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Intratympanic drug administration depends on the ability of drugs to pass through

the round window membrane (RW) at the base of the cochlea and diffuse from

this location to the apex. While the RW permeability for many different drugs can

be promoted, passive diffusion along the narrowing spiral of the cochlea is limited.

Earlier measurements of the distribution of marker ions, corticosteroids, and antibiotics

demonstrated that the concentration of substances applied to the RW was two to three

orders of magnitude higher in the base compared to the apex. The measurements,

however, involved perforating the cochlear bony wall and, in some cases, sampling

perilymph. These manipulations can change the flow rate of perilymph and lead to intake

of perilymph through the cochlear aqueduct, thereby disguising concentration gradients

of the delivered substances. In this study, the suppressive effect of salicylate on cochlear

amplification via block of the outer hair cell (OHC) somatic motility was utilized to assess

salicylate diffusion along an intact guinea pig cochlea in vivo. Salicylate solution was

applied to the RW and threshold elevation of auditory nerve responses was measured

at different times and frequencies after application. Resultant concentrations of salicylate

along the cochlea were calculated by fitting the experimental data using a mathematical

model of the diffusion and clearing of salicylate in a tube of variable diameter combined

with a model describing salicylate action on cochlear amplification. Concentrations reach

a steady-state at different times for different cochlear locations and it takes longer to

reach the steady-state at more apical locations. Even at the steady-state, the predicted

concentration at the apex is negligible. Model predictions for the geometry of the longer

human cochlea show even higher differences in the steady-state concentrations of the

drugs between cochlear base and apex. Our findings confirm conclusions that achieving

therapeutic drug concentrations throughout the entire cochlear duct is hardly possible

when the drugs are applied to the RW and are distributed via passive diffusion. Assisted

methods of drug delivery are needed to reach a more uniform distribution of drugs along

the cochlea.
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INTRODUCTION

The mammalian cochlea is one of the least accessible organs
for drug delivery (Salt and Plontke, 2009; Rivera et al., 2012; El
Kechai et al., 2015; Hao and Li, 2019). Systemic administration
of many drugs, notably the most frequently used corticosteroids,
and aminoglycoside antibiotics, is severely limited by the blood-
labyrinth barrier (Salt and Hirose, 2018). Local intratympanic
administration (Schuknecht, 1956; Bowe and Jacob, 2010) would
be a preferable option for these drugs and local delivery is the
only option for many old and newly emerging classes of drugs
and therapies including local anesthetics, antioxidants, apoptosis
inhibitors, neurotransmitters and their antagonists, monoclonal
antibodies, growth factors, signaling pathway regulators, and
genetic material (see Devare et al., 2018; Hao and Li, 2019 for
the latest reviews). Intratympanic administration of drugs relies
on their remaining in contact with the round window membrane
(RW) (a membranous opening in the bony wall of the cochlea
into the middle ear) long enough to allow their diffusion into
the perilymph of the scala tympani (ST). The ability of drugs to
pass through the RWdoes not, however, guarantee their sufficient
distribution along the cochlear spiral. Drug distribution in the ST
is limited by the low flow rate of perilymph within the cochlea
and by cochlear geometry. The longitudinal flow of perilymph
in the cochlea has been shown to be relatively slow, if present at
all (Ohyama et al., 1988), and drug distribution in the perilymph
is dominated by passive diffusion. Passive diffusion along the
ST is, however, constrained because the cochlea is a relatively
long and narrow tube with a cochlear cross-section that decreases
gradually from the RW at the base to the apex. It is in the cochlear
apex where human speech processing is initiated (e.g., Nuttall
et al., 2018) and where drug delivery to the cochlea has greatest
potential therapeutic and socioeconomic impact.

However, direct measurements of the distribution of marker
ions and contrasting agents (Salt and Ma, 2001; Haghpanahi
et al., 2013), corticosteroids (Plontke et al., 2008; Creber et al.,
2018) and antibiotics (Mynatt et al., 2006; Plontke et al., 2007a)
or measurements of the physiological effects of drugs (Chen
et al., 2005; Borkholder et al., 2010) demonstrated that the
concentration of substances applied to the RW was much higher
in the cochlear base than in the apex. These measurements,
however, involved perforating the cochlear bony wall and,
in some cases, sampling perilymph. These manipulations can
change the flow rate of perilymph (Ohyama et al., 1988; Salt and
Ma, 2001) and lead to the intake of cerebrospinal fluid through
the cochlear aqueduct (Salt et al., 2003), thereby disguising
concentration gradients of the delivered substances.

A few studies investigated the distribution of substances
applied to the RW in the intact cochlea without breaking
cochlear boundaries. This was done mainly in morphological
studies investigating the distribution of dexamethasone and
other substances along the cochlea after their intratympanic
administration (Saijo and Kimura, 1984; Imamura and Adams,
2003; Hargunani et al., 2006; Grewal et al., 2013). While
these studies confirmed the existence of base-to-apex gradients,
the actual concentrations of substances along the cochlea
were not measured. Borkholder et al. (2014) measured the

threshold elevation of distortion product otoacoustic emissions
(DPOAE) produced by primary tones of different frequencies
after intratympanic application of salicylate. Salicylate affects
cochlear amplification in a concentration-dependent manner but
the DPOAE is a non-linear phenomenon and the dependence
of DPOAE thresholds on the primary tone level and cochlear
amplification is complex (Lukashkin et al., 2002). As a result,
salicylate concentrations along the cochlear spiral cannot be
easily derived from the DPOAE threshold elevations.

The purpose of the current study is to quantify drug diffusion
from the RW along an intact guinea pig cochlea, to identify
the factors that limit passive drug diffusion along the cochlea,
and to analyse possible solutions to overcome these limitations.
Salicylate was used as a model drug with well-characterized
physiological effects. A mathematical model, which includes a
diffusion component and a biophysical component describing
the action of salicylate on the cochlear amplifier was validated
using experimental data and used to assess the distribution of
substances along the human cochlea.

MATERIALS AND METHODS

Animals
Pigmented guinea pigs of similar weight (350–360 g) were
anesthetized with the neurolept anesthetic technique (0.06 mg/kg
body weight atropine sulfate s.c., 30 mg/kg pentobarbitone i.p.,
500 µl/kg Hypnorm i.m.). Additional injections of Hypnorm
were given every 40min. Additional doses of pentobarbitone
were administered as needed to maintain a non-reflexive
state. The heart rate was monitored with a pair of skin
electrodes placed on both sides of the thorax. The animals
were tracheotomized and artificially respired, and their core
temperature was maintained at 38◦C with a heating blanket and
a heated head holder. All procedures involving animals were
performed in accordance with UK Home Office regulations with
approval from the local ethics committee.

Signal Generation and Recording
The middle ear cavity of the ear used for the measurements was
opened to reveal the RW. Compound action potentials (CAPs)
of the auditory nerve were measured from the cochlear bony
ridge in the proximity of the RWmembrane using Teflon-coated
silver wire coupled to laboratory designed and built extracellular
amplifier (James Hartley). Thresholds of the N1 peak of the CAP
were estimated visually using 10ms tone stimuli at a repetition
rate of 10 Hz.

For acoustic stimulation, sound was delivered to the tympanic
membrane by a closed acoustic system comprising two Bruel and
Kjaer 4134 ½′′ microphones for delivering tones and a single
Bruel and Kjaer 4133 ½′′ microphone for monitoring sound
pressure at the tympanum. The microphones were coupled to
the ear canal via 1 cm long, 4mm diameter tubes to a conical
speculum, the 1mm diameter opening of which was placed
about 1mm from the tympanum. The closed sound system was
calibrated in situ for frequencies between 1 and 50 kHz. Known
sound pressure levels were expressed in dB SPL re 2× 10−5 Pa.
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All acoustic stimuli in this work were shaped with raised
cosines of 0.5ms duration at the beginning and at the end
of stimulation. White noise for acoustical calibration and
tone sequences for auditory stimulation were synthesized by
a Data Translation 3010 board at 250 kHz and delivered
to the microphones through low-pass filters (100 kHz cut-
off frequency). Signals from the acoustic measuring amplifier
(James Hartley) were digitized at 250 kHz using the same board
and averaged in the time domain. Experimental control, data
acquisition, and data analysis were performed using a PC with
programmes written in MATLAB (The MathWorks. Inc. 2018a).

Five microliters of sodium salicylate solution (either 100mM
in experiments on salicylate diffusion in the ST or 1M in
experiments with complete block of the cochlear amplifier) in
Hanks’ Balanced Salt Solution were placed on the RW using
pipettes. The solution was removed from the RW using paper
wicks to observe the wash out effect.

Model Overview
Diffusion and Clearing Equation
For the purpose of modeling, the ST is approximated by a tube
with a decreasing diameter similar to that described in previous
models, for example by Plontke et al. (2007b) (Figure 1A). The
radii of the tube, r(0) and r(l), are equal to a and b at x =

0 and x = l, respectively, where l is the ST length. All the
dimensions are known (Thorne et al., 1999) and symmetry along
y and z axes is assumed. Zero longitudinal perilymph flow in
the compartment is assumed (Ohyama et al., 1988) and only the
passive diffusion of a drug (salicylate) with diffusion coefficient
kd is considered. In addition to diffusion, there is also clearing
of the drug characterized by the clearing coefficient kc. This
clearing can be represented simply as a leak through the scala
boundary (e.g., loss to the vasculature and tissues, and to other
cochlear compartments). The diffusion and clearing processes are
assumed to be completely independent. Because the tube radius
is much smaller than its length, i.e., r(x) ≪ l for all x in [0, l],
only diffusion along x axis is considered and the concentration
c(x, t) within each cross-section for a fixed instance t is assumed
to be constant, i.e., it does not change along the y axis. If the area
of the cross-section is S(x) then the diffusion can be described
by the following partial differential equation (see Appendix for
detailed derivation):

dc(x, t)

dt
=

1

S(x)
·
d

dx

(

S(x) · kd ·
dc(x, t)

dx

)

− c(x, t) ·
2kc
r(x)

, (1)

with the boundary conditions

c(0, t) = crw, (2)

kd
dc(l, t)

dx
= 0 (3)

and initial conditions

c(0, 0) = crw; x = 0, (4)

c(x, 0) = 0; x > 0. (5)

FIGURE 1 | Schematic presentation of (A) the scala tympani (ST)

approximated by a tube of decreasing diameter and (B) the cochlear amplifier

modeled as a system with positive feedback provided by the outer hair

cells (OHCs).

The diffusion coefficient kd is known (Lide, 2002) but the clearing
coefficient kc is unknown. The ratio of the diffusion and clearing
coefficients can, however, be found via fitting the experimental
data. The physical meaning of kd/kc can be described as the
ratio between the amount of substance that diffuses through
a unit surface normal to the direction of diffusion for a unit
concentration gradient and the amount of drug that is cleared
through a unit surface normal to the direction of substance
exit for a unit substance concentration, both for unit time
duration. The diffusion/clearing equation was validated using
experimental data on the physiological effect of salicylate on the
CAP thresholds. Because the salicylate concentrations could not
be directly inferred from the physiological effect of salicylate,
a biophysical element of the model was developed allowing
calculations of the salicylate concentrations along the cochlea.

Link Between Position and Frequency
The dependence between frequency of stimulation f and
frequency position along the length x of the basilar membrane
for the guinea pig cochlea is defined by the Greenwood equation
(Greenwood, 1990)

f (x̃) = A ·

(

10αx̃ − β

)

, (6)

where A = 0.35, α = 2.1/18.5, β = 0.85 and x̃ = l − x meaning
that the starting point for x̃ in Greenwood (1990) is at the apex
and not the base of the cochlea, as in this study.

Cochlear Amplifier
The cochlear amplifier is represented by a positive feedback
system (Figure 1B) with feedback gain H(x, c(t)) due to force
generation by the OHCs (Mountain et al., 1983; Yates, 1990;
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Lukashkin and Russell, 1999). The following assumptions are
made for a small signal, linear regime:

1. The CAP threshold is observed for different sound
pressure Pin(x, c(t)) at the tympanum but for the same BM
displacements, i.e., for the same constant pressure Pout(x) at
the BM for any given frequency/place x during manipulations
with the cochlear amplifier. The assumption is based on good
correspondence between neural and BM thresholds at the CF
(Ruggero et al., 2000; Temchin et al., 2008).

2. Feedback gain H(x, c(t)) is proportional to the outer hair
cell (OHC) force F(x, c(t)) for any given frequency/place in
the cochlea

H(x, c(t)) = α · F(x, c(t)), (7)

where α is the gain constant. The initial feedback gain H(x, 0)
for any frequency/place before application of salicylate can be
found empirically (see below).

3. Salicylate changes only feedback gain H(x, c(t)) through
changes in F(x, c(t)).

4. In line with other modeling studies (e.g., Meaud and Grosh,
2014; Ni et al., 2016), it is assumed that pressure/displacement
at the BM is a linear combination of the passive BM response
due to acoustic stimulation and active response due to the
OHC forces.

The link between local salicylate concentration c(x, t) and
reduction in force FR(x, c(t)) generated by the OHCs can be
described by the Hill function (Hallworth, 1997)

FR(x, c(t)) = Vmax ·
c(x, t)n

kn + c(x, t)n
, (8)

where Vmax = 0.71629, k = 0.101, and n = 0.983.
The reduction in force is linked to the force before F(x, 0) and

after F(x, c(t)) salicylate application as

FR(x, c(t)) =
F(x, 0)− F(x, c(t))

F(x, 0)
= 1−

F(x, c(t))

F(x, 0)
(9)

or,

F(x, c(t)) = F(x, 0) ·
(

1− FR(x, c(t))
)

. (10)

It can be written for any given frequency/place before salicylate
application at t = 0 (Figure 1B)

Pout(x)

Pin(x, 0)
=

G

1− G ·H(x, 0)
, (11)

where G is the open loop gain. Similarly, at time t after
salicylate application

Pout(x)

Pin(x, c(t))
=

G

1− G ·H(x, c(t))
. (12)

Dividing (11) by (12) and taking into account (7), it could
be written

Pin(x, c(t))

Pin(x, 0)
=

1− G · α · F(x, c(t))

1− G · α · F(x, 0)
. (13)

Substituting F(x, c(t)) from (10) into (13) and using (7), one
can obtain

Pin(x, c(t))

Pin(x, 0)
=

1− G ·H(x, 0) · (1− FR(x, c(t)))

1− G ·H(x, 0)
. (14)

The left part of (14) is measured in the experiment. FR(x, c(t)) is
calculated using the Hill function (8) with c(x, t) in this equation
being calculated using the diffusion/clearing equation (1).

An analytical form of empirical dependence H(x, 0),
i.e., feedback gain before salicylate application for different
frequencies/locations, can be obtained as follows. Feedback from
the OHCs can be completely blocked in experiments using a high
concentration of salicylate. In this case H(x, c(t)) = 0 in (12) and
the transfer function of the feedback system (Figure 1B) is equal
to the open loop gain G. Then similar to (11) and (12)

Pout(x)

PinBlock(x)
= G, (15)

where PinBlock(x) is the sound pressure required to produce
a response from the auditory nerve in preparations where
the cochlear amplifier is completely blocked, and it does not
depend on time. Dividing (11) by (15) and rearranging gives the
following equation

H(x, 0) =
1

G
·

(

1−
Pin(x, 0)

PinBlock(x)

)

, (16)

where PinBlock(x)/Pin(x, 0) is measured in separate experiments.
G has frequently been assumed to be constant along the

cochlea (e.g., Mountain et al., 1983; Yates, 1990; Lukashkin and
Russell, 1999). In spite of the special design of the cochlea,
which minimized energy losses when the BM traveling wave
moves from the base to apex (Jones et al., 2013), some energy
dissipation is still expected during wave propagation in a viscous
environment. To account for energy losses, we assumed a simple
linear dependence of the open loop gain G(f (x)) on frequency

G(f (x)) = s · f (x)+ i, (17)

where s is the slope and i is the intercept defined as i = 1− s · fl,
with fl = 49.9165 kHz specifying the upper frequency limit of
linear dependence forG(f (x)). Hence,G(f (x)) effectively depends
only on a single parameter s, which could be found by fitting the
experimental data.

Initial Model Parameters
Ratio PinBlock(x)/Pin(x, 0) was measured as a function of
frequency f . Equation (6) shows how this frequency can be
converted to a coordinate. An arbitrary Hill type function

PinBlock

Pin
(f ) = m1

fm2

mm2
3 + fm2

+m4 (18)

was fitted to the experimental data with 20log10 transformation
for dB using the Genetic Algorithm (GA) tool in MATLAB (The
MathWorks. Inc. 2018a) (initial local fit). The obtained m1, m2,
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m3, and m4 (Table 1) were then used for the later optimization
procedures described below (final global fit). The feedback gain
before application of salicylateH(x, 0) = H(f (x), 0) was obtained
according to (16) and (18) as

H(f , 0) =
1

G
·

(

1− 1/

(

m1
fm2

mm2
3 + fm2

+m4

))

. (19)

Initial values for the all parameters used in the model before the
optimization procedure are shown in Table 1.

Optimized Model Parameters
Equation (14) with 20log10 transformation for dB was solved
in MATLAB (The MathWorks. Inc. 2018a) using pdepe solver
for partial differential equations and fitted to the entire
set of experimental data for all frequencies and salicylate
concentrations using Genetic Algorithm (GA) tool in MATLAB
(The MathWorks. Inc. 2018a). The sum of squared errors

SE =

n
∑

i=1

(Mi − Ei)
2

was used as a cost function for minimization, where M are the
model predictions and E are the experimental data for points
i = 1...n. It is worth noting that only three model parameters
were fitted during the global fit/optimization. These parameters
are the cochlear length l, kd/kc ratio and slope s of the open loop
gain G(f (x)).

TABLE 1 | Model parameter values.

Parameter Unit Initial value Optimized value Source of the

initial value

a mm 0.56 Fixed Thorne et al.,

1999

b mm 0.18 Fixed Thorne et al.,

1999

l mm 18–19 19 Thorne et al.,

1999

kd mm2/s 0.959e-3 Fixed Lide, 2002

ratio = kd/kc mm 1–10 1.6968 Initial guess

crw mM 100 Fixed Experiment

A kHz 0.35 Fixed Greenwood,

1990

α 1/mm 2.1/18.5 Fixed Greenwood,

1990

β – 0.85 Fixed Greenwood,

1990

k mM 0.101 Fixed Hallworth, 1997

n – 0.983 Fixed Hallworth, 1997

Vmax – 0.71629 Fixed Hallworth, 1997

m1 – 1011.2 Fixed Experiment

m2 – 8.1406 Fixed Experiment

m3 kHz 3.4816 Fixed Experiment

m4 – 31.686 Fixed Experiment

s 1/kHz 0–0.0261 0.00014742 Initial guess

RESULTS

Cochlear Amplifier Gain
Gain of the cochlear amplifier and corresponding feedback
gain of the model, H(x, 0) = H(f (x), 0) [equation (16)] was
determined empirically from elevation of the CAP thresholds
after application of 1M salicylate solution to the RW which
caused a consistent and steady increase in threshold over the
entire frequency range (Figure 2, black circles). Values for m1,
m2, m3, and m4 (Table 1) were determined through fit of
the experimental data points by equation (18) (Figure 2, red
curve) using the Genetic Algorithm (GA) tool in MATLAB (The
MathWorks. Inc. 2018a). These values were used for the general
optimization procedure performed at later stages.

Distribution of Salicylate Along the Guinea
Pig Cochlea
One hundredmM solution of salicylate applied to the RW caused
a rapid increase followed by saturation of CAP thresholds for
high frequency tones (Figure 3A). CAP threshold increase for
tones of lower frequencies was observed after an initial delay and
did not reach saturation during the time of observation. Any
changes in CAP threshold due to application of salicylate were
below the noise floor of measurements for tone frequencies lower
than 5 kHz, which corresponds to approximately the apical 55%
of cochlear length [(Greenwood, 1990); equation (6)]. A partial
recovery of the CAP threshold was observed after salicylate
solution was washed out from the RW confirming that threshold
elevation during application of salicylate was due to specific
action of salicylate and not because of general deterioration
of preparations.

FIGURE 2 | Elevation of CAP thresholds after complete block of the cochlear

amplifier (left Y-axis) and corresponding value of the open loop and feedback

gain (right Y-axis). Black circles show the experimental values of threshold

elevation (mean ± SD, n = 3). Red curve indicates fit of the experimental data

points by Equation (18). Related values of the parameters m1, m2, m3 and m4

are given in Table 1. Value of the open loop (magenta curve) and feedback

(blue curve) gains after the final global optimization procedure were calculated

using Equations (17) and (19), respectively, with the optimized value

of parameter s (Table 1).
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FIGURE 3 | CAP threshold elevation (A,B) and salicylate distribution (C) in the

guinea pig cochlea after application of 100mM of salicylate solution to the RW

at time = 0. (A) Representative example of the CAP threshold elevation in a

single preparation. Salicylate was washed out after 80min of application. (B)

Combined best fit of the entire set of experimental data on CAP threshold

elevation for five preparations (Figure S1) using the parameter optimization

procedure. Labels indicate percentage of the total cochlear length from the

base. (C) Salicylate concentration along the cochlear length calculated using

the optimized values of the model parameters (Table 1).

Pooled data from five animals were used to find an optimized
set of the model parameters via fitting the entire set of
experimental data using the Genetic Algorithm (GA) tool in
MATLAB (The MathWorks. Inc. 2018a) (see Materials and

Methods). The combined best fit to the entire set of experimental
data for the optimized set of parameters is illustrated in
Figure 3B. Figure S1 shows the same plots for each of the
frequencies along the corresponding experimental data. It is
worth noting, that the optimization procedure was performed
over the entire experimental set in order to fit the data for all
the experimental frequencies simultaneously (Figure S1). The
optimized set of model parameters (Table 1) found due to the
general optimization procedure was used to predict cochlear
responses and concentrations of salicylate (Figure 3C) along the
entire cochlear length and over arbitrary time duration.

The absence of CAP threshold changes at frequencies below
5 kHz was due to poor diffusion of salicylate from the RW
into the cochlear apex. It required increasingly longer times for
the salicylate concentration to reach steady-state in the more
apical regions of the cochlea, but at 90% of cochlear length
(10% from the apex), salicylate concentration was about 12
orders of magnitude smaller than at the base even at steady-state
(Figure 3C). The model suggests that this steep concentration
gradient is due mainly to the fast clearing of salicylate from
the ST which is reflected in the small kd/kc ratio found in the
optimization (Table 1). Because the flux J is proportional to
the concentration gradient [equation (A1)], changes in salicylate
concentration at the RW will not lead to changes in the
concentration gradient between the cochlear base and apex. In
this case all steady-state curves for different concentrations of
salicylate at the RW are scaled versions of each other (data not
shown). Hence, for a specific substance (i.e., for specific diffusion
(kd) and clearing (kc) coefficients) and for a given cochlear
geometry, the ratio of steady-state concentrations at the base,
and apex of the cochlea is a constant and does not depend on
substance concentration at the RW. This was further assessed for
the human cochlea.

Diffusion of an Arbitrary Substance in the
Human Cochlea
Hence, the validity of the diffusion/clearing equation has been
confirmed using the experimental data on salicylate block of the
cochlear amplifier, the equation can be used to make conclusions
about the distribution of arbitrary substances along the human
cochlea (Figure 4). Decrease in the relative contribution of
clearing into the distribution of a substance along the ST,
i.e.,. increase of kd/kc ratio, leads to a dramatic reduction
in the steady-state, base-to-apex gradient of the substance
concentration (Figure 4A) calculated using the non-dimensional
form of the diffusion equation (A14). This result is expected
because a larger amount of the substance is available for diffusion
into the cochlear apex in this case. For salicylate, however, the
difference between the basal and apical concentrations is even
larger in the human cochlea (red cross in Figure 4A) compared
to guinea pigs and reaches 16 orders of magnitude because of the
increased length of the human cochlea.

Figure 4A provides theoretical estimates of the minimal
gradients which can be reached along the ST due to passive
diffusion, when substances are in contact with the RW long
enough to establish a concentration equilibrium distribution.
Reduction in the base-to-apex gradient for substances with
higher kd/kc ratios, which are better retained in the ST,
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FIGURE 4 | Theoretical distribution of an arbitrary substance in the human

cochlea. (A) Dependence of the ratio of basal (c10%) and apical (c90%)

steady-state concentrations on the ratio of diffusion (kd ) and clearing (kc)

coefficients. Red cross indicates the point for salicylate (kd/kc = 1.7). (B)

Normalized time (black curve, left ordinate) required to reach steady-state

concentration at the cochlear apex for substances with different ratio of the

diffusion (kd ) and clearing (kc) coefficients. Red curve shows a specific

example of the absolute time (right ordinate) for a substance with the diffusion

coefficient (kd ) similar to that of dexamethasone. The steady-state was defined

as the normalized difference between consecutive numerical values of

concentration <10−4. Jitter in the curves for small kd/kc ratios is due to very

low apical concentrations. The following geometrical parameters for human

cochlea were used for calculations using the non-dimensional form of the

diffusion equation (A14) a = 0.7981, b = 0.3990, and l = 28.46 mm (Thorne

et al., 1999).

comes at the expense of the much longer substance exposure
times required to reach steady-state concentration gradients
(Figure 4B). For example, for a drug with the diffusion coefficient
kd similar to dexamethasone, for which the clearing coefficient
is unknown, it takes days of retention at the RW when realistic
kd/kc ratios are assumed (red curve in Figure 4B). The problem
is that, while it is theoretically possible to achieve smaller base-
to apex concentration gradients for a drug with high kd/kc
ratios, in practice, if the drug is active, it will be cleared from
the ST into the cochlear tissue, hence kc cannot be arbitrarily
small. In this case, the minimal theoretical difference in the
base-to-apex concentrations of the drug is still a few orders
of magnitude.

DISCUSSION

The existence of a base-to-apex drug concentration gradient,
when drugs are applied to the RW, has been well-established.

From this point of view, this study quantifies these gradients for
the intact cochlea when the flow of perilymph in the ST is very
small (Ohyama et al., 1988). This study does not investigate the
problem of the RW permeability which is a separate challenge
and requires specific considerations for particular drugs and
formulations (Salt and Plontke, 2018). Instead, sodium salicylate
which easily passes through the RW was used to ensure high
concentrations at the cochlear base. Though, passive proton-
mediated diffusion of salicylate across biomembranes is observed
at micromolar concentrations (Takagi et al., 1998), the RW
diffusional barrier could, presumably, be overcome by the
drug at the much higher, submolar concentrations used in
this study. While the RW membrane is highly permeable to
salicylate and the CAP threshold elevation at high frequencies
started within seconds after salicylate application, the model
assumption that salicylate concentrations on both RW sides were
the same might introduce some error in the calculated absolute
concentrations. We would like to emphasize, however, that an
error in calculation of the absolute concentrations (note that
the absolute concentrations were calculated using Hallworth’s
(1997) empirical dependence between salicylate concentration
and the OHC force reduction) does not lead to an error in
calculation of the concentration gradient which is the basis for
the conclusions in this study. This is true because the flux J is
proportional to the concentration gradient [equation (A1)] and
gradient curves calculated for different salicylate concentrations
at the RW are scaled versions of each other with the same
gradients. It is worth noting that, from discoveries we made
in our preliminary experiments, salicylate concentrations higher
than 100mM used to study diffusion in this work caused
elevation of CAP thresholds throughout the entire frequency
range. This flooding of the whole cochlea with salicylate was
due apparently to overloading of the cochlear clearing and
other possible mechanisms involved. In this case, the dynamic
equilibrium between diffusion and clearing and steady-state
salicylate concentrations cannot be reached and our model
cannot be applied. From an experimental standpoint, the use
of higher concentrations of salicylate also made time-dependent
estimates of diffusion impossible for high frequencies because the
clearingmechanism in the basal turn became almost immediately
saturated following salicylate application. As a result of the
clearing overload and other unidentified processes, salicylate is
accumulated throughout the cochlea affecting all the frequencies
as it was observed in our experiments where we applied 1M
salicylate to the RW. Of course, therapeutic use of concentrated
drug formulations in order to overcome the issues raised by
this study could be problematic due to likely side effects and/or
restricted aqueous solubility and thus is not a practical solution.

While the steady-state distribution of concentrations, which
is the basis for conclusions in this study, is fitted well by the
simple diffusion model, the responses for the lower frequencies
became gradually slower compared to the model predictions
(Figure S1). This may happen because salicylate action on the
cochlear amplifier is not limited by its block of the OHC
motility (e.g., Russell and Schauz, 1995; Wu et al., 2010) as
it is assumed in the model. A compensatory effect from a
hypothetical mechanism maintaining cochlear homeostasis and

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 April 2019 | Volume 13 | Article 161

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Sadreev et al. Drug Diffusion Along Intact Cochlea

OHC sensitivity and responsible for the “bounce” phenomenon
after exposure to loud sounds (Kirk et al., 1997; Drexl et al.,
2014) may also explain delayed threshold elevation at subtle
salicylate concentrations in the low-frequency cochlear region.
Finally, salicylate concentration at the cochlear base may be
diluted by the cerebrospinal fluid coming through the cochlear
aqueduct into the perilymph which becomes hyperosmotic due
to relatively high salicylate concentration at the base. None of
these mechanisms should, however, affect our conclusion about
the magnitude of the steady-state concentration gradients along
the ST.

For a cochlea of given geometry, the concentration gradient
along the ST depends only on the relationship between diffusion
and clearing and is drug specific. In terms of the current study, it
is the value of kd/kc, which defines the ratio between the amount
of drug entering through a unit surface of the ST normal to
the direction of diffusion and leaving it through a unit area of
the side walls within the same time period. Salicylate, which is
readily cleared from the ST (kd/kc = 1.6968), does not in practice
diffuse into the cochlear apex and the resultant theoretical base-
to-apex concentration gradient is extremely high (red cross in
Figure 4A). Drugs which are better retained in the ST (i.e.,
have higher kd/kc ratio) form smaller concentration gradients,
but this is traded for the considerably longer time it takes for
these drugs to reach steady-state concentrations in the cochlear
apex (Figure 4B). Hence, this approach may not be practical
when there is only a short time window for the treatment of a
specific cochlear disorder. Also, using a drug form which is better
retained in the ST will lead to larger concentration differences
between the ST and surrounding tissue. This may be a problem
for drugs with narrow therapeutic windows unless an inactive
form of the drug is used for even distribution along the ST
through diffusion and it is activated only when the drug is cleared
into the surrounding tissue.

Because the retention of a drug at the RW does not lead
to a leveling of its concentration along the cochlear spiral (see
also Plontke et al., 2007b), different strategies for drug delivery
to the cochlear apex should be employed. Stable drug loaded
nanocarriers (Zou et al., 2014; Li et al., 2017; Kamalov et al.,
2018) which can stay in the ST long enough without being
cleared into the surrounding tissue may be a feasible option.
When the concentration of nanocarriers along the ST reaches a
constant level, the encapsulated drug could be released from the
carriers through thermal or light activation (Karimi et al., 2016,
2017; Yuan et al., 2017) to obtain sufficient drug concentrations
along the entire cochlear spiral. A potential problem with this
approach is the substantial increase in time required to reach the
equilibrium base-to-apex gradient of nanocarrier concentrations,
due to the substantially smaller diffusion coefficients of even
the smallest liposomes and micelles, compared to lone drug
molecules (Figure 4B) (del Amo et al., 2017).

Drug loaded nanoparticles, however, could be used to
take advantage of anatomical and cellular features of the
cochlea which enable drug uptake through routes and
pathways other than the ST route (Glueckert et al., 2018).
Disulfiram loaded nanoparticles, for example, were observed

in the apical part of the spiral ganglion just 1 day after their
application to the RW and elevation of auditory brainstem
response thresholds, due to disulfiram induced apoptosis
of the ganglion neurons, was detected for frequencies
corresponding to the cochlear apex within 2 days after
application (Buckiová et al., 2012). Nanoparticles can also be
effectively driven and distributed along the entire cochlea.
Assisted diffusion of magnetically driven, prednisolone-loaded
magnetic nanoparticle along the cochlea resulted in a significant
increase in the protective effect of the drug against cisplatin-
induced ototoxicity compared to intratympanic injections of
prednisolone (Ramaswamy et al., 2017).

This study investigates passive drug diffusion along the
intact cochlea when the drug is applied to the RW and
highlights intrinsic problems with this method of local drug
administration into the inner ear. Retaining drugs at the
RW for an arbitrarily long time does not decrease its
base-to-apex concentration gradient, which, at steady state,
depends solely upon the relationship between drug diffusion
along and clearing from the ST. Usage of drug-loaded
nanocarriers which utilize the anatomical and cellular properties
of the cochlea, and which can be actively distributed along
the entire length of the cochlea seems to be a more
promising approach.
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APPENDIX

Only diffusion along the long axis x of the tube of decreasing
diameter is considered (Figure 1A). The concentration c within
each cross-section for a fixed instance t is assumed to be constant,
i.e., c = c(x, t) is independent to the y axis. If the area of
the cross-section is S(x), then the flux J along the x axis is
given by:

J(x, t) = −S(x) · kd ·
dc(x, t)

dx
, (A1)

where kd is the diffusion coefficient.
At the same time the clearing of salicylate from the tube of

length 1x, its perimeter P(x) and with an area of surface P(x)1x,
can be described as:

Cl(x, t) = c(x, t) · kc · P(x) · 1x, (A2)

where kc is the clearing coefficient.
The balance of fluxes and clearing in the volume between x0

and x1 can be described as:

S(x) · 1x ·
dc(x, t)

dt
= S(x1) · kd ·

dc(x1, t)

dx
− S(x0) · kd ·

dc(x0, t)

dx
−c(x, t) · kc · P(x) · 1x, (A3)

where 1x = x1 − x0 is positive and x is in [x0, x1].

Divide both sides of Equation (A3) by 1x and rearrange it
as follows:

S(x) ·
dc(x, t)

dt
=

S(x1) · kd · dc(x1, t)/dx− S(x0) · kd · dc(x0, t)/dx

1x

−c(x, t) · kc · P(x). (A4)

Take the limit of 1x converging to zero and divide by S(x), the
following is obtained:

dc(x, t)

dt
=

1

S(x)
·
d

dx

(

S(x) · kd ·
dc(x, t)

dx

)

− c(x, t) · L(x),

(A5)

where L(x) = kc ·
P(x)
S(x) is an integral coefficient of clearing.

The perimeter is

P(x) = 2π · (mx+ a) (A6)

and the area is

S(x) = π · (mx+ a)2, (A7)

wherem = (b− a)/l.
The integral coefficient can be written as:

L(x) = kc ·
P(x)

S(x)
=

2kc
r(x)

. (A8)

Thus, the diffusion can be described by the following partial
differential equation

dc(x, t)

dt
=

1

S(x)
·
d

dx

(

S(x) · kd ·
dc(x, t)

dx

)

− c(x, t) ·
2kc
r(x)

,(A9)

with the boundary conditions

c(0, t) = crw, (A10)

kd
dc(l, t)

dx
= 0 (A11)

and initial conditions

c(0, 0) = crw; x = 0, (A12)

c(x, 0) = 0; x > 0. (A13)

Equation (A9) can be rewritten in the following non-
dimensional form

du(χ , τ )

dτ
=

1
(

(b− a)χ + a
)2 ·

d

dχ

(

(

(b− a)χ + a
)2

·
du(χ , τ )

dχ

)

−u(χ , τ ) ·
2l2/ratio

(b− a)χ + a
, (A14)

with the boundary conditions

u(0, τ ) = 1, (A15)

ratio ·
du(1, τ )

dχ
= 0 (A16)

and the initial conditions

c(0, 0) = 1;χ = 0, (A17)

c(χ , 0) = 0;χ > 0, (A18)

where u = c/crw, τ = t · kd/l
2 and χ = x/l.
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