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High-mobility group box 1 protein (HMGB1) is a novel, cytokine-like, and ubiquitous,
highly conserved, nuclear protein that can be actively secreted by microglia or passively
released by necrotic neurons. Ischemic stroke is a leading cause of death and disability
worldwide, and the outcome is dependent on the amount of hypoxia-related neuronal
death in the cerebral ischemic region. Acting as an endogenous danger-associated
molecular pattern (DAMP) protein, HMGB1 mediates cerebral inflammation and brain
injury and participates in the pathogenesis of ischemic stroke. It is thought that
HMGB1 signals via its presumed receptors, such as toll-like receptors (TLRs), matrix
metalloproteinase (MMP) enzymes, and receptor for advanced glycation end products
(RAGEs) during ischemic stroke. In addition, the release of HMGB1 from the brain into
the bloodstream influences peripheral immune cells. However, the role of HMGB1 in
ischemic stroke may be more complex than this and has not yet been clarified. Here, we
summarize and review the research into HMGB1 in ischemic stroke.

Keywords: ischemic stroke, high-mobility group box 1 protein (HMGB1), inflammatory response, stroke-induced
immunodepression, signaling pathways

INTRODUCTION

Ischemic stroke, caused by the formation of a clot in a main cerebral blood vessel, results in a sharp
drop in perfusion of the ischemic core and is a leading cause of death and disability worldwide. An
ischemic stroke deprives the brain of oxygen and nutrients, leading to permanent necrotic neuronal
death in the region of brain tissue supplied by the affected cerebral artery (Singh et al., 2016). The
pathophysiology of the complex brain injury that occurs following an ischemic stroke has not
yet been fully elucidated. Cerebral ischemia–reperfusion causes a loss of cellular ion homeostasis,
activation of caspases, generation of reactive oxygen species (ROS), bioenergetic failure, impaired
mitochondrial function, and excitotoxicity in brain tissue, but these complex reactions are not yet
fully understood. Activation of complementary pathways promotes the generation of arachidonic
acid products and cytokines, infiltration of immune cells, and disruption of the blood–brain barrier
(BBB), which initiates inflammatory cascades (Fann et al., 2013; Ballarin and Tymianski, 2018;
Bao et al., 2018).

Stroke-induced inflammation and the activation of proinflammatory mediators have been
the focus of recent research into the mechanisms of stroke-induced brain damage (Chen et al.,
2017; Stonesifer et al., 2017), and high-mobility group box 1 protein (HMGB1), a typical
damage-associated protein, has gained particular interest (Choi et al., 2018; Shichita et al., 2017).
The HMGB proteins were first identified by Goodwin et al. (1973). Since then, a number of
studies have confirmed that HMGB1 plays a central role in the pathogenesis of many diseases,
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including systemic lupus erythematosus (SLE), acute liver
failure (ALF), tumors, and cerebrovascular diseases (Cully, 2013;
Majumdar et al., 2013; Jian et al., 2016; Xiong et al., 2016; Seidu
et al., 2017; Hossain et al., 2018). The HMGB1 protein was
originally reported to be a ubiquitous, non-histone chromosomal
protein that plays a role in DNA replication and repair in
eukaryotic cells (Liu et al., 2010; Thomas and Stott, 2012).
When released or secreted, HMGB1 acts as a sentinel for the
immune system and triggers cell survival or death pathways in
response to stress or damage. It is a multifunctional protein, with
the functions depending on its location in the cell. In normal
brain tissue, HMGB1 is usually located in the nuclei. However,
following a stroke, HMGB1 is translocated to the cytosol and
secreted into the extracellular space. Studies have indicated that
intracellular HMGB1 plays an important role in the regulation
of energy homeostasis and transcription (Tang et al., 2016). In
contrast, it has been reported that extracellular HMGB1 directs
BBB breakdown, neuroimmune activities, and neuronal death
(Gardella et al., 2002; Faraco et al., 2007).

In this review article, we aim to illustrate the biological
functions of HMGB1 and the role of this protein in ischemic
stroke, as well as fully clarify the mechanisms of HMGB1’s role in
stroke pathology, to highlight HMGB1 and pathways which may
be potential drug targets in an attempt to provide new prospects
and directions for the treatment of ischemic stroke.

STRUCTURE AND CHARACTERISTICS
OF HMGB1

The HMGB protein family comprises four proteins: HMGB1,
HMGB2, HMGB3, and HMGB4. All have HMG box domains,
which are DNA-binding motifs (Stros, 2010). HMGB1 protein is
highly conserved in evolution as a chromatin-binding molecule,
and since its discovery in 1973, it has attracted the attention of
researchers (Goodwin et al., 1973).

HMGB1 has a molecular weight of 30 kD and consists of
214 amino acid residues. Its amino acid sequence is highly
conserved, with over 98% homology between humans and
rodents. HMGB1 consists of three distinct structural domains:
two positively charged DNA-binding motifs (boxes A and B)
and a highly negatively charged C-terminal acidic tail (Figure 1).
The A box is located at the N-terminal, and the B box is
between the A box and the C tail. The A and B boxes are
evolutionarily conserved and are each composed of three α-
helical structures, which can nonspecifically bind to DNA. The A
box is important for anti-inflammatory action (Lotze and Tracey,
2005), while the B box is critical for proinflammatory activity and
cell differentiation (Sparatore et al., 2001). However, the most
important part of HMGB1 is the C-terminal domain, which is
associated with regulating HMGB1’s DNA binding affinity.

There are three cysteines (C23, C45, and C106) in the
molecular structure of HMGB1 (Yang et al., 2013), and the
redox state of these three cysteines regulates biological activity
and receptor binding. HMGB1 with all-thiol state of the
three cysteine residues has been reported to cooperate with C-
X-C motif chemokine 12 (CXCL12) to form a heterocomplex
with chemotactic activity, which binds to the CXCL12 reciprocal

receptor C-X-C chemokine receptor type 4 (CXCR4) in a
synergistic fashion, contributing to the cytokine-inducing and
chemoattractant activities of HMGB1 (Schiraldi et al., 2012;
Venereau et al., 2012). However, it is reported that all-thiol
HMGB1 is oxidized, leading to the formation of disulfide state
at the three cysteine residues, when it is released into the
circulation after cerebral ischemia. Oxidized HMGB1 possesses
a cytokine-stimulating function, inducing the translocation
nuclear factor ‘‘kappa-light-chain-enhancer’’ of activated B-cells
(NF-κB) to the nucleus and synthesis of tumor necrosis factor
alpha (TNF-α) in activated macrophages (Yang et al., 2012;
Singh et al., 2016).

THE BIOLOGICAL FUNCTIONS OF HMGB1

Under physiological conditions, as a non-histone chromosome
binding protein, HMGB1 remains in the nucleus and
nonspecifically binds to DNA, stabilizes nucleosomes, and
assists in DNA replication and transcription (Liu et al., 2010;
Thomas and Stott, 2012; Tang et al., 2016). In addition,
HMGB1 may also interact with nucleotides to repair related
proteins, play a role in DNA repair, and identify damaged
DNA fragments and remove them. During the maturation of
T and B lymphocytes, HMGB1 can affect the recombination,
differentiation, and development of V(D)J gene fragments.
Cell activation, injury, or death caused by some pathological
conditions, such as hypoxia, result in HMGB1 translocation
from nucleus to cytoplasm or extracellular space, due to the
separation of HMGB1 with damaged DNA. The translocation
of HMGB1 between the nucleus and the cytoplasm is associated
with the acetylation of lysine in nuclear localization sites (NLSs;
Andersson et al., 2018).

There are two ways for HMGB1 to be released: passive
release or active secretion. During disease development,
these two mechanisms are not completely independent
but are mutually causal. It has been confirmed that the
secretion of HMGB1 from necrotic cells functions as danger-
associated molecular patterns (DAMPs), and contributes to
the inflammatory cascade (Scaffidi et al., 2002; Singh et al.,
2016). Okuma et al. (2012) reported that HMBG1 is secreted
within a few hours of stroke onset and is a hyperacute DAMP
that devastates the BBB. When HMGB1 is released into
the extracellular space, it is recognized by receptors such as
toll-like receptors 2 and 4 (TLR2, TLR4; Park et al., 2004);
and receptor for advanced glycation end product (RAGE);
(Rauvala and Rouhiainen, 2007), thereby activating the NF-
κB signaling pathway and contributing to the inflammatory
response (Lok et al., 2015) (Figure 2). Inhibiting the expression
and translocation of HMGB1 and its receptors has been
demonstrated to have anti-inflammatory and neuroprotective
effects on ischemic injury (Tao et al., 2015).

RECEPTORS AND TRANSDUCTION
PATHWAYS OF HMGB1

Although multiple receptors have been reported for HMGB1,
only four receptors have been identified: TLR2, TLR4, RAGE,
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and CXCR4, as well as matrix metalloproteinases (MMPs; Hori
et al., 1995; Carty and Bowie, 2011). Other receptors are likely to
present molecules to bind HMGB1. The binding of HMGB1 to
these receptors mediates inflammatory factors production and
eventually results in systemic inflammation.

The transmembrane protein RAGE is a member of the
immunoglobulin superfamily and is widely expressed in the
cell surface of many cells including mononuclear macrophages,
epithelial cells, endothelial cells, and nerve cells (Kokkola
et al., 2005). It binds to a variety of active proteins, including
glycated proteins, cytoplasmic protein S100, amyloid β-peptide,
and HMGB1. Under physiological conditions, cells have low
RAGE expression, but when its ligand molecules increase,
its expression also increases. RAGE has a high affinity for
HMGB1. When HMGB1 binds to the upregulated RAGE,
some protein kinases in mitogen-activated protein kinase
(MAPK) and phosphatidylinositol 3 kinase/protein kinase
B (PI3K/Akt) pathways, such as p38 kinase, SAPK/JNK,
extracellular regulated protein kinases1/2 (ERK 1/2) and
Akt are activated by this mitogen (Qin et al., 2009; Tong
et al., 2018); in addition, cell division cycle 42 (Cdc42),
Ras-related C3 botulinum toxin substrate (Rac), and just
another kinase/signal transducer and activator of transcription
1 (JAK/STAT1)-mediated signal transduction pathways are
also activated (Tsoyi et al., 2010). These events finally lead
to the translocation of NF-κB, inducing the expression of
inflammatory cytokines and chemokines that participate in the
maturation and migration of immune cells, the expression of
surface receptors and growth of neurites, as well as tumor
proliferation (Muhammad et al., 2008; Akirav et al., 2012;
Zhang et al., 2017).

TLR2 and TLR4 are also HMGB1 receptors that induce
a proinflammatory response (Yang et al., 2010, 2015).
TLR-mediated signaling is important for cytokine release
and activation of innate immunity. Kang and Lee demonstrated
that HMGB1 binding to TLRs can mediate activation of certain
pathways, including myeloid differentiation factor 88 (MyD88)-
dependent and MyD88-independent pathways, which result in
the expression of inflammatory genes, leading to the production
of cytokines and chemokines (Kang and Lee, 2012). Recently,
Kim E. J. et al. (2018) reported that binding of HMGB1 to TLR-4
increases interleukin-1β (IL-1β) production in vascular smooth
muscle cells via the activation of Nod-like receptor protein 3
(NLRP3) inflammasome.

CXCR4 (a CXCL12 reciprocal receptor) is another
receptor that is reported to bind HMGB1. A
CXCL12/HMGB1 heterocomplex can interact with
CXCR4 receptors and induce migration of inflammatory
cells. Recently, Tirone et al. (2018) demonstrated that fully
reduced HMGB1 (fr-HMGB1) orchestrates tissue regeneration
via CXCR4.

HMGB1 AND CEREBRAL ISCHEMIC
STROKE

As the global population ages, cerebral ischemic stroke and
its complications have become the main cause of disability

and death worldwide (Neumann et al., 2015). During ischemic
stroke, cerebral artery occlusion leads to oxygen and nutrient
depletion in neural tissue (Lo, 2010). In response to ischemic
injury, astrocytes and microglia in the brain activate and release
reactive nitrogen species (RNS), ROS, and proinflammatory
cytokines that cause secondary damage to the infarct area.
Studies have shown that HMGB1 is involved in the pathogenesis
of ischemic stroke and reperfusion injury (Kim et al., 2006,
2008; Liu et al., 2007; Muhammad et al., 2008; Qiu et al.,
2008; Shichita et al., 2012). Furthermore, the application
of anti-HMGB1 neutralizing antibodies has been shown to
reduce infarct volume and ameliorate infarction after middle
cerebral artery occlusion (MCAO) in rats (Kim et al., 2008).
Recently, it has been reported that HMGB1 works as an
immune system signal (or DAMP), and that HMGB1 inhibition
has a protective effect against damage following an ischemic
stroke. There are two phases of the post-ischemic stroke
inflammatory response: the early phase, which is involved
in neural tissue destruction, and the late phase, which
consists of tissue remodeling (Agnello et al., 2002). In
the early phase, HMGB1 is released from nerve cells to
accelerate the inflammatory response. However, in the late
phase, HMGB1 release from reactive astrocytes may affect the
regeneration of nerves and blood vessels, and promote tissue
remodeling (Bianchi et al., 2017).

Process of Activation and Secretion of
HMGB1
In the early stages of stroke, a large number of neurons
undergo sustained hypoxia and oxidative toxicity. The
cell membranes of neurons are destroyed, ‘‘holes’’ appear,
and HMGB1, loosely bound to chromosomes, is passively
released into the extracellular space (Tsung et al., 2007).
Meanwhile, microglia and astrocytes are activated and
intracellular HMGB1 is modified by a series of acetylation
and phosphorylation reactions, thus decreasing its affinity
for DNA, finally leading to active secretion of HMGB1 into
extracellular space. This is accompanied by increases in RNS
and ROS levels. These factors all contribute to the formation
of highly oxidative conditions. The activity and function of
many proinflammatory cytokines are adjusted by the oxidation
of methionine, cysteine, and tyrosine residues (Singh et al.,
2016). HMGB1 is also modified to the restored or oxidized
forms, which have specific cellular functions in the ischemic
brain (Zhang J. et al., 2011; Lorenzen et al., 2017). Once
HMGB1 is released, an inflammation signal is emitted, and
the immune system responds with a proportional positive
feedback amplification.

In a model of MCAO in mice, Kim et al. (2008) reported
that, through phosphorylation and acetylation, HMGB1 is
translocated into the cytoplasm and then secreted into the
extracellular area. Moreover, using in vitro experiments,
Hua et al. (2007) demonstrated that when primary cultures
of neurons undergo oxygen glucose deprivation (OGD),
HMGB1 is detected in the liquid supernatant. Fully reduced
HMGB1 has been shown to be prevalent in the serum
and brain samples of mice after 2 h of stroke (Liesz et al.,
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2015). Furthermore, cytokine-inducing disulfide HMGB1 was
discovered in mouse serum after 24 h of cerebral ischemia
(Laird et al., 2014). These studies demonstrate that early
necrotic brain tissue releases fully reduced HMGB1 to
the blood stream, where it is oxidized to its cytokine-
inducing form.

Dynamics of HMGB1 in Ischemic Stroke
When an ischemic stroke occurs, HMGB1 is released into
peripheral blood from the central nervous system (CNS). This
extracellular HMGB1 has been demonstrated to provoke an
inflammatory response in many experimental animal models
(Yang et al., 2011). The HMGB1 levels in serum and plasma
reflect the expression level of HMGB1 in the CNS and the
extent of brain injury. In experimental animal models of
cerebral ischemia–reperfusion injury (IRI) and in ischemic
stroke patients, HMGB1 levels in the cerebral spinal fluid
(CSF) and serum are significantly increased. Goldstein et al.
(2006) reported that HMGB1 levels in ischemic stroke patients
rapidly increase, and are up to 13 times higher than those
in the control group within 24 h. Kim et al. (2008) reported
that CSF and serum HMGB1 levels increase rapidly after
3 h of ischemic stroke, and generate 2 peaks: one on the
1st day and the other on the 6th and 7th days after stroke.
The authors suggested that the HMGB1 peak on the 1st day
may be caused by acute necrosis of nerve cells induced by
excitotoxicity and that HMGB1 activates microglia in the early
stages of inflammation. The second peak of HMGB1 after
ischemic stroke, however, is thought to be secreted by various
immune cells such as microglia, macrophages, astrocytes, and
vascular endothelial cells. More recently, Umahara et al. (2018)
also observed that, at the acute stage of cerebral infarction in
patients, HMGB1 is located in the neuronal cytoplasm, while
during the late stage of cerebral infarction, HMGB1 is mainly
secreted by macrophages located in the basal ganglia and in
some ischemic regions. Xiong et al. (2014, 2016) confirmed
that HMGB1 transposes from the neuronal cell nucleus to the
cytoplasm, and finally to the extracellular environment after
ischemic stroke in the MCAO rats and mice. They found
that HMGB1 is comprehensively expressed in the nuclei of
neurons in the control group and significantly reduced after
MCAO, and its subcellular translocation is observed at an
early stage (12 h) of ischemic stroke (Xiong et al., 2014).
At the same time, increased numbers of HMGB1 positive
microglia/macrophages are observed infiltrating the stroke area
and exacerbating inflammation (Xiong et al., 2014). It was
suggested that at the early stage of stroke, HMGB1 is first
passively released from the dying neurons, accompanied by
active secretion by the actively infiltrated microglia/macrophages
(Xiong et al., 2014). Meanwhile, they found that HMGB1 levels
are increased in the CSF and circulation at 5, 24, and 48 h
of reperfusion (Gu et al., 2013; Xiong et al., 2014, 2016).
This phenomenon may be related to the disruption of the
BBB and an increase of vascular permeability, or to other
unknown causes. HMGB1 is reported to be highly expressed
in the blood not only during the acute phase but also for at
least 2 weeks following ischemia in rats (Kim et al., 2006),

even longer to around 1 month in ischemic stroke patients
(Schulze et al., 2013).

Contribution of HMGB1 in Early Cerebral
Ischemic Stroke
Early restoration of reperfusion is a fundamental step in the
prevention of decreased brain perfusion in cerebral ischemia
patients. However, while ischemia as a stimulus may activate
macrophages to release the inflammatory mediator HMGB1,
reperfusion may exacerbate the inflammatory response by
stimulating the release of more HMGB1 into the extracellular
environment and aggravating brain tissue damage. Kim et al.
(2008) constructed an HMGB1 short hairpin RNA (shRNA)
plasmid and injected it into MCAO mice to interfere with
HMGB1 expression. This treatment reduces the size of cerebral
infarcts in mice (Kim et al., 2008). Meanwhile, they also
found that the activation and infiltration of microglia in
the ischemic region is reduced with this treatment, and the
expression of TNF-α, IL-1β, cyclo-oxygenase-2 (COX-2), and
inducible nitric oxide synthase (iNOS) are decreased (Kim et al.,
2008). The anti-HMGB1 antibody also significantly reduces
the size of the cerebral infarct, improves the permeability of
the BBB, inhibits the activation of microglia, and reduces the
expression of TNF-α and iNOS in the MCAO mouse model
(Liu et al., 2007; Muhammad et al., 2008). Conversely, the
infarct volume is increased and the extent of inflammation
response is aggravated when recombinant HMGB1 is injected
into mice (Goldstein et al., 2006). After treatment with
glycyrrhizin, a direct inhibitor of HMGB1, the level of
HMGB1 in neuronal cells is significantly increased, while
translocation and release of HMGB1 are inhibited, neuronal
death in the infarct areas is significantly reduced, as is
infarct volume. This was accompanied by a reduction in
the activation and infiltration of inflammatory cells including
microglia/macrophages, neutrophils and T lymphocytes, as well
as the production of proinflammatory cytokine TNF-α, IL-1β
and interferon-γ (IFN-γ; Kim et al., 2012; Gu et al., 2013; Xiong
et al., 2016). HMGB1 is also expressed in microglia, and the
extent of cerebral infarct can be significantly reduced by the
inhibition of microglial HMGB1 expression (Hayakawa et al.,
2013). Recently, Balosso et al. (2014) reported that different redox
forms of HMGB1 can induce differential activation patterns of
microglia and that disulfide HMGB1 may promote neuronal cell
death induced by N-methyl-D-aspartic (NMDA) acid receptor
through TLR-4 receptors.

Extracellular HMGB1 acts as a proinflammatory factor and
activates microglia and macrophages to amplify inflammatory
responses by recognizing TLRs or RAGE receptors. The RAGE
receptor is involved in cerebral ischemic injury caused by
HMGB1, and the level of soluble RAGE (sRAGE) in the serum
of patients with acute stroke is significantly increased. The
expression of RAGE is also increased in the brain tissue of
patients with unilateral cerebral infarction. Liesz et al. (2015)
reported that HMGB1 is released at the acute stage of ischemia
from the injured brain in both the mice model and patients,
and HMGB1-RAGE signaling participates in the ischemic stroke,
which was believed to be critical for clarifying the mechanism
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of the brain–immune interaction after ischemia. The TLRs are
also implicated in the process of ischemic injury. In experiments
using mice, Zhang et al. (2014) observed that inhibiting the

binding of HMGB1 to TLR4 downregulates IL-17A levels,
thereby inhibiting neuronal apoptosis, improving nerve repair
and reducing infarct volume. By blocking the TLR4 receptor,

FIGURE 1 | Structure of high-mobility group box 1 protein (HMGB1; 30 kD, 214 amino acids). HMGB1 is divided into three distinct structural domains: A box, B
box, and C tail. The three regions have their respective positions. The three cysteines (C23, C45, and C106) in the molecular structure of HMGB1 contribute to its
redox state.

FIGURE 2 | Pathways of HMGB1 secretion. There are two mechanisms used by cells to liberate HMGB1 into the extracellular milieu. Somatic cells contain large
amounts of HMGB1 that is passively released into the extracellular space during cell apoptosis or necrosis. A second mechanism is the active secretion of
HMGB1 from activated immune or nerve cells.
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the extent of brain tissue edema, infarct size, and increased
neurological damage scores after stroke are reduced in vivo,
which possibly occurs via the TLR4/MyD88 signal pathway.
Therefore, HMGB1 participates in the destruction of the BBB
after stroke and leads to inflammation in brain tissue.

The Role of HMGB1 in the Advanced
Stages of Ischemic Stroke
During the advanced stages of ischemic stroke, the function
of HMGB1 is not fully understood. At present, it is generally
thought that HMGB1 can promote the regeneration of nerve
cells, remodeling of blood vessels and recovery of neurological
function in the late infarct stage (Le et al., 2018). Stroke-activated
astrocytes increase the viability and migration of endogenous
endothelial progenitor cells (EPCs) by releasing HMGB1, and
promote neurovascular repair after stroke, while inhibition
of HMGB1 by an siRNA restrains the EPC proliferation,
blocks the peri-infarct angiogenesis, and increases neurological
scores. Similarly, exogenous EPC transplantation promotes the
regeneration of blood vessels in the ischemic region during the
chronic phase of stroke, reduces the volume of brain atrophy, and
improves neurological function, mainly through the involvement
of HMGB1-RAGE initiated MAPK kinase/extracellular signal-
regulated kinase (MEK/ERK) pathway (Hayakawa et al., 2012).

Moreover, another important role of HMGB1 after stroke
is to promote endothelial cell sprouting. When different
concentrations of HMGB1 are used to treat human umbilical
vein endothelial cells, the degree of endothelial cell sprouting
is directly proportional to the HMGB1 concentration.
Schlueter et al. (2005) reported that high concentrations of
HMGB1 have proinflammatory effects that cause endothelial
damage, while low concentrations of HMGB1 improves
EPCs activity, then promoting neurovascular growth. Thus,
HMGB1 released from ischemic brain mediates post-stroke
angiogenesis at the advanced stage, subsequently promoting
brain repair and disease recovery.

The Mechanisms of HMGB1 Participating
in Ischemic Stroke
At present, although a pivotal role of HMGB1 in cerebral
ischemia is widely accepted, the specific mechanisms are not
yet fully understood. However, possible mechanisms will be
discussed in the following paragraphs.

Regulation of Inflammation by HMGB1
As mentioned previously, post-ischemic inflammation appears
to be a critical component of the progression of pathogenic
stroke. Recent studies agree that HMGB1 is a recognized
proinflammatory factor in ischemic stroke and positively
correlates with stroke severity in animal models and patients
(Harris et al., 2012; Le et al., 2018). HMGB1, as an endogenous
inflammatory mediator, is passively released by necrotic cells or
actively secreted by macrophages/monocytes into the ischemic
core, triggering and amplifying inflammatory processes. In
turn, the released HMGB1 also induces the activation of
microglia, macrophages, and endothelial cells among others
(Wang C. et al., 2016), which results in the production of

proinflammatory mediators such as TNF-α, iNOS, IFN-γ,
NO, chemokines, and cell adhesion molecules. On one hand,
these proinflammatory mediators recruit more immune cells
from the circulatory system into the CNS, thus aggravating
the development of inflammation in the brain (Young et al.,
2008). On the other hand, these proinflammatory mediators
also stimulate microglia and macrophages to actively secrete
HMGB1 in a positive feedback loop, which exerts an effect as late
inflammatory mediators. Xiong et al. (2016) demonstrated that
microglia/macrophages express HMGB1 within the ischemic
core. However, when HMGB1 levels are reduced, infiltration
of microglia/macrophages and leukocytes in ischemic brain
tissue is significantly inhibited (Gu et al., 2013). Several studies
have demonstrated 2 peaks of HMGB1 levels in CSF and
serum post-MCAO (Abraham et al., 2000; Kim et al., 2006;
Kim I. D. et al., 2018; Umahara et al., 2018), which is likely
to be related to two separate sources of circulating HMGB1.
The first peak of HMGB1 may originate from necrotic neurons
and activated microglia/macrophages of the CNS, and the other
may be derived from active secretion by delayed activated
inflammatory cells in the postischemic hemisphere or peripheral
immune cells (Le et al., 2018). This suggests that accumulated
extracellular HMGB1 may not only mediate acute damaging
processes in the brain but also aggravate inflammation in
the brain and increase vulnerability to post-stroke infection
(PSI) Recently, a study reported that HMGB1 can exacerbate
inflammatory damage to the BBB during the process of
brain ischemia–reperfusion, which may be the cause of the
release of HMGB1 from the brain to the CSF and circulation
(Li M. et al., 2018).

HMGB1 is ‘‘sticky’’ and binds to a variety of different
molecules including RACE, TLRs and CXCR4 on the cell
surface. This ‘‘sticky’’ may partially explain the limitation
of the diffusion of extracellular HMGB1, then localizing the
damaging effects of HMGB1. After ischemic stroke, extracellular
HMGB1 works as a DAMP, through three signaling pathways
(Figure 3): (1) by binding to TLR4, HMGB1 induces MyD88 or
Toll/IL-1 receptor domain-containing adaptor-inducing IFN-
β (TRIF) signaling cascades, leading to the activation of
transcription factors, such as NF-κB and activator protein-1 (AP-
1) via TNF receptor-associated factor 6 (TRAF6)-mediated JNK,
p38 MAPK, and ERK signaling activation (O’Neill and Bowie,
2007); (2) by interacting with RAGE, PI3K/Akt and MAPK
pathways are activated, resulting in nuclear NF-κB translocation
and production of inflammatory mediators including TNF-α
and IL-1β (Zhang et al., 2017). PI3K/Akt pathway is usually
considered to be an antiapoptotic pathway, but there is also
evidence to suggest that it can facilitate the production of
inflammatory cytokines (Xue et al., 2017; Li H. et al., 2018;
Xu et al., 2018). Some studies have reported that when
HMGB1 binds to RAGE, it also generates direct intracellular
signaling resulting in nuclear NF-κB translocation (Li et al.,
2016). However, other studies have suggested that TLR4 is
required for HMGB1-induced NF-κB activation and cytokine
formation via the RAGE receptor (Yang et al., 2010) and (3) when
bound to CXCR4, the ERK, cyclooxygenase2/janus kinase/signal
transducer and activator of transcription (COX2/JAK/STAT),
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FIGURE 3 | Potential mechanisms by which HMGB1 contributes to stroke pathogenesis. HMGB1 acts as an early mediator at the initial stages of stroke. An
ischemia causes nerve cell injury, which leads to the passive release of the disulfide form of hypoacetylated HMGB1 from damaged cells. Extracellular HMGB1,
which is either acetylated or oxidized at residues 23 and 45 to its the disulfide form, stimulates inflammatory signaling by binding to cell-surface receptors TRL4,
receptor for advanced glycation end product (RAGE), and CXCR4 on microglia. Acetylated or disulfide HMGB1, together with cytokines and danger-associated
molecular patterns (DAMPs), is also actively released from activated immune cells, causing additional nerve cell damage and microglia activation via positive
feedback, thereby acting as a late inflammatory mediator.

and PI3K/Akt signaling pathways are activated (Schiraldi et al.,
2012; Yamamoto and Tajima, 2017; Cecchinato et al., 2018),
contributing to inflammatory cell migration and inflammatory
mediator production.

Excitotoxic Injury Caused by HMGB1 Release
HMGB1 can induce excitatory neurotransmitter release in the
brain after stroke. Studies have shown that HMGB1 inhibits
mouse neural glial glutamate transporters by glutamate/aspartate
transporter (GLAST) neural activation particles and increases
extracellular levels of glutamate and its receptor. The activation
of glutamate receptors causes Ca2+ influx, eventually leading to
Ca2+ overload and a loss of cell function due to dyshomeostasis
(Zhang J. et al., 2011). An intravenous injection of anti-HMGB1
monoclonal antibody could, therefore, reduce cerebral infarct
volume and improve neurological function by preventing
the elevation of glutamate levels and reducing excitotoxicity
in neurons.

BBB Damage by HMGB1 Release
HMGB1, as an inflammatory cytokine, also can contribute to
BBB breakdown, and BBB permeability is significantly reduced
by using of anti-HMGB1 monoclonal antibody in experimental
stroke models (Zhang J. et al., 2011). Ischemic stroke results in
upregulation of MMPs, then increasing BBB permeability and
even BBB damage because MMPs can break down a myriad
of extracellular matrix (ECM). MMPs are usually confined

to the cytosol in their inactivated state and are activated by
plasmin or other MMPs. Sapojnikova et al. (2014) demonstrated
that HMGB1 levels are strongly correlated with MMP-9
secretion. Qiu et al. (2010) reported that HMGB1 upregulates
MMP-9 via the TLR4 signaling pathway; when TLR4 signaling
is blocked, HMGB1-induced MMP-9 upregulation is mostly
suppressed. In addition, Tissue-type plasminogen activator
(tPA) is a putative pharmacotherapy for ischemic stroke,
but the neurovasculature complications including edema and
hemorrhagic transformation, due to BBB damage, also can occur
following the using of this drug, along with the reperfusion of
blood flow. When using the HMGB1-binding heptamer peptide
(HBHP) to inhibit HMGB1 activity, significantly improves the
BBB leakage, rescues the loss of occludin, a tight junction protein,
and promotes BBB integrity, thereby reducing the complications
resulted from tPA treatment (Li M. et al., 2018).

Regulation of Autophagy by HMGB1
The release of HMGB1 is also related to the functional
state of autophagy in the early stages of stroke. There is
some evidence to suggest that ischemic stroke postprocessing
forms a two-way feedback mechanism to protect the brain,
restraining autophagy and reducing the secretion of HMGB1.
However, the relationship between HMGB1 and autophagy
needs to be explored. Wang J. et al. (2016) indicated that
the expression and location of HMGB1 are closely related
to autophagy; remote ischemic preconditioning (RIPerC) and
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ischemic postconditioning (IPOC) has been shown to inhibit
autophagy, blocking the translocation of HMGB1 from the
nucleus to the cytoplasm. It is also clear that the inhibition of
autophagy reduces the secretion of HMGB1; the reduction in
HMGB1 secretion, in turn, causes the inhibition of autophagy
(Hayakawa et al., 2013). Tang et al. (2010) demonstrated that
the different redox states of HMGB1 lead to different cellular
effects, whichmay be the crucial function of HMGB1: to promote
information transfer between autophagy and apoptosis. Thiol
dehydrogenation forms a disulfide bond (for example, when
it is oxidized) between C23 and C45 of the HMGB1 protein
A-box, which is required for induction of autophagy because
HMGB1 binds to Beclin-1, causing Beclin-1 to separate from
Bcl-2 (Tang et al., 2016).

Relationship Between HMGB1 and Mitochondrial
Oxidative Stress/ERS
Endoplasmic reticulum (ER) and mitochondria constituted the
centers of metabolic networks. After a stroke, mitochondrial
oxidative stress results in a large number of ROS production,
which can induce ER stress (ERS), finally causing inflammation
and cell apoptosis, via C/EBP homologous protein (CHOP),
Caspase12, JUN activation (López-Hernández et al., 2015; Poone
et al., 2015). As mitochondria are quantifiable sources of ROS,
and ER is a factory to folding, processing and trafficking of
proteins, immune-metabolic dysregulation can occur in these
compartments of neurons during cerebral ischemia–reperfusion
(Narne et al., 2017; Wang et al., 2018). In response to ERS
and mitochondrial oxidative stress, macrophages and monocytes
actively release HMGB1. Tang et al. (2007) reported that
oxidative stress plays a potential role in the regulation of
HMGB1 release. They illuminated that a ROS, H2O2, stimulates
HMGB1 release actively from macrophages and monocytes,
possibly via MAPK- and CRM1-dependent pathways (Tang
et al., 2007). In addition, a recent study have shown that
oxygenized low density lipoprotein (OxLDL), a risk factor
of stroke, stimulates HMGB-1 secretion in macrophages
resulted from oxidative stress, then HMGB1 can contribute
to macrophage-derived foam cells formation via ERS/CHOP
pathway (Wu et al., 2018).

Relationship Between the Immune System and
HMGB1
HMGB1 an extracellular signal molecule and inflammatory
mediator has been demonstrated to participate in the adaptive
immune response not only by indirectly acting on dendritic
cells (DCs; Yang et al., 2007) but also by directly acting
on T cells to regulate their function (Dumitriu et al., 2005).
The effect of HMGB1 on T cells is bidirectional (Sundberg
et al., 2009). Low dose, short-term in vitro HMGB1 stimulation
promotes the activation, maturation, and migration of DCs
(Dumitriu et al., 2007). This HMGB1 stimulation can also
act directly on T cells (Zhang Y. et al., 2011), stimulating T
cell activation and proliferation, and polarization of (T helper
cells 1) Th1, resulting in the secretion of IL-2 and INF-γ, as
well as inhibiting the expression of cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) and forkhead or winged helix

transcription factor proteins 3 (Foxp3) in regulatory T cells and
reducing the secretion of IL-10 (Wang et al., 2008; Zhu et al.,
2011). In contrast, long-term, high doses of HMGB1 have the
opposite effects, directly or indirectly inhibiting the activation
and proliferation of DCs and Th1 polarization of T cells (Huang
et al., 2009), reducing IL-2 secretion, thus blocking T cell function
and inducing immunosuppression (Zhang et al., 2008; Zhu et al.,
2009; Wild et al., 2012).

The Effect of HMGB1 on the Ischemic Brain via T
Lymphocytes
Currently, activated T lymphocytes are considered to be a key
factor in secondary tissue injury, affecting the prognosis of
stroke. Xiong et al. (2016) reported that T cells participate in
HMGB1 effects on the ischemic brain in both in vivo and in vitro
experiments. The study showed that the HMGB1 inhibitor
glycyrrhizin protects against ischemia partly by inhibiting the
infiltration of T cells and their subtypes into the ischemic brain.
Injection of glycyrrhizin reduces the infarct size in WT mice but
not T or B cell-deficient severe combined immune deficiency
(SCID) mice, while restoring T and B cells in SCID mice elicit
a reduction in infarct size following glycyrrhizin treatment. The
in vitro experiments demonstrated that glycyrrhizin inhibits
neuronal death in a splenocyte and neuron coculture system
with splenocytes derived from WT mice, but not from SCID
mice. These results suggest a pivotal role for T cells in the
detrimental effects of HMGB1 in the brain after ischemic stroke
(Xiong et al., 2016).

Role of HMGB1 in Stroke-Induced Immunodepression
Ischemic stroke initiates not only a brain inflammation
that causing cerebral injury, but also a stroke-induced
immunodepression (SIID), resulting in an incidence of PSI,
most typically urinary tract infections and pneumonia (Gu
et al., 2015). PSI is one of the leading causes of delayed
death in stroke patients (Prass et al., 2003; Emsley and
Hopkins, 2010). Prass et al. (2003) first reported that the
PSI is closely associated with the reduction of lymphocytes
resulted from apoptosis in the peripheral organs in 2003,
which is simultaneously accompanied by the shift of cytokine
component from proinflammatory to anti-inflammatory profile.
After that, SIID is commonly accepted, which is characterized
by lymphopenia and dysfunction of lymphocytes. It is believed
that HMGB1 may be related to lymphopenia and immune-
function failure after ischemic stroke. Then, the correlation
between levels of HMGB1 and the number of immune cells
in the blood after stroke was investigated (Gu et al., 2013).
When compared with the sham group, the number of total
peripheral blood mononuclear cells (PBMCs) is significantly
reduced while plasma HMGB1 levels increases, which suggests
that HMGB1 may regulate lymphopenia and immunodepression
(Gu et al., 2013). These findings are supported by a report
that HMGB1 release into plasma is reduced after splenectomy,
which has been previously shown to reduce infarct size and
improve lymphopenia after stroke (Juneja et al., 1995; Milícevíc
et al., 2001; Ajmo et al., 2008). Furthermore, treatment with
glycyrrhizin to inhibit HMGB1 activity limits the release of
HMGB1 into the blood and attenuates the reduction of total
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PBMCs (Gu et al., 2013; Xiong et al., 2016). All of these results
confirmed the negative correlation between HMGB1 release and
lymphopenia, suggesting that HMGB1 participates in the process
of SIID. HMGB1 was reported to bind to RAGE or activate the
TLR4/MyD88 pathway, both of which promote the reduction
of mature monocytes and lymphocytes in the circulation,
and lead to subsequent post-stroke immunosuppression
(Huang et al., 2009; Wild et al., 2012). In addition, a
recent study has shown that alarmin HMGB1 aggravates
brain and systemic inflammation via TLR4-dependent
pathway in a rat PSI model induced by lipopolysaccharides
(LPS), which forms a positive feedback loop between PSI-
mediated HMGB1 release and following HMGB1-release-
induced enhancement of LPS function and deteriorative PSI
(Kim I. D. et al., 2018).

CONCLUSION AND PERSPECTIVE

At present, the incidence of ischemic stroke is not only increasing
year by year but also becoming more severe. Ischemic stroke
treatment is limited and the mortality and disability rate is
extremely high. The study of ischemic stroke still requires
further work. A growing body of evidence supports the idea
that HMGB1 is a cytokine that regulates inflammation and
immune response. It can mediate and amplify the inflammatory
response after ischemia and aggravate brain damage, as well as
exacerbate SIID and PSI. HMGB1 may be a potential biomarker
for independently predicting the poor stroke prognosis because

its upregulated blood lever is positively correlated with the
infarct volume, neurological deficiency degree, BBB damage
and serum inflammatory cytokine production (Le et al., 2018).
However, the distribution and functions of HMGB1 are varied,
but its biological mechanism is not yet clear, particularly
regarding the relationship between HMGB1 and stroke. It is
therefore important to study the mechanisms of HMGB1 in the
absence of stroke, with the aim of using HMGB1 as a target for
stroke treatments and provide new prospects and directions for
stroke diagnosis and prognosis.
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