Yan et al., 2011), detrusor smooth muscle
cells (Hristov et al., 2017), and dorsal root ganglion neurons
(Ferrari et al., 2016; Khomula et al., 2017). Interestingly, Zhao
X. et al. (2005) proposed, in a neuroblastoma cell line, an
E2-mediated mechanism starting at the plasma membrane,
by which rapid Ca2+ signaling potentiates the transcription
of genes normally regulated by estrogens; RyRs, IP3Rs, and
N-VGCCs, but not L-VGCCs, were involved in the process.
Our results clearly show that RyRs are indispensable Ca2+

channels involved in the non-classical signaling events produced
by E2 to generate axonal growth in hypothalamic neurons.
However, RyRs also require a previous small increase in
cytosolic Ca2+ from resting levels to activate and release Ca2+

by CICR (Hidalgo et al., 2005; Lanner et al., 2010). Since
we found that removing extracellular Ca2+ or blocking the
membrane channels L-VGCCs prevented the Ca2+ signaling
induced by E2 and that inhibiting L-VGCCs also reduced
ERK1/2 phosphorylation modulated by the steroid, we postulate
that E2 initially induces a Ca2+ influx in hypothalamic neurons
via L-VGCCs that then enables RyRs opening to generate
the final and complete Ca2+ signaling event (Hidalgo, 2005;
Calin-Jageman and Lee, 2008). Besides L-VGCCs, our results
show that the PLC/IP3Rs system is involved in E2-induced
ERK1/2 activation, since both 2-APB and U-73122 used as
blockers of IP3Rs and PLC, respectively, produced a significant
reduction in phosphorylation levels of the kinases in the
presence of the hormone. The activation of PLC and Ca2+

release via IP3Rs induced by estrogens has been previously
reported in different cellular systems (Chaban et al., 2004;
Fricke et al., 2007).

L-VGCCs are the major route of Ca2+ entry into neurons
and the most profusely studied and best characterized VGCC
type by far, as they play a predominant role in the brain
(Striessnig et al., 2014; Vega-Vela et al., 2017). Several studies
report that E2 is able to modulate L-VGCCs activity (Bulayeva
et al., 2005; Sarkar et al., 2008; Farkas et al., 2012; Feng
et al., 2013). Wu et al. (2005) and Zhao L. et al. (2005)
indicated that E2 induced rapid Ca2+ influx through L-
VGCCs, which was required to activate the Src/ERK/CREB/Bcl-
2 signaling pathway and finally mediated neuroprotective and
neurotrophic responses in rat hippocampal and cortical neurons.
The generation of this intracellular Ca2+ increase and the
downstream activation of ERK depend on the presence of
ERs in the membrane of rat hippocampal neurons (Wu et al.,
2011). These membrane ER-expressing neurons represented
29% of the cultured cells and all of them co-expressed L-
VGCCs. Consistently, our data from Ca2+ imaging experiments
indicated that approximately 22% of hypothalamic neurons
responded to E2.

Although previously it has been reported that E2 induces
L-VGCCs-mediated Ca2+ influx, the question about how the
hormone activates L-VGCCs remains open. Sarkar et al. (2008)
reported that E2 potentiated the activity of L-VGCCs by
directly binding to specific sites in the channel, independently
of ERs. On the other hand, PI3K signaling cascade has been
proposed as a candidate to link membrane ER activation
with L-VGCCs aperture (Simoncini et al., 2000; Quignard

et al., 2001; Wu et al., 2005), although our preceding
work blocking PI3K with LY-294,002 did not prevent the
axogenic effect of E2 in hypothalamic neurons (Gorosito
and Cambiasso, 2008). It is important to note that we
have previously reported the expression of ERα on the
cell-surface of embryonic hypothalamic neurons (Gorosito
et al., 2008), and that the membrane-impermeable E2-albumin
construct (E2-BSA) was as effective as free E2 to generate
ERK1/2 phosphorylation (Gorosito and Cambiasso, 2008) and
axonal elongation (Cambiasso and Carrer, 2001), evidence that
altogether indicate these processes respond to a membrane-
initiated ERα-mediated mechanism.

Another question that arises is what other elements lead
from the RyRs-mediated Ca2+ release to ERK1/2 activation. In
Gorosito and Cambiasso (2008) we reported that PKC but not
PKA nor CaMKII is required in the E2-induced MAPK-ERK
pathway activation, since an inhibitor with specificity for the
PKC Ca2+-dependent α and βI isoforms, Ro 32-0432, attenuated
E2-modulated ERK1/2 phosphorylation and prevented the
axogenic effect of the hormone. PKC activation by E2 has
been found in different cell types, including breast cancer cells,
hepatocytes, and cortical and hypothalamic neurons (Marino
et al., 1998; Boyan et al., 2003; Cordey et al., 2003; Qiu
et al., 2003). Ca2+-dependent PKC activation can then induce
ERK1/2 phosphorylation via Src/Ras signaling (Cullen and
Lockyer, 2002; Brandt et al., 2003; Roskoski, 2005).

Our results show that E2-induced cytosolic Ca2+ often
increases as repetitive oscillations. This is in agreement with
previous work demonstrating E2-induced intracellular Ca2+

oscillations that involved internal stores and PKA and PLC
activity in neurons of the arcuate nucleus (Fricke et al., 2007).
It is well known that the frequency of Ca2+ oscillation may
depend on Ca2+ influx into the cell (Sneyd et al., 2004),
SERCA activity (Falcke et al., 2003) and oscillating cytoplasmic
IP3 concentration (Sneyd et al., 2006). Our data suggest that
the frequency of Ca2+ oscillations in hypothalamic neurons
stimulated by E2 mainly depends on Ca2+ entry. Leaving
aside its modulation, our results allow us to speculate that the
characteristic frequency encodes information to regulate the
cellular response (axonal growth) mediated by the hormone
(Dolmetsch et al., 1998).

In conclusion, we have provided new insights into the
non-classical mechanisms triggered by estrogens and its axogenic
effect in male rat hypothalamic neurons. The hormone induces
ERK1/2 activation in a Ca2+-dependent manner. RyRs inhibition
abolished this activation as well as axonal growth. The
oscillatory Ca2+ signal generated by E2 required functional
RyRs and L-VGCCs. This early Ca2+ response that underlies
E2-induced RyRs and MAPK/ERK activation may transmit a
finely tuned message into a neuronal development program,
reflecting the need for tight control of a critical event during
sexual differentiation of the male brain. The conjunction of XY
genotype with adequate estrogen exposure levels at the time of
hypothalamic neuronal differentiation may induce the growth
of axons towards their appropriate targets. A complete and
detailed understanding of the intracellular signaling mechanisms
and neuronal processes mediated by estrogens will allow to
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improve current estrogen-based therapies, such as hormone
replacement therapy in postmenopausal women, as well as to
develop novel treatments to prevent and/or alleviate neurological
pathologies based on its widely proven neuritogenic and
neuroprotective effects.
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