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Fatty acids (FAs) are typically associated with structural and metabolic roles, as they can
be stored as triglycerides, degraded by β-oxidation or used in phospholipids’ synthesis,
the main components of biological membranes. It has been shown that these lipids
exhibit also regulatory functions in different cell types. FAs can serve as secondary
messengers, as well as modulators of enzymatic activities and substrates for cytokines
synthesis. More recently, it has been documented a direct activity of free FAs as ligands
of membrane, cytosolic, and nuclear receptors, and cumulative evidence has emerged,
demonstrating its participation in a wide range of physiological and pathological
conditions. It has been long known that the central nervous system is enriched with
poly-unsaturated FAs, such as arachidonic (C20:4ω-6) or docosohexaenoic (C22:6ω-
3) acids. These lipids participate in the regulation of membrane fluidity, axonal growth,
development, memory, and inflammatory response. Furthermore, a whole family of low
molecular weight compounds derived from FAs has also gained special attention as
the natural ligands for cannabinoid receptors or key cytokines involved in inflammation,
largely expanding the role of FAs as precursors of signaling molecules. Nutritional
deficiencies, and alterations in lipid metabolism and lipid signaling have been associated
with developmental and cognitive problems, as well as with neurodegenerative diseases.
The molecular mechanism behind these effects still remains elusive. But in the last
two decades, different families of proteins have been characterized as receptors
mediating FAs signaling. This review focuses on different receptors sensing and
transducing free FAs signals in neural cells: (1) membrane receptors of the family of G
Protein Coupled Receptors known as Free Fatty Acid Receptors (FFARs); (2) cytosolic
transport Fatty Acid-Binding Proteins (FABPs); and (3) transcription factors Peroxisome
Proliferator-Activated Receptors (PPARs). We discuss how these proteins modulate
and mediate direct regulatory functions of free FAs in neural cells. Finally, we briefly
discuss the advantages of evaluating them as potential targets for drug design in
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order to manipulate lipid signaling. A thorough characterization of lipid receptors of the
nervous system could provide a framework for a better understanding of their roles in
neurophysiology and, potentially, help for the development of novel drugs against aging
and neurodegenerative processes.

Keywords: lipid sensing, neuronal differentiation and development, signal transduction, free fatty acid receptor,
fatty acid binding protein, peroxisome proliferator activated receptor, docosahexaenoic acid, arachidonic acid

INTRODUCTION

The central nervous system (CNS) is an intricate network of
a variety of cell types, with a wide range of distinct properties
and functions. Notoriously, lipids represent a larger proportion
of mass than in most other tissues, second only after adipose
tissue (Etschmaier et al., 2011). The main difference is that,
whereas in adipocytes lipids are mainly stored as energy reserve
in lipid droplets, in the CNS lipids fulfill multiple functions;
such as forming large extensions of membranes necessary for
crosstalk between neural cells. This is not limited only to the
inner and plasma membranes of neurons, comprising axons,
dendrites, and spines; astrocytes, oligodendrocytes, and microglia
also have highly complex cellular shapes and, hence, extensive
surface areas defined largely by lipids, and their functions in the
healthy brain are integrated both physically and metabolically
(von Bernhardi et al., 2016). Brain membranes are constituted
by proteins, cholesterol (on average, 21.5% mol/mol lipids),
sphingomyelin (1.9%), gangliosides (1.4%) and phospholipids
(75.1%) (Scandroglio et al., 2008), where the lipids were typically
constrained to structural or support functions for the first ones.
Lipid distribution is not equivalent for all cell types or brain
regions, and neurons are usually enriched in polyunsaturated
glycerolipids and cholesterol (Scandroglio et al., 2008; Chan et al.,
2012; Arai et al., 2015; Ingolfsson et al., 2017). These lipids are
essential for many cellular processes in CNS. For example, the
brain is the richest tissue in cholesterol with up to 20 mg/g of
tissue, 10-time more than the rest, and it is mainly synthesized
in situ (Dietschy and Turley, 2001, 2004). Therefore, its levels are
independent from circulating cholesterol, highlighting its pivotal
role in multiple brain functions such as signal transduction,
synaptic transmission, and cell differentiation by modulation of
lipid rafts organization and segregation of membrane proteins,
as well as in several pathological conditions, either directly by its
self or through its metabolism into neurosteroids and oxysterols
(Reddy, 2010; Leoni and Caccia, 2011; Orth and Bellosta, 2012;
Vance, 2012).

Lipid signaling has attracted increasing attention as different
families of lipids have been shown to exhibit important regulatory
functions through highly specific receptors (Fernandis and
Wenk, 2007; Sunshine and Iruela-Arispe, 2017). Polyunsaturated
fatty acids (PUFAs) are of particular relevance because they
can also be transformed into much more potent derivatives,
such as eicosanoids and docosanoids, from arachidonic
(C20:4ω-6, ARA) and docosahexanoic (C22:6ω-3, DHA) acids,
respectively (Serhan, 2014; Dennis and Norris, 2015). In the last
decades, different families of proteins have been identified and
characterized to mediate signaling processes triggered directly

by lipids per se, including free FAs (Im, 2004; Kostenis, 2004;
Wolfrum, 2007). The interest on how these proteins mediate FAs
regulatory functions increased as they have been demonstrated
to be targets and/or essential carriers for the therapeutic actions
of certain drugs (Wolfrum et al., 2001; Landrier et al., 2004;
Martin et al., 2013).

Fatty acids regulatory functions are most probably defined
by the group of specific receptors expressed in a particular cell-
type and, therefore, they are dynamically modulated throughout
the cell life-span, the developmental stage, and its differentiation
process. This review resumes part of the present understanding
on FAs regulatory functions in pathophysiology of neural tissues
and three families of proteins involved in these roles. Noteworthy,
other proteins involved in lipid signaling with more promiscuous
selectivity of ligands, such as FA Translocase (FAT/CD36) or Toll-
like Receptor 4 (TLR4), were not included in this manuscript,
and their roles could be consulted elsewhere (Pepino et al., 2014;
Magnan et al., 2015; Rocha et al., 2016).

PHYSIOLOGICAL FUNCTIONS AND
PARTICIPATION OF FATTY ACIDS
IN NEURONAL PATHOLOGIES

Fatty acids are typically considered as a source of energy
through β-oxidation, and, as part of phospholipids, either as
membrane building blocks or reservoir of second messengers
and substrates for cytokines synthesis. They can also induce
multiple cellular responses, ranging from cell motility and
changes in cell morphology (Kamata et al., 2007; Brown
et al., 2014), to regulation of gene expression (Kitajka et al.,
2004), modulation of hormones secretion or their effects
(Wang and Chan, 2015). But several distinctions must be
made when referring to FAs in general, because saturated
FAs (SFAs) have a clear different origin, metabolism, and
functions compared to essential ω-3 and ω-6 PUFAs. Brain
SFAs, such as palmitate (16:0, PA) or stearic (18:0, SA), are
known to be generated in situ as much as being imported
into the brain, whereas PUFAs are elongated and further
unsaturated mainly in the liver and then transported through
the bloodstream and imported into the neural tissue as non-
esterified FAs (Edmond et al., 1998; Chen et al., 2008). Only
a small fraction of PUFAs is actually synthesized locally from
linoleic (C18:2ω-6) and α-linolenic (C18:3ω-3, ALA) acids;
and, due to enzymatic restrictions and competition between
ω-3 and ω-6 PUFAS for the same enzymes, less than 5% of
total ALA assimilated from diet can be transformed into DHA
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(Dyall and Michael-Titus, 2008). Both, endogenous and blood-
derived PUFAs, accumulate preferentially in neurons as part
of phospholipids.

Neurogenesis includes three contiguous phases, namely
proliferation, migration and differentiation, and maturation and
integration of the precursor cells; with PUFAs having inherence
in all of these stages (Chalon, 2006). Therefore, PUFAs are critical
for pre- and post-natal brain development, as well as in adulthood
or during natural aging (Uauy and Dangour, 2006; Rombaldi
Bernardi et al., 2012). For example, ALA maternal restriction
during gestation and lactation impairs hippocampal neuronal
differentiation, thus compromising neuronal maturation and
related brain functions, such as learning and memory (Bhatia
et al., 2011; Niculescu et al., 2011). DHA is the most abundant
PUFA and accumulates in the immature brain during perinatal
life all through the grey matter expansion; and it can reach over
10% of total FAs in human adult brains (McNamara and Carlson,
2006). Actually, preterm-born adolescents, who skipped the fetal
DHA accumulation in the CNS during the last weeks of gestation
and usually also lactation during the early life, exhibit deficits in
cognitive functions associated to attention, including increased
risk for attention-deficit/hyperactivity disorder (ADHD) and
schizophrenia (McNamara and Carlson, 2006). That is why
dietary deficiencies commonly stimulate a more tightened
retention of essential FAs in the brain.

Docosahexanoic acid is particularly important for proper
neuronal development in cerebral cortex, retina, and
hippocampus, where it promotes neurogenesis and neuronal
differentiation (Cao et al., 2009; Gharami et al., 2015). It
also boosts synaptogenesis by promoting neurite outgrowth
and synapsis formation, accompanied by an increase in the
expression of neuronal and synaptic proteins. Particularly, in rat
neuronal stem cells, DHA stimulates neuronal differentiation
by two mechanisms: (1) a decrease in expression levels of basic
Helix-loop-Helix transcription factors (NeuroD, Mash1, Hes1,
etc.); and (2) an extension of the expression of cyclin-dependent
kinase inhibitor p27 (kip1). This results in an increase in the
number of positive cells for the neuronal markers TUBB3
and MAP2 and in a reduction of the percentage of cells in
S-phase, suggesting an exit from the cell cycle (Katakura et al.,
2009). In aged mice, DHA also prevents neuroinflammation
and apoptosis, whereas improving memory (Labrousse et al.,
2012). DHA can prevent many of the lipopolysaccharide (LPS)
deleterious effects on both neurons and microglia, including
loss of dendritic spines or production of nitric oxide as
biomarkers of neuroinflammation (Chang et al., 2015). Actually,
multiple animal and in vitro models of neuroinflammation
consistently show a marked anti-inflammatory effect of DHA
and other ω-3 PUFAs, presumably by reducing the production
of proinflammatory cytokines and/or promoting the secretion
of anti-inflammatory cytokines (reviewed in Orr et al., 2013).
PUFAs can also directly modify neurotransmitter production,
accumulation, release, and re-uptake. Dopamine’s content,
storage in presynaptic vesicles and tyramine-stimulated
release, for example, significantly decrease in rat frontal
cortex after chronic ω-3 PUFAs deficiency (Delion et al.,
1996; Zimmer et al., 1998, 2000). Contrarily, supplementation

with ω-3 PUFAs increases dopamine levels in the same area
(Chalon et al., 1998).

Fatty acids have been implicated in neuropathological
conditions, including neurodegenerative diseases, mental
disorders, stroke, and trauma. Severe dietary restriction of
essential FAs usually correlates with anxiety-like behavior and
deficit in cognitive functions, including memory and learning.
However, imbalance between ω-3 and ω-6 PUFAs during
gestation also leads to alterations in brain development. In
adults, an imbalance in the PUFAs ratio in brain membranes
is believed to be a risk factor active during the pathogenesis
of neurological and psychiatric disorders (Chalon, 2006). For
example, an increase in ARA is known to promote α-Synuclein
aggregation. However, it is not clear which is the most relevant
cause affecting secretion of dopamine and serotonin, the greater
availability of ARA, the deficiency of DHA or the imbalance
between them (Chalon, 2006). During normal aging, there is a
common cognitive decline and an increasing risk of dementia.
High ω-3 PUFAs intake slows down this decline (Johnson and
Schaefer, 2006; van Gelder et al., 2007), suggesting that they
may have neuroprotective action in the aging brain and even
therapeutic potential. Aging is also characterized by increased
oxidative stress and neuroinflammation together with altered
energy metabolism (reviewed in Prolla and Mattson, 2001).
Beside changes in FA composition that favor monounsaturated
FAs (MUFAs) over ω-3 and ω-6 PUFAs with time in rodents, the
aging brain is also prone to lipid oxidation due to its large content
of PUFAs (Favrelere et al., 2000). In humans, the decrease of
PUFAs, though subtler during normal aging, is quite evident
in neurodegenerative pathologies, including Alzheimer Disease
(AD), Parkinson’s Disease (PD), Schizophrenia and depression
(reviewed in Hussain et al., 2013). Nevertheless, PUFAs are
known to promote α-Synuclein pathological aggregation
(Yakunin et al., 2012). On the other hand, the anterior cingulate
cortex of depressive patients shows reduced quantities of SFAs
and PUFAs (Conklin et al., 2010). The deficiency of ω-3 PUFAs
also impairs the normal signaling of endocannabinoid in
prelimbic prefrontal cortex and accumbens, leading to abnormal
emotional behavior (Lafourcade et al., 2011). The reduction in
total PUFAs in erythrocyte’s membranes of patients with early
onset schizophrenia correlates with the degree of demyelination
in brain white matter (Peters et al., 2009). Finally, PUFAs also
serve as anti-depressants and anti-convulsants, confer protection
against traumatic insults, and enhance repairing processes.
For example, numerous animal models of epilepsy support the
anticonvulsant properties of PUFAs, like the greater resistance
to pentylenetetrazol-induced seizures in ω-3 PUFAs fed rats
(Taha et al., 2009).

Arachidonic acid is particularly enriched in
phosphatidylinositol (PI), whereas DHA is a major component
of brain phosphatidylethanolamine (PE) and phosphatidylserine
(PS). Both PUFAs are highly enriched in the phospholipids
of the synaptic plasma membrane and synaptic vesicles
(Glomset, 2006). ARA is also particularly rich in membranes
of leukocytes, presumably because it serves as a precursor
of a myriad of cytokines (Innes and Calder, 2018). PUFAs
are almost exclusively found in position 2 of the glycerol
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moiety within any phospholipid and, therefore, their release is
catalyzed by phospholipases A2 (PLA2). Noteworthy, ARA and
eicosapentaenoic acid (20:5ω-3, EPA) are released preferentially
by cytoplasmic PLA2 (cPLA2), whereas DHA is released by Ca+2-
independent PLA2 (iPLA2) (Dyall and Michael-Titus, 2008).
These three PUFAs can be converted into more potent cytokines
than the free FAs, including prostaglandins, leukotrienes,
thromboxanes, protectins and resolvins, and their effects differ
from one other (Calder, 2015; Dyall, 2017).

Neuroinflammation is a common denominator for several
neuropathologies. SFAs are known to promote the inflammatory
phenotype of microglia, stimulating the secretion of TNF-
α and IL-6 through TLR4. Furthermore, PA exposure of
astrocytes leads to Caspase-3 activation and alters Bax/Bcl-
2 ratio, both effects promoting apoptosis (Gupta et al.,
2012). On the contrary, ω-3 PUFAs usually have a marked
antiinflammatory effect by blocking microglia activation and
stimulating the secretion of neurotrophic factors. However,
some deleterious effects have also been reported, such as
the worsening of neuritic injury and astrocytosis in PD-
mice model (Hussain et al., 2013). ARA is the precursor
for potent proinflammatory eicosanoids. On the other hand,
compounds derived from DHA and EPA, known as resolvins and
protectins, show strong anti-inflammatory effects and mediate
the end of an ongoing inflammatory response (Hussain et al.,
2013). These compounds are just an example of those derived
from FAs that have important roles in brain pathophysiology.
A special mention should be given to endocannabinoids, such
as arachidonoylethanolamine (also known as anandamide),
arachidonylglycerol or oleoylethanolamine, just to name a few
(Freitas et al., 2017). Nevertheless, the role of free FAs has a
renewed interest since the identification of multiple receptors that
can couple their signaling to diverse cellular responses. The next
section focusses on three families of proteins that recognize FAs
and could be modulating FAs regulatory functions.

RECEPTORS FOR FATTY
ACIDS SIGNALING

Originally, lipid signaling was limited to steroid hormones and its
binding to cytosolic receptors, or to cytokines derived from ARA
(leukotrienes and thromboxanes) that bind to specific membrane
receptors. As of today, three families of proteins have been
identified to be able to sense the presence and type of FAs whether
in the extracellular medium, the cytosol or the nuclear matrix.
At the plasma membrane, FAs can activate G Protein-coupled
receptors known as Free Fatty Acid Receptors (FFARs) (Hara
et al., 2013; Offermanns, 2013); while in the cytosol they can be
taken by Fatty Acid Binding Proteins (FABPs) and targeted to
specific subcellular structures or metabolic pathways (Veerkamp
and Zimmerman, 2001; Storch and Corsico, 2008). Finally,
nuclear receptors Peroxisome Proliferator-Activated Receptors
(PPARs) mediate FAs regulatory functions in the nucleus (Zolezzi
et al., 2017). The specific spatio-temporal pattern of expression
and the co-expression of more than one isoform from each family
of proteins in a single cell suggest a platform for sensing and

modulating the cellular response to the bioavailability of the
different FAs, for example, adapting the cell to developmental or
functional requirements. Therefore, the regulatory and signaling
roles of free FAs are gaining importance in physiological and
pathological processes as these receptors are better characterized.

We describe bellow some of the known characteristics of
each family of FAs receptors selected for this review, including
expression patterns, structural features, and specific functions in
the CNS. Noteworthy, when the source of expression data is not
specified, it was taken from The Human Protein Atlas website1

(Uhlen et al., 2015), based on Genotype-Tissue Expression
(GTEx) project (The GTEx Consortium, 2013), or from the Allen
Mouse Brain Atlas2 (Lein et al., 2007).

Plasma Membrane Receptors
A large number of putative genes coding for GPCRs was
identified based on genome sequences, and their deorphanization
is still in progress (Civelli, 2005; Diaz et al., 2018; Laschet
et al., 2018). Particularly, a cluster of 4 sequences (GPR40,
GPR41, GPR42 and GPR43) was identified in chromosome 19
(Sawzdargo et al., 1997) and FAs were proved to work as their
specific endogenous ligands (Briscoe et al., 2003; Brown et al.,
2003), dubbing this subfamily of GPCRs as FFARs (Offermanns,
2013). Later on, two other receptors activated by FAs were
described, GPR84 and GPR120, located in chromosome 12 and
10, respectively; as well as many others activated by diverse
lipids derived from FAs, including lysophosphatidic acid (termed
LPARs), endocannabinoids (CBs) and hydroxycarboxylic acids
(HCAs) (Offermanns, 2013; Audet and Stevens, 2019).

Within the superfamily of GPCRs, FFARs belong to the largest
subfamily of Class A/1 (rhodopsin-like) receptors, constituted
by a motif of 7 transmembrane segments (TMs) and at least
one longer cytosolic domain that serves as binding site for
signaling machinery assembly (Dorsam and Gutkind, 2007;
Heldin et al., 2016). The ligand recognition site is defined
within the transmembrane helix bundle (Figure 1A). The
original cluster of FFARs was deorphanized by heterologous
expression and ligand screening through monitoring cytosolic
Ca+2 levels (Briscoe et al., 2003). FAs-triggered Ca+2 release
from the endoplasmic reticulum is PI3K-dependent. However,
some of these receptors can also transduce FAs signal through
inhibition of cAMP synthesis, CREB, Akt/PKB, and/or Erk
phosphorylation, as well as by β-Arrestin recruitment (Kimura
et al., 2011; Zamarbide et al., 2014). Each FFAR shows
specific patterns of expression and distinctive ligand selectivity.
Their functions have been better studied in peripheral tissues,
including the promotion of hormone secretion by the pancreas,
lipid taste sensing and the activation of immune cells as a
preliminary response toward a putative growing infection. Their
participation in the CNS had less attention, although recent
results suggest that some isoforms could participate in brain
development, neuronal differentiation (Ma et al., 2010) and
could be potential drug targets against several neuropathies,

1www.proteinatlas.org (accessed January 3, 2019)
2http://portal.brain-map.org (accessed January 3, 2019)
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FIGURE 1 | Structure and brain expression patterns of FFARs. (A) Cartoon based on FFAR1 crystal structure (PDB-ID: 4PHU) (Srivastava et al., 2014), highlighting
membrane orientation and two ligand binding sites in opposite sides of the membrane. (B) Central brain section of 8-weeks, male mouse (C57BL/6J) indicating
reference regions. (C–E) Brain left hemisphere sagittal projection showing expression of FFAR1, FFAR4 and GPR84, respectively, based on in situ hybridization (ISH)
data. FFAR2 and FFAR3 are not shown due to its lower expression levels. (F) Quantification of relative expression from ISH data for all FFARs isoforms. AU: Arbitrary
units; ICTX: Isocortex; OLF: Olfactory areas; HPF: Hyppocampal formation; CTXsp: Cortical subplate; STR: Striatum; PAL: Pallidum; TH: Thalamus; HYP:
Hypothalamus; MB: Midbrain; P: Pons; MY: Medulla; and CB: Cerebellum. Image credit for panels C–E: Allen Institute © 2007 Allen Institute for Brain Science. Allen
Mouse Brain Atlas. Available from: http://mouse.brain-map.org/search/. Panels B and F were constructed from data available through Allen Mouse Brain Atlas
website.

such as neuropathic pain and epilepsy (Yoshimura et al., 2015;
Yang et al., 2018).

Each isoform presents distinct body expression profiles and
different affinity for FAs (Brown et al., 2005; Hara et al., 2013;

Offermanns, 2013). There are two FFARs with prominent levels
of expression in neural tissues: FFAR1 (also known as GPR40)
and FFAR4 (GPR120 or O3FAR). Nevertheless, all isoforms have
been detected, though weakly, in some restricted brain region.

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 April 2019 | Volume 13 | Article 162

http://mouse.brain-map.org/search/
https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00162 April 22, 2019 Time: 17:39 # 6

Falomir-Lockhart et al. Neural Free Fatty Acid Receptors

We review bellow some of the most recent findings about this
novel family of GPCRs activated by FAs.

FFAR1 (GPR40)
The genes that code for FFAR1, FFAR2 and FFAR3, originally
named GPR40, GPR43 and GPR41, respectively, were identified
in 1997 as a group of tandemly encoded genes located on human
chromosome 19q13.1. FFAR1 is a 300 amino acids membrane
protein of 31.45 kDa. As the product of the single exon gene
GPR40, it is most abundantly expressed in pancreas and brain
of primates (Briscoe et al., 2003; Brown et al., 2005). Other
tissues with significant expression include small intestine, spleen,
testis, ovaries, and Fallopian tubes. According to GTEx data,
within the CNS, higher expression levels of FFAR1 mRNA
are found in hippocampus, caudate nucleus, hypothalamus,
and cerebral cortex, presumably mainly in neurons but also
in glial cells. On the other hand, qPCR targeted experiments
showed a wider expression of FFAR1 in neuronal tissues, with
higher expression levels in medulla oblongata, substantia nigra
and spinal cord, followed by putamen, locus cereleus, globus
palidus, and amygdala (Briscoe et al., 2003), while western
blot analysis showed higher expression in pons, dentate gyrus,
pituitary gland, substantia nigra and spinal cord, followed by
subgranular and subventricular zones, CA1, medulla oblongata,
and cerebral cortex, with minor expression in cerebellum
(Ma et al., 2007). In situ hybridization (ISH) of mice brain
sagittal sections indicated discrete preferential FFAR1 expression
in olfactory bulb, pons, and medulla (Figures 1C,F), while
coronal sections highlighted hippocampus and cerebral cortex
(Zamarbide et al., 2014). Its levels are weaker than in primates
and, hence, it has been suggested that is not essential. Actually,
FFAR1-KO mice manifested no evident alteration of social or
motor behavior, although they showed a reduction anxiety-like
responses (Mancini et al., 2015). An increase in noradrenaline
was also observed in FFAR1-KO mice brain regions were the
expression of the receptor was shown to be higher, suggesting a
role in anxiety and depression symptoms.

This receptor is the only FFAR with solved crystal
structures (PDB-ID: 5KW2, 4PHU, 5TZR and 5TZY),
as different fusions to Lysozyme, and in complex with
different partial and full synthetic agonists, such as TAK-875,
MK-8666 or the novel compound (3∼{S})-3-cyclopropyl-
3-[2-[1-[2-[2,2-dimethylpropyl-(6-methylpyridin-2-yl)
carbamoyl]-5-methoxy-phenyl]piperidin-4-yl]-1-benzofuran-
6-yl] propanoic acid (Srivastava et al., 2014; Lu et al., 2017; Ho
et al., 2018). Noteworthy, the different structures identified two
putative binding sites in opposite sides of the transmembrane
region, A1 in the extracellular side and A2 in the cytosolic one
(Figure 1A). Only the occupancy of the latter by synthetic or
natural ligands promotes full agonistic response and structure of
intracellular loop IC2 located between transmembrane regions
TM3 and TM4, which is believed to be necessary for G-protein
interaction. The extracellular loop located between TM4 and
TM5 is stabilized by a disulfide bond formed between Cys79

and Cys170. Residues participating in ligand recognition have
been mapped to include Arg183, Asn244 and Arg258 that work as
anchors for the carboxylic head of the FAs. Residues Tyr12, Tyr91,

His137, and Leu186 were also identified as relevant for receptor
activation; while His86, Tyr91, His137 and the anchoring positions
seem to be critical for the binding and activation by the synthetic
agonist GW9508 (Sum et al., 2007; Tikhonova et al., 2007).

FFAR1 has approximately the same high affinity (EC50 5-
60 µM) for medium and long chain saturated FAs ranging from
C6 (caproic acid) to C23 (tricosanoic acid), with FAs between
C10 to C18 being the preferred endogenous agonists; but it
is not active in the presence of acetate, propionate, butyrate,
or pentanoate (valerate). It also shows the same range of high
affinities for both MUFAs and PUFAs, with ARA (C20:4ω-6),
EPA (C22:5ω-3), and DHA (22:6ω-3) exhibiting the highest
potencies (Briscoe et al., 2003; Offermanns, 2013). Noteworthy,
retinoids can also activate FFAR1 with similar affinities, and,
particularly, all-trans-retinoic acid, a well-known factor required
for neuronal differentiation (Yu et al., 2012; Janesick et al.,
2015), shows one of the highest affinities, EC50 < 5 µM
(Briscoe et al., 2003).

In pancreas, its activation stimulates insulin secretion from
β-cells (Itoh et al., 2003), involving signaling by both Gαq/11
subunit and β-Arrestin2 (Mancini et al., 2015), what does have an
impact on systemic metabolism control. Diverse functions have
been proposed for FFAR1 in the CNS or the peripheral sensory
system. Cartoni et al. (2010) described the expression of FFAR1
in type I cells of the taste buds, along with FFAR4 in type II
cells, both participating in the oral perception of fats. FFAR1
has also been associated to neurogenesis and linked to cognitive
functions such as memory, space orientation and learning (Ma
et al., 2008; Yamashima, 2008; Boneva et al., 2011; Zamarbide
et al., 2014). Although these effects are probably mediated mainly
by phosphorylation of CREB, its signaling pathway is still not well
understood. Since Gαs proteins do not seem to be activated by
FFAR1, an alternative phosphorylation of CERB via Erk has been
proposed (Yamashima, 2012). Differentiation and maturation
of cultures of rat neuronal stem cells overexpressing FFAR1
can be stimulated by DHA, promoting neurite outgrowth and
branching, even at concentrations as low as 1,5 µM (Ma et al.,
2010). FFAR1 has also been proved to mediate the antinociceptive
activities of DHA via induction of secretion of µ and δ opioid
peptides, but not κ opioid peptides (Nakamoto et al., 2012).
In the hypothalamus FFAR1 is expressed in NPY and POMC
expressing neurons linked to satiety and control of food intake,
and its activation by its synthetic agonist TUG905 increase
POMC (anorexigenic precursor) secretion that leads to body
weight loss (Dragano et al., 2017).

High fat diet in mice and PA-albumin complex in
neuroblastome derived cells in culture were shown to stimulate
synthesis of amyloid precursor protein (APP) and β-site APP
cleaving enzyme 1 (BACE1), promoting the release of Aβ peptides
in hippocampus and brain cortex, similarly to Akt pathways
activation by GW9508 agonist of FFAR1 (Kim et al., 2017).
This effect can be blocked in SK-N-MC cells in vitro if FFAR1
is pharmacologically inhibited with GW1100, knocked down
by siRNA or delocalized from lipid rafts when membranes are
depleted from cholesterol with methyl-β-cyclodextrin. However,
GW9508 activation of FFAR1 in a mouse model of AD, based
on Aβ intracerebroventricular (icv) injection, leads to significant
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improvement in cognitive and behavioral tests, what seems to
be mediated by CREB phosphorylation and the concomitant
increase in expression of NGF and BDNF neurotrophic factors.
These effects were not observed when the inhibitor GW1100 was
co-administered with the synthetic agonist (Khan et al., 2016).
As these opposing effects originate from divergent signaling
pathways from a single receptor, exploitation of FFAR1 synthetic
agonists or inhibitors for treating neuropathologies may be a task
worth pursuing. But first, it is imperative to fully characterize
the signal transduction mechanisms active in the CNS, as well
as to develop specific drugs that can selectively activate only
those promoting neuroprotection, neuronal differentiation, and
maturation. During the last decades, an increasing amount of
evidence was collected linking the etiology and pathology of
AD with Type-2 Diabetes Mellitus (Benedict and Grillo, 2018;
Ferreira et al., 2018; Chornenkyy et al., 2019). Considering the
wide range of synthetic agonist of FFAR1 being developed to
treat Diabetes, it became an interesting possibility to evaluate
their repurposing for treating AD as well (Li et al., 2016; Chen
et al., 2019). For example, two different mouse models of
diabesity (diabetes and obesity), based on high fat diet or db/db
mice, present a decrease in FFAR1 and BDNF expression in the
hippocampus and brain cortex, that can be reverted by chronic
administration of DHA or GW9608 (Sona et al., 2018). Since it
can be inhibited by Erk and MAPK inhibitors, BDNF expression
depends on FFAR1-pErk pathway.

FFAR2 (GPR43)
Although the gene structure of GPR43 is not yet fully defined,
FFAR2 was described to be encoded as a 330 amino acids protein
(37.14 kDa) in a single exon. Its structure is predicted to have a
topology very similar to FFAR1, where the extra 30 amino acids
would correspond mainly to a longer C-terminal tail. However,
FFAR2 preferential endogenous ligands are limited to acetate,
propionate, butyrate, and pentanoate (with EC50 somewhat an
order of magnitude larger than those for FFAR1), and this
receptor does not respond to ligands with chain length above C6
(Brown et al., 2003; Offermanns, 2013). Its activation has been
describe to be coupled both to pertussis toxin sensitive (Gαi) and
insensitive (Gαq) proteins (Brown et al., 2003; Stoddart et al.,
2008). In the first pathway, FFAR2 activation leads to a decrease
in cAMP production by adenylate cyclase (AC) and, therefore,
to a reduction in protein kinase cAMP-activated (PKA) activity.
On the other hand, Gαq activates phospholipase C (PLC) that
cleaves phosphatidylinositol bisphosphates (PIP2) into inositol-
triphosphate (IP3) and diacylglycerol. IP3 binds to IP3R receptor
in the endoplasmic reticulum and induces the internal release
of Ca+2 to the cytosol, which then activates Ca+2-dependent
protein kinase C (PKC). DAG attracts certain PKC isoforms to
the plasma membrane and helps to direct its activity to a subset
of potential target substrates.

FFAR2 is most abundantly expressed in spleen, bone marrow,
and lung, followed by adipose tissue, breast, and all the digestive
tract. Its expression is mainly consistent with a leukocyte markers
expression pattern, with higher presence in macrophages and
leukocyte germ line (Brown et al., 2003). The low level, but
widespread FFAR2 expression may be due to its presence in

immune cells, such as infiltrating neutrophils and macrophages.
Its expression in CNS is rather low compared to other FFARs
(Figure 1F) and limited to glia and neurons of the caudate, but
FFAR2 can also be detected in cortical neurons and pituitary
gland. However, the participation of FFAR2 in neuronal processes
still needs further analysis.

FFAR3 (GPR41)
FFAR3 is the product of the gene GPR41, only 6.62 kb
downstream of GPR40 promoter, but it lacks a formal promoter
of its own. Although 3 sites of transcription initiation can be
predicted in putative exons upstream GPR41, none of them could
be confirmed. Contrarily, GPR41 may be expressed as the result of
the skipping of a termination sequence immediately downstream
FFAR1 stop codon. Bahar Halpern et al. (2012) demonstrated
that GPR40 and GPR41 are transcribed as a single bicistronic
mRNA thanks to the action of an H2R enhancer, and that a tissue-
specific internal ribosome entry site controls the translation of
GPR41 into FFAR3 in pancreatic β-cells. FFAR3 is also coded in a
single exon, as a 346 amino acids protein (38.,65 kDa). GPR40-
common origin is inferred from the relatively high sequence
similarity/identity (31/34%), compared to other GPCRs. Like
FFAR2, its structure is believed to be similar to FFAR1, with
the extra 46 amino acids mainly corresponding to an extension
of the cytosolic C-terminal tail; and its activation is mainly
due to the binding of the same short chain FAs (Brown et al.,
2003). The difference is that pentanoate is more potent than
acetate for FFAR3, while it is quite the opposite for FFAR2.
FFAR3 activation has been described to be coupled only to
Gαi subunits. Its activation by β-hydroxy-butirate negatively
regulates the activity of Cav2.2 N-type Ca+2 channel (Won et al.,
2013; Colina et al., 2018).

High-throughput RNAseq screening analysis of FFAR3
expression indicated a widespread, but weak pattern, with
higher levels observed in adipose tissue, breast, spleen, and
digestive tract. Neural expression is scarce (Figure 1F) and
only very weakly detected in the pituitary gland in GTEx
(The GTEx Consortium, 2013). A GPR41-mRFP transgenic
mice model published by Nohr et al. (2013) showed FFAR3
expression in the digestive tract intimately associated to the
enteroendocrine system, mainly in enteric neurons of the
submucosal and myenteric ganglia, and in several of the
postganglionic sympathetic and sensory neurons, both in
autonomic and somatic peripheral nervous system (PNS). But
this model showed no expression in the brain or spinal cord.
FFAR3 enteroendocrine expression links signaling of short FAs
from the microbiota with enteric hormone secretion (Samuel
et al., 2008). Its activation by short chain FAs and β-hydroxy-
butirate in sympathetic neurons also inhibited CaV2.2 currents,
linking the functions of the PNS to the metabolic state
(Won et al., 2013).

FFAR4 (GPR120)
The gene that codes for FFAR4, originally called GPR120, was
described in 2003 to have four exons that are located on human
chromosome 10q23.33 (Fredriksson et al., 2003). It is expressed,
at least, as two variants generated by alternative splicing that
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leads to exon 3 skipping, GPR120S (coding for a 361 amino
acids peptide, 40,49 kDa) and GPR120L (377 amino acids,
42,24 kDa). Predicted transmembrane regions leave N- and
C-terminal segments longer than in previous FFARs, but the most
notorious difference is the cytoplasmic loop between TM5 and
TM6, where the GPR120S lacks 16 amino acids (from 233 to 248)
compared to the longer variant GPR120L. Activation of FFAR4
signals through Gαq/11.

Highest expression of FFAR4 includes lower digestive tract,
brain, adipose tissue, lung, testis, breast, and adrenal glands.
Within the CNS, FFAR4 is found mainly in glial and neuronal
cells of hippocampus, cerebral cortex, hypothalamus, and
cerebellum (only granular layer and Purkinje cells), with a
particularly high expression in pituitary gland (The GTEx
Consortium, 2013). ISH of mice brain sections show FFAR4
preferential expression in medulla, pons and olfactory bulb,
followed by hypothalamus and cerebellum (Figures 1D,F).

FFAR4 natural ligands include saturated FAs of C14,
C16 and C18, with affinities around EC50 = 30, 52 and
18 µM, respectively. When overexpressed in HEK293 cells,
both agonist-stimulated GPR120S and GPR120L receptors
recruit β-Arrestin2 and undergo internalization, but the longer
variant shows much less Ca+2 mobilization and average
cellular response (Watson et al., 2012). Two Arg residues
on the outer edge of TM2 (Arg99) and TM4 (Arg178) have
been mapped to be responsible for FAs binding (Watson
et al., 2012), unlike the other FFARs members that have
two conserved Arg residues on the outer edge of TM5 and
TM7 (Sum et al., 2007; Stoddart et al., 2008), showing once
more the evolutionary divergence of FFAR4 from the rest
of the GPCRs activated by FAs. Other residues involved in
ligand binding and activation of the receptor included four
aromatic residues Phe115, Phe211, Trp277, and Phe304 that,
when mutated, essentially eliminated responsiveness to agonists
(Hudson et al., 2014).

FFAR4 has been more thoroughly studied in adipocytes
and intestine where it promotes insulin sensitizing and anti-
inflammatory effects, respectively (Song et al., 2017). In
enteroendocrine cells it helps controlling the secretion of
hormones, promoting glucagon-like peptide 1 release but
inhibiting ghrelin secretion (Hirasawa et al., 2005; Engelstoft
et al., 2013); whereas, in adipocytes, oleic acid stimulates
lipid droplet formation by activation of this receptor, which
signals through Gαq, PI3K-Akt, and PLC pathways (Rohwedder
et al., 2014; Villegas-Comonfort et al., 2017). However, it has
a greater affinity for PUFAs, particularly those from the ω-
3 series. In Caco-2 cells, EPA, DHA, and ARA elicit the
same signaling events through FFAR4, but with different
kinetics and efficiency (Mobraten et al., 2013). Basal and
heterologous phosphorylation of Thr347, Ser350, and Ser357 in
the C-terminal tail (GPR120S) mediates receptor internalization
(Burns et al., 2014; Sanchez-Reyes et al., 2014). Hypothalamic
expression of FFAR4 corresponds to microglia and its activation
ameliorates neuroinflammatory response by decreasing the
production of proinflammatory cytokines (TNFα and IL-1β) and
promoting those with anti-inflammatory action (IL-6 and IL-10)
(Dragano et al., 2017).

GPR84
This isoform was identified, through an EST library, in B cells
encoded in a single exon (exon2) (Wittenberger et al., 2001),
but it was the last one to be deorphanized (Wang et al., 2006).
Therefore, GPR84 is the least studied isoform of the FFARs and
has not yet been assigned with the “FFAR5” name. Its expression
was confirmed by Northern-blot in brain, colon, thymus, spleen,
kidney, liver, intestine, placenta, lung, leukocytes, heart, and
muscle. Regarding CNS expression, it is most abundantly found
in medulla and spinal cord, but also significantly in amygdala,
substantia nigra, thalamus, and corpus callosum, whereas only
weakly detected in other brain regions such as the cerebellum
(Wittenberger et al., 2001) (Figures 1E,F). GPR84 is activated
only by medium length acyl chain FAs (C9 to C14) and
does not recognize longer or shorter chain carboxylic acids,
promoting Ca+2 mobilization and inhibiting cAMP production,
mainly through the activation of Gαi/o (Wang et al., 2006).
Its expression is augmented in monocytes by incubation with
LPS, and its activation by medium chain FAs exacerbates the
production of proinflammatory cytokines, highlighting GPR84
role in immune responses (Wang et al., 2006; Muller et al.,
2017). Alternatively to endogenous ligands, GPR84 can also be
activated by hidroxylated medium chain FAs and synthetic drugs
like ZQ16 (2-(hexylthio)pyrimidine-4,6-diol), diindolylmethane
or 6-n-octylaminouracil (Suzuki et al., 2013; Nikaido et al., 2015;
Zhang et al., 2016).

When activated, GPR84 expressed in mouse primary
cultures of microglia stimulates membrane ruffling, modifies its
morphology, and promotes motility, but it does not promote an
inflammatory response, including the secretion proinflammatory
cytokines (Wei et al., 2017). Different FAs are known to be
released after diverse brain injuries, from traumatic lesions to
neurodegenerative diseases and neuroinflammatory conditions,
and they may function as chemo-attractants for microglia,
especially short and middle chain FAs that exhibit higher
solubility and that can be recognized by FFAR2, FFAR3,
and GPR84. This suggests that GPR84 could be a valid
therapeutic target in microglia-associated diseases, such as AD
or Multiple Sclerosis.

Citosolic Receptors
Due to their low solubility, free FAs need to be bound to proteins
in order to diffuse through the aqueous medium of the cytosol.
Since the 1970s, the proteins known as FABPs have been studied
and proved to help overcome this problem. They are small
(15 kDa) intracellular soluble proteins that reversibly bind FAs
and other hydrophobic ligands, trafficking them to different
intracellular compartments, such as mitochondria, peroxisome,
endoplasmic reticulum or the nucleus. Even with as low as
30% identity of amino acids sequence, they share a highly
conserved structure (Figures 2A,B), consisting in a barrel of
10 β-strands enclosing the binding cavity, and a helix-turn-
helix motif capping this barrel. The latter regulates both ligand
entry and exit, as well as origin and destiny points of traffic
(Banaszak et al., 1994; Thompson et al., 1999; Storch and Corsico,
2008; Storch and Thumser, 2010). These proteins have been
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FIGURE 2 | Structure and brain expression patterns of FABPs. (A) Cartoon based on crystal structure of human FABP3 complex with palmitic acid (PDB-ID: 6AQ1)
(Yan et al., 2018). The β-barrel, array of 10 antiparallel β-strands, is shown in blue, and the helix-tur-helix motif cap is shown in green, with the palmitic acid (in
filled-balls model) adopting a U-shaped conformation inside. (B) Dendrogram showing relationship between identity of sequence between FABPs expressed in
neural tissues. Also belonging to the same folding, CRBP-II was included as and outlier. (C–F) Brain left hemisphere sagittal projection showing expression of
FABP3, FABP5, FABP7 and FABP12, respectively, based on ISH data. FABP8 expression in mice brain is not significant. (G) Quantification of relative brain
expression from ISH data for neural FABPs isoforms. AU: Arbitrary units. For brain regions references see legend of Figure 1. Image credit for panels C–F: Allen
Institute. © 2007 Allen Institute for Brain Science. Allen Mouse Brain Atlas. Available from: http://mouse.brain-map.org/search/. Panel G was constructed from data
available through Allen Mouse Brain Atlas website.

extensively characterized in vitro, including its three-dimensional
structures by NMR and X-ray Crystallography, with and without
any cargo, natural or synthetic (Sacchettini et al., 1987; Xu et al.,
1991; Ory et al., 1997; Balendiran et al., 2000; Hanhoff et al.,
2002; Rademacher et al., 2002; Reese and Banaszak, 2004). They
can uptake FAs from model phospholipid vesicles and transfer

its cargo to other membranes, according to the properties of
each isoform (Herr et al., 1996; Storch and Thumser, 2000;
Veerkamp and Zimmerman, 2001; Liou et al., 2002; Storch et al.,
2002; Falomir-Lockhart et al., 2006). It has been demonstrated
that some isoforms interact better with membranes in the apo-
form, presumably looking for ligand uptake; whereas others are
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dominated mainly by electrostatic interaction between the holo-
protein and the phospholipid’s headgroups (Falomir-Lockhart
et al., 2006, 2011).

FABPs were originally named after the tissue where each
isoform was firstly identified, and intestinal enterocytes were the
exception that expressed large quantities of two isoforms, FABP1
and FABP2. Nowadays, the numbered nomenclature is preferred
over tissue-related names in order to avoid misinterpretations
derived from the fact that most cell types can express more
than one member of the FABP family, and their level of
expression responds to metabolic conditions, external stimuli,
or development stages. Therefore, most FABPs show distinctive
expression patterns in different organs and cell types. No isoform
shows a high degree of selectivity for a particular FA, although
it is usually found a higher affinity for saturated compared to
unsaturated FAs (Richieri et al., 2000). The affinity for FAs of
each isoform depends on chain length and number of double
bonds, but isoforms FABP1 and FABP5 show significant affinity
for a wider range of hydrophobic ligands. A total of 9 FABP
isoforms with high affinity for long chain FAs (between C12 and
C22) are described in mammals, plus 4 more members that show
specificity for retinoid ligands (CRBP-I, CRBP-II, CRABP1 and
CRABP2) and one extra for bile acids (FABP6, I-BABP or ILBP).

There are five FABP isoforms with relevant levels of expression
in neural tissues: FABP3 (commonly known also as Heart-
FABP), FABP5 (Epidermal-FABP), FABP7 (Brain-FABP), FABP8
(Myelin-FABP or PMP2), and FABP12 (Retinal-FABP). Each
of them presents distinct spatio-temporal expression patterns
(Owada et al., 1996; Liu et al., 2000). Many of them are
significantly expressed in the brain, whereas FABP8 is apparently
exclusive of PNS. Bellow there is a resume of the most prominent
information available about each neural isoform.

FABP3
Significant expression of FABP3 is not detected in embryonic
stages of rodent or in fetal human brains (Cheon et al., 2003;
Saino-Saito et al., 2009). Perinatal FABP3 expression increases
gradually, mainly confined to gray matter in rodents. In adult
individuals, FABP3 is stably expressed in the neuronal layers
of hippocampus, the cerebral neocortex, interneurons of the
retina and the olfactory mitral cell layer, particularly in CA1
and CA2 portions (Owada, 2008; Saino-Saito et al., 2009). Its
mRNA can also be detected in Purkinje and granulate cells of
the cerebellum (Owada, 2008). ISH of mice brain slices localizes
FABP3 expression in isocortex, cortex, pons and hippocampus
(Figures 2C,G).

FABP3 shows somewhat preferential binding of ω-6 PUFAs,
but affinities for all FAs range from 0.8 to 5 µM. FABP3 is
thought to help to consolidate and maintain the differentiated
status of neurons in adult brains through the utilization of
PUFAs. Actually, brain ARA assimilation and its incorporation
into phospholipids correlate with FABP3 expression levels, which
is also necessary to maintain an optimal balance between ω-
6 and ω-3 PUFAs in adult neurons (Murphy et al., 2005).
FABP3 could also modulate dopamine signaling, since it is highly
expressed in acetylcholinergic and terminals of glutamatergic
neurons of dorsal striatum, and it can interact physically and

modulate dopamine D2 receptors (D2R) in mice (Shioda et al.,
2010). This was confirmed by dysfunctional response of D2R
to amphetamines and to D2R-specific agonist Haloperidol in
FABP3−/− mice; whereas response to D1R-specific agonist
SCH23390 was not impaired. The expression of FABP3 in
dopaminergic neurons is still controversial, even between the
same authors (Shioda et al., 2010, 2014). On the other hand,
FABP3 can be found in the cochlea, as well as FABP7, not involved
in sensing but present in different support cells, suggesting a
non-redundant function of these proteins in modulation of the
hearing process (Saino-Saito et al., 2010).

Regarding pathological conditions, FABP3 was found to
be significantly decreased in frontal, occipital, and parietal
cortices of patients suffering Down Syndrome; and it was
also elevated in temporal cortex of patients with AD (Cheon
et al., 2003; Sanchez-Font et al., 2003; Watanabe et al., 2007).
FABP3 expression in dopaminergic neurons may promote
MPTP and ARA-induced α-Synuclein aggregation (Shioda
et al., 2014), the main component of the characteristic Lewy
Bodies present in PD and related neurodegenerative diseases.
Furthermore, aberrant expression of FABP3 may affect PUFA
enrichment and alter membrane fluidity and signal transduction.
Consequently, this deficiency could lead to cellular dysfunction
in neurodegenerative disorders.

FABP5
FABP5 is the most ubiquitously expressed FABP. During
midterm embryonic stages, it is particularly present in the
ventricular germinal zone and the cerebral cortex, as well as in
the stem cells differentiating into motor neurons or astrocytes.
But its expression progressively decreases after birth until it is
only weakly detected in the adult brain (Liu et al., 2010). This
moderate expression is shared, with varying intensity in different
brain regions, by neurons and glia (Figures 2D,G). Regarding
mouse retina, FABP5 is found in the retinal ganglion cells, up
to E14 strictly localized in the soma, but progressively migrating
into axons of optic nerve by E18 and until P10 (Allen et al., 2001;
Saino-Saito et al., 2009). This suggests that FABP5 may have a
role in neurite outgrowth and axon development by supplying
LCFA for phospholipid synthesis. FABP5 also shows high affinity
for retinoic acid (RA) and, therefore, it is associated to neuronal
survival and differentiation by activation of PPARβ/δ, not only
through FAs but RA signaling as well. Actually, the latter depends
on the distribution ratio between CRABP2 and FABP5, and it
may be as well modulated by displacement from either protein
by FAs, and particularly by DHA (Schug et al., 2007, 2008; Yu
et al., 2012). Recent publications also link FABP5 to regulatory
functions of estrogen receptors (Senga et al., 2018), which could
be related to its heterodimerization to Retinoid X Receptors
(RXRs), similarly to PPARs.

FABP5 expression is induced under pathological or stress
conditions, for example, after axonal injury in peripheral nerves
(De Leon et al., 1996), but not in Down Syndrome, AD or
Bipolar Disorder (Cheon et al., 2003). Under oxidative stress
conditions, FABP5 has been proved to work as a scavenging
system of 4-Hydroxynonenal lipid peroxidation subproduct
(Bennaars-Eiden et al., 2002). Altogether, we can summarize
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that FABP5 is expressed when the fate of the neural cell
differentiation must be decided or when it has to adapt to stress
or pathological conditions.

FABP7
In embryonic brains, FABP7 is highly expressed in the radial
glia, in the ventricular and subventricular zones. After birth, the
expression remains strongly positive in gray and white matter
(Kurtz et al., 1994). In the neonatal brain, its expression is more
evident in the olfactory nerve fiber layers, hippocampal dentate
gyrus, and the cerebellar Purkinje cell layer. Finally, in adulthood,
the expression decreases although it remains in the Schwann cells
of olfactory nerve, in the radial glia of dentate gyrus, and in the
glial cells located adjacent to the cerebellar Purkinje cells (Kurtz
et al., 1994). Its mRNA expression in 8 weeks-old mice is evident
only in olfactory bulb and the cerebellum (Figures 2E,G). FABP7
was proposed to be downstream regulator of Pax6 participating
in the maintenance of pre-neurogenesis neuroepithelia, while
its knock-down promotes neuronal differentiation (Arai et al.,
2005). FABP7 and FABP3 are usually expressed in the same
regions of the brain, with the later usually showing 10-time higher
levels, although local concentration may vary (Pelsers et al.,
2004). As mentioned before, both proteins are present in different
support cells of the cochlea, suggesting a regulatory function of
hearing signals (Saino-Saito et al., 2010). FABP7 is also expressed
by glial progenitor cells located in the foregut and midgut during
enteric nervous system development (Sasselli et al., 2012).

FABP7 preferentially binds ω-3 PUFAs and oleic acid (18:1n-
9, OA) over ω-6 PUFAs, and shows lower affinity for SFAs
(Xu et al., 1996; Balendiran et al., 2000; Hanhoff et al., 2002).
Therefore, null mice display decreased DHA incorporation into
PLs, with an increase in AA and PA instead (Owada, 2008).
Its up-regulation during embryonic stages of development (and,
probably, FABP5’s as well) is likely related to the proliferation and
initial differentiation of neural stem cells and progenitorse, with
an increasing demand of PUFAs, rather than to their maturation
and integration (Liu et al., 2010). Actually, the fluorescent probe
CDr3 was identified as a specific ligand for FABP7 in neural stem
cells (Yun et al., 2012) and successfully employed for its flow
cytometry isolation from both adult and embryonic mouse brains
(Leong et al., 2013).

Regarding pathological conditions, FABP7 has been shown
to be significantly increased in occipital cortex of patients with
Down Syndrome, although no changes were detected in fetal
brain (Cheon et al., 2003). Gene allele association studies showed
correlation of FABP7 expression with schizophrenia and bipolar
disorder (Saino-Saito et al., 2010).

FABP8
FABP8 can be abundantly and exclusively found, although
unevenly distributed, in the myelin sheaths and Schwann cells
of peripheral nerves, for example, in the human nervus suralis.
It can represent up to 15% of total protein of bovine PNS myelin
(Greenfield et al., 1973). In mice, mRNA levels increase gradually
and the protein is detectable after P4 (Zenker et al., 2014).
FABP8 is present only in minor amounts in CNS white matter,
being more abundant in spinal cord and brain stem myelin. The

expression levels of FABP8 vary both in intensity and distribution
between different regions of a single nerve as well as between
nerves (DeArmond et al., 1980).

FABP8 has a unique function in the organization and
stabilization of myelin multilayers as it is capable of stacking
phospholipid membranes synergistically with Myelin Basic
Protein (Greenfield et al., 1973). Its higher expression during
the early postnatal life also suggests a role in FAs uptake and
lipid metabolism toward myelination of axons (Zenker et al.,
2014). Notably, knock-out of one or both proteins does not
affect myelin structure, and its only consequence is a minor
retardation in motor nerve conduction (Zenker et al., 2014).
However, several point mutations of FABP8 have been associated
to the inherited neuropathy known as Charcot-Marie-Tooth
disease (Motley et al., 2016; Punetha et al., 2018).

FABP12
The FABP12 gene was the last one to be identified to code
for a member of this family of proteins (Liu et al., 2008)
and, hence, has not yet been thoroughly studied like other
members. Its mRNA was found at high levels mainly in the
retina and testis, and to a lesser extent in the cerebral cortex,
kidney and epididymis of rat and mouse tissues (Smathers and
Petersen, 2011). ISH of mouse brain sections shows a ubiquitous
expression (Figures 2F,G). Under oxidative stress conditions,
FABP12 protects retinal rod cells from peroxidation mediated by
LCFA hydroperoxides (Guajardo et al., 2002).

Nuclear Receptors-Transcription Factors
In many tissues, FAs induce changes in gene expression through
nuclear receptors of the PPARs family of transcription factors,
ligand-activated nuclear receptors subfamily 1 group C (Capelli
et al., 2016). PPARs structure consists of a variable N-terminal
region, a conserved DNA binding domain, a variable hinge
region, a conserved ligand binding domain, and a variable
C-terminal region (Mangelsdorf et al., 1995). Heterodimerization
of PPARs with Retinoid-X Receptor (RXR) depends on ligand
and DNA binding, being affected also by posttranslational
modifications (Berrabah et al., 2011; Anbalagan et al., 2012;
Brunmeir and Xu, 2018). The DNA binding domain includes
two segments with Zn-fingers motifs, which recognizes its target
sequence or Response Element (RE). The N- and C-terminal
regions include the Activation-Function 1 (AF1) and 2 (AF2),
respectively, essential for interaction with coregulators and
transcription modulation functions (Figure 3A). PPAR–RXR
complexes recognize a direct repeat of the consensus sequence
AGGTCA with a single nucleotide in between, also referred
to as PPRE: AGGTCA-N1-AGGTCA. These features have been
corroborated by the crystal structures available (PDB-IDs: 3E00,
3DZU, 3DZY) (Figure 3A) (Chandra et al., 2008). PPARs are
thought to be permanently bound to PPREs as heterodimers with
one of the three RXR isoforms (RXRα, RXRβ, or RXRγ). The
lack of ligand bound to them promotes their repressor activity
through association with corepressors, such as Nuclear Receptor
Corepressor (NCoR) or the Silencing Mediator of Retinoid and
Thyroid hormone receptor (SMART). Upon ligand binding,
corepressors are released and co-activators recruited, including
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FIGURE 3 | Structure and brain expression patterns of PPARs. (A) Cartoon based on crystal structure (PDB-ID: 3DZY) of the full-length PPARγ in a complex with
RXRα and two accessory 13-amino acids peptides of Nuclear receptor coactivator 2 and a dsDNA containing the PPRE (Chandra et al., 2008). For clarity, only
PPARγ, its synthetic agonist Rosiglitazone and the dsDNA are shown. N-terminal region of PPARγ is not visible because it was not determined due to high flexibility.
(B–D) Brain left hemisphere sagittal projection showing expression of PPARα, PPARβ and PPARγ, respectively based on ISH data. (E) Quantification of relative brain
expression from ISH data for neural FABPs isoforms. AU: Arbitrary units. For brain regions references see legend of Figure 1. Image credit for panels B–D: Allen
Institute. © 2007 Allen Institute for Brain Science. Allen Mouse Brain Atlas. Available from: http://mouse.brain-map.org/search/. Panel E was constructed from data
available through Allen Mouse Brain Atlas website.

p300, CREB-binding protein, or Steroid Receptor Coactivator 1
(SRC1); promoting transcriptional activation of their target genes
(Zoete et al., 2007).

PPARα was first identified as a new member of the steroid
hormone receptor superfamily and proved to mediate the effects
of hypolipidemic drugs commonly used in hyperlipidemias.
These drugs were known as peroxisome proliferators, dubbing
this receptor PPARs (Issemann and Green, 1990). Parallel
identification of multiple isoforms in mammals and Xenopus
sp. led to some controversy regarding their nomenclature,
but nowadays it is accepted that three isoforms are present,
comprising PPARα, PPARβ/δ, and PPARγ (Echeverria et al.,
2016; Brunmeir and Xu, 2018). Besides FAs, PPARs have also

been reported to be activated by other endogenous lipidic
compounds, such as endocannabinoids (oleylethanolamide,
arachidonylethanolamide, 2-arachidonyl-glycerol, etc.) and by
RA (O’Sullivan, 2007; Schug et al., 2007). Unfortunately, little
progress has been made identifying natural endogenous ligands
which are specific or preferential for any of the PPARs isoforms
due to their rather low affinity and similar specificities.

As mentioned above, the activation of PPARs modulates
directly the expression of genes near the bound PPER. But
a second mechanism of action has been proposed for certain
isoforms, blocking or preventing the interaction of other
transcription factors. The better studied example corresponds to
the ligand-dependent SUMOylation of activated PPARγ that gets
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displaced from its PPRE and blocks NFκB interaction with its
own response elements and, hence, limiting the inflammatory
response (Ricote and Glass, 2007; Glass and Saijo, 2010). This
mechanism is known as transrepression and may be a putative
target for handling neuroinflmammation.

All PPARs isoforms were detected in the CNS employing
multiple techniques, such as reverse transcription-quantitative
PCR (RT-qPCR), immunohistochemistry (IHC), and ISH (Kainu
et al., 1994; Braissant et al., 1996; Cullingford et al., 1998;
Warden et al., 2016). However, despite the vast literature
available, there is still some controversy regarding PPARs
expression patterns. They are essential for embryonic and
fetal development in mammals and, therefore, drug-inducible,
tissue specific knockout models have been developed to study
their specific roles, particularly for PPARγ null mice which is
lethal (Gray et al., 2005; Wang et al., 2013; Rautureau et al.,
2017). Double neuronal conditional knockout of PPARβ/δ and
PPARγ exacerbates cytotoxicity of 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) on striatum dopaminergic neurons
(Mounsey et al., 2015). Noteworthy, it is not rare to find co-
expression of PPARs within a single cell. Some details are offered
below about protein expression levels, together with mRNA
and protein variants, and the connections of PPARs with brain
pathophysiology.

PPARα

Human PPARA (or NR1C1) gene is located in chromosome
22q12-q13.1 and contains at least 9 exons, with PPARα encoded
as a 468 amino acid protein (52.23 kDa). A shorter variant is
also described by alternative splicing that introduces an early
stop codon after the DNA binding domain and, therefore, is
not ligand-sensitive. PPARα shows a wide and similar expression
in all tissues, with more prominent levels in liver, intestine,
kidney, heart, and skeletal muscle; and its presence is also
reported in brown adipose tissue. The higher expression levels
of PPARα in these tissues correlate with their high capacities
for FAs oxidation, and its main function seems to be related
to the control of energy expenditure through lipid catabolism
and the adaptation to different nutritional states, such as the
postprandial period or fasting. Regarding CNS expression, the
GTEx project detected similar levels of PPARA mRNA in caudate,
pituitary gland, hypothalamus, hippocampus, cerebral cortex,
and cerebellum. Furthermore, ISH of brain section showed
very similar expression throughout regions and weaker than
other isoforms (Figures 3B,E). Targeted expression analysis of
PPARα reported it in olfactory bulb, retina, cerebellum, and
hippocampus (Braissant et al., 1996; Moreno et al., 2004; Rivera
et al., 2014). PPARα has been localized in neurons (Cristiano
et al., 2001; Santos et al., 2005), oligodendrocytes (Kainu et al.,
1994), microglia (Warden et al., 2016), and specially in astrocytes
(Cristiano et al., 2001; Chistyakov et al., 2015).

PPARα shows relatively higher affinities for FAs
compared to alternative endogenous agonists (eicosanoids
and endocannabinoids), and it can be activated also by
hypolimidemic drugs, but generally not or only weakly by non-
steroidal anti-inflammatory drugs (NSAIDs) and anti-diabetic
thiazolidinediones (Corton et al., 2000). PPARα functions

in the CNS are still unclear. Its proposed functions include
the regulation of sleep process (Murillo-Rodriguez, 2017),
also have an impact on learning and memory consolidation.
Nevertheless, it has been shown that PPARα agonists such as
Wy-14643 reduce Aβ-derived oxidative damage by increasing
catalase activity, and activate the Wnt/β-Catenin survival
pathway (Santos et al., 2005). Furthermore, PPARα activation
by statins is responsible for boosting BDNF production, that
mediates cognitive improvement in another mouse mode of AD
(Roy and Pahan, 2015).

PPARβ/δ
Gene structure of PPARD (NR1C2) gene in chromosome 6p21.2-
21.1 consists of 11 exons, with the ORF spanning from exon 4 to
exon 9 and coding for a 441 amino acids protein termed PPARδ1
(49,09 kDa). Alternative splicing gives rise to shorter isoforms:
80 amino acids shorter isoform 2 (PPARδ2) is the product of
an early stop signal due to overtranscription of the 3’-end of
exon 8 that introduces an in-frame non-sense codon; variant 4
lacks 98 amino acids (44 to 141) due to exon skipping; while
variant 3 is the result of an alternative transcription initiation
site with three new N-terminal amino acids instead of the first 43
residues of PPARδ1 (coded by exon 4). Another four alternative
transcription initiation sites may be active in PPARD downstream
to exon 1 and associated to alternative exon 2 (2a′, 2c, 2c′ and
2e) (Lundell et al., 2007). These mRNA 5′-UTR variants do
not alter the final ORF but probably are related to translational
regulation of PPARβ/δ. The different isoforms are suspected
to show distinctive spatio-temporal expression patterns and/or
specific functions. For example, PPARδ2 has been proposed to act
as a dominant negative form of PPARδ1 (Dickey et al., 2016).

PPARD expression is broad and is particularly high in tissues
associated with FAs metabolism, such as the gastrointestinal
tract, heart, kidney, skeletal muscle, fat, and skin. Its systemic
physiological function is to coordinate and balance the usage
levels of FAs and glucose in muscle and liver. However, PPARβ/δ
is also the most predominant PPARs isoform in the human CNS
and has a ubiquitous expression in the rat brain (Figures 3C,E).
Despite, all PPARs are co-expressed in developing CNS, PPARβ/δ
remains with high expression levels in adult rats (Braissant et al.,
1996), suggesting a role in brain development, mielynation, and
neuronal function. It was localized in olfactory bulb, cerebral
cortex, basal ganglia, hippocampus, hypothalamus, cerebellum,
and spinal cord, among others brain areas (Xing et al., 1995;
Braissant et al., 1996; Moreno et al., 2004). In mouse models,
PPARβ/δ is widely distributed and has been found in neurons of
the prefrontal cortex, nucleus accumbens, amydala, cerebellum,
hypothalamus, and spinal cord, at mRNA and protein expression
levels (Woods et al., 2003; Warden et al., 2016). Regarding cell
types, PPARβ/δ is mainly expressed in neurons (Hall et al., 2008),
but it has also been found in oligondendrocytes of the corpus
callosum (Moreno et al., 2004), and in primary cultures of cortical
and cerebral astrocytes (Cristiano et al., 2001). Among the glial
cells, PPARβ/δ only co-localized with oligondendrocytes of the
corpus callosum (Woods et al., 2003), but no with astrocytes and
microglia. In vitro, agonists of PPARβ/δ induce the differentiation
of SH-SY5Y cells (Di Loreto et al., 2007).
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PPARβ/δ shows preferentially affinities for PUFAs, compared
to other FAs and eicosanoids, and is selectively activated
by bezafibrate (hypolipidemic drug), GW2433 and L-65041
(NSAIDs) among synthetic agonists (Corton et al., 2000).
Regarding its pathological links, PPARβ/δ is repressed in
patients with Huntington Disease (HD) and its pharmacological
activation improves motor function, reduces neurodegeneration,
and increases neuronal survival in a HD mice and cellular models
(Dickey et al., 2016). The novel PPARβ/δ agonist gemfibrozil is
believed to promote oligodentrocyte differentiation by increasing
the expression of genes required for myelin formation (Jana et al.,
2012) and could potentially be employed against demyelination-
related pathologies.

PPARγ

PPARG (NR1C3) gene is located in chromosome 3p25. At
least four transcriptional start sites actively transcribe different
mRNAs with functional cDNAs coding for PPARγ isoforms.
While variants 1, 3 and 4 code for the same PPARγ1 isoform
(477 amino acids, 54.68 kDa), mRNA variant 2 codes for PPARγ2
which has an additional 28 amino acids at the N-terminus
(505 amino acids, 57,62 kDA). PPARγ1 is expressed in a broad
variety of cells including immune and brain cells, whereas
PPARγ2 is highly abundant in adipose tissue and is considered
the master regulator of adipocyte differentiation, where it
controls FAs uptake and storage in lipid droplets as triglycerides.
Within the CNS, PPARγ was found to show a more discrete
pattern of expression than PPARβ/δ, and to be slightly enriched
in the hippocampus, being identified both in neurons and
glial cells, including microglia, (Bernardo et al., 2000; Roth
et al., 2003; Heneka and Landreth, 2007; Sarruf et al., 2009;
Warden et al., 2016; Villapol, 2018). Expression analysis in mice
brain by ISH showed hippocampus, isocortex, cerebellum and
medulla higher levels of PPARG mRNAs (Figures 3D,E). In
the neuroblastome cell line SH-SY5Y, the activation of PPARγ

by synthetic agonists promotes neurite outgrowth and neuronal
differentiation (Miglio et al., 2009).

PPARγ shows higher affinities for PUFAs than for MUFAs, and
it cannot be activated by SFAs, and its response to eicosanoids,
hipolipidemic and NSAIDs is diverse, but it is generally activated
by thiazolidinediones (Corton et al., 2000). PPARγ is probably
the most studied isoform regarding its functions in immune cells,
and its interest in neuropathological processes points toward its
strong anti-inflammatory effects (Corona and Duchen, 2015).
PPARγ activation can induce differentiation of oligodendrocytes
and protects them from TNFα toxicity (Bernardo et al., 2009,
2017; De Nuccio et al., 2015). Furthermore, natural and synthetic
agonists PPARγ can control brain inflammation processes
by shutting-down proinflammatory phenotype of activated
microglia, and inhibiting the expression of surface antigens or
the synthesis of proinflammatory signals, such as prostaglandins
and nitric oxide (Bernardo and Minghetti, 2006). PPARγ can
be either positively or negatively modulated by phosphorylation,
according to the residue that is modified (Shao et al., 1998;
Anbalagan et al., 2012; Brunmeir and Xu, 2018), and can be
sent for degradation via the Ubiquitine-Proteasome pathway.
PPARγ ability to transrepress NFκB inhibits, or at least limits,

the inflammatory response, a regulatory mechanism activated
by SUMOylation of its N-terminal region (Ricote and Glass,
2007; Diezko and Suske, 2013; Glass and Saijo, 2010). This
could be a putative target for minimizing the neuroinflammatory
condition characteristic of many neurodegenerative diseases,
such as PAD and AD. Actually, multiple drugs designed as agonist
of PPARγ have been and tested in AD models showed to reduce
the β-amyloid accumulation, its cytotoxicity and stimulation of
inflammatory cytokines (Combs et al., 2000; Sastre et al., 2006;
Zolezzi and Inestrosa, 2013; Bonet-Costa et al., 2016).

FUTURE PERSPECTIVES

Fatty acids participate in essential and diverse cellular processes
involving neurons and glial cells, ranging from embryonic
and perinatal development of tissues, including the CNS, to
cognitive functions such as memory and learning. Therefore,
they are unavoidably involved in neuropathological processes,
including traumatic brain injury and neurodegenerative diseases.
But, due to its rather simple chemical structures and low
solubility, FAs require specific proteins that could recognize them
and mediate its regulatory or signaling functions. Membrane
receptors FFARs, cytosolic transport proteins FABPs and nuclear
transcription factors PPARs are the preferential mediators of
FAs functions. Taken together, and considering that almost all
cell types express at least one member of each of these three
families of proteins, we could hypothesize that they may be
working as a complex, but coordinated sensory system for
FAs. Actually, functional interaction of FABPs and PPARs has
already been proved in hepatocytes and adipocytes (Smith et al.,
2008; Hostetler et al., 2009). The identification of two possible
ligand binding sites in FFAR1 structures in opposite sides of
the membrane opens the possibility that they could be regulated
and/or activated by intracellular lipids as well as by external
lipokines, for example released by PLA2 enzymes, but also by
interaction with FABPs. FABP-FFAR interaction, though not yet
proved, could be understood either by unloading FAs cargo
from the FABPs to activate the FFARs, or as a termination
mechanism of FFAR signaling by retrieval of ligands by the
FABPs from the FFARs. This is an interesting possibility that
would integrate all FAs receptors (Figure 4), and its better
understanding would definitely help in the design of new drugs
with increased specificity and selectivity for its primary targets,
avoiding undesired adverse effects.

Fatty acids signaling effects are usually mixed with those
displayed by their multiple derivatives, adding a new
layer of complexity to distinguish direct cellular responses
free FAs signaling. Although specific receptors have been
identified for endocannabinoids, eicosanoids, resolvins,
protectines, lysophasphatidic acids, monoacylglycerols,
N-acylethanolamines, and so on, crosstalk between the
different receptors should not be neglected or discarded.
Cellular responses are the result of the integration of a myriad of
external and internal signals, as evidenced by the convergence
of signaling pathways. Particularly, a functional interaction
between FFAR2 and FFAR3 to form an heteromeric receptor
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FIGURE 4 | Schematic mechanism proposed for integration of the FAs Receptors System. Alternative FAs receptors are shown along with their demonstrated or
putative interactions and their better characterized cellular effects. FFAR: Free Fatty Acid Receptor; FABP: Fatty Acid Binding Protein; PPAR: Peroxisome
Proliferator-Activated Receptor; RXR: Retinoid X Receptor; FA: Fatty Acid; PPRE: PPAR Response Element. AC: Adenylate Cyclase; DAG: Diacylglycerol; FATP:
FAT/CD36: Fatty Acid Translocase; Fatty Acid Transport Protein; IP3: Inositol (1,4,5)-Trisphosphate; IP3R: Inositol trisphosphate Receptor; PI3K: Phosphatidyl Inositol
(3,4,5)-Trisphosphate Kinase; PLA2: Phospholipase A2; PLC: Phospholipase C; PKA: Protein Kinase A; PKAB/Akt: Protein Kinase B; PKC: Protein Kinase C.

has been proposed in primary monocytes and macrophages,
and during heterologous expression in HEK293 cells (Ang et al.,
2018). Considering that the origin of the short chain carboxylic
acids available in mammals’ bloodstream is exclusive from the
microbiota colonizing their body, FFAR2 and FFAR3 may act
as a remote sensory system to prevent infections, activating the
proliferation and modulating the reactivity of immune cells in
preparation against a growing focus of bacteria (Ulven, 2012).

Signaling of PUFAs is intimately related to RA signaling,
as mentioned above by the similar activation of FFAR1.
Furthermore, and similarly to what happens with FABP5 and
CRABP2, PPARγ has been described to be activated by RA,
as well as RXRs by DHA. In this case, FABP5 translocate its
ligand, either DHA or RA, to the nucleus and unload it to the

PPARβ/δ (Noy, 2016). Similarly, CRABP2 would do the same
to RXR. Therefore, FABP/CRABP2 biological interaction with
PPAR/RXXR is not only direct but they also compete for the
same ligands, increasing the possibilities of diverse responses
mounted and the subset of target genes affected. Regarding this,
one must remember that many nuclear receptors heterodimerize
with RXRs and, therefore the final cellular response observed is
also affected by their presence and ligands (Zhang et al., 2015).

Another utility for FABPs is their detection as early biomarkers
of tissue injuries, and increasing evidence is being recorded for
the early or differential diagnosis of diverse pathologies (Pelsers
et al., 2004, 2005; Wunderlich et al., 2005). Their main advantages
are related to their fast release, as close as 30 min to the
injurious event, and their relatively fast clearance. Consequently,
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FABPs presence in plasma or cephaloraquidean liquid reports
for recent trauma, allowing for the differentiation of consecutive
events separated by less than 24 h. Neural FABPs detection
has been correlated with traumatic brain injury and certain
gliomas overexpressing FABP5 or FABP7 (De Rosa et al., 2012;
Walder et al., 2013).

Finally, the increasing complexity of the lipid-sensing system
available in humans raises the question if the regulatory and
signaling functions of FAs can be individually discriminated and
specifically targeted for the treatment of pathological conditions.
Significant effort is being invested in the development of
new drugs that would allow for their precise manipulation
and the better treatment of brain injuries, neurological
or neurodegenerative diseases by taking advantage of the
neuroprotective and anti-inflammatory properties, particularly
of PUFAs, employing either FFARs, FABPs, or PPARs as drug
targets (Holliday et al., 2012; Wang et al., 2016; Zhou et al.,
2016; Li et al., 2018a,b,c, 2019; Shang et al., 2018). Specificity
will come together with our better understanding of how these
proteins work. For example, an important step forward in this
direction is the recent variation analysis of the PPRE sequence
for PPARα/RXRα complex that resulted in the ideal sequence
WAWVT-RGGBBA-H-RGKTYA (where W = A or T; V = not
T; R = A or G; B = not A; H = not G; K = G or T; Y = T or
C) as an optimized DNA sequence for PPARα (underlined) and
RXRα binding (not underlined) (Tzeng et al., 2015). Noteworthy,
although stronger DNA binding of RXRα to PPRE led to higher
transcription rates, this is not always the case for PPARα.
New candidate target genes have been identified employing
this optimized sequence to screen genomic databases as being
regulated by PPARα, and that could not be recognized by the
consensus sequence for PPRE, improving our understanding
of PPARs isoform specific functions. This could also help to
development of drugs that could selectively affect only one PPAR
isoform and/or only its functions regarding a certain subset of
genes under its control.

Another elements that must be considered are non-coding
microRNAs (miRs), which act usually as negative regulators
of gene expression in the CNS, and several of them have
been reported to participate in the regulation exhibited by
lipids (Wnuk and Kajta, 2017). For example, the expression
levels of miR-21 are decreased by DHA treatment of SH-SY5Y
neuroblastome cells, showing an inverse correlation with PPARα

levels (Fu et al., 2017). The miR-21 is thought to destabilize
PPARα mRNAs and reduce its translation (Chen et al., 2017).
Treatment with DHA plus salicylic acid promotes PPARα-RXRα

heterodimer formation that correlates with a reduction of miR-
21. Together, they promote PSD-95, BDNF and GDNF neuronal
differentiation markers and reduce NFκB, COX-2, caspase 3
levels proinflammatory markers (Fu et al., 2017). Similarly, miR-
499a negatively regulates the level of expression of PPARγ in
microglia cells, promoting the expression of proinflammatory
markers, such as iba-1, TNFα and IL-1β (Yu et al., 2018). Finally,
PPARs can be activated by valproic acid and its short/medium-
chain derivatives, a long time used family of anticonvulsants
to treat epilepsy, that has also showed beneficial effects against
autism, maniac and bipolar disorders (Lampen et al., 2001;

Hunsberger et al., 2013; Hirsch et al., 2018). Its beneficial effects
as a promoter of neuroregeneration, neurodifferentiation and
neuroprotection (Liu et al., 2012; Foti et al., 2013; Oikawa and
Sng, 2016) may come from the modulation of the expression of
multiple miRs through PPARs, either by their transrepression or
transactivation (Dharap et al., 2015). FFARs may also participate
of miRs expression, such as miR-143 that is controlled in
adipocytes by both PPARγ and FFAR4 activation (Bae et al.,
2017). These line of evidence has recently pushed miRs to be
evaluated as novel therapeutic targets against neurodegenerative
diseases, such as PD o AD.

Drug discovery strategies focused on FFARs, FABPs and
PPARs have already started aiming at neurological and also other
pathologies like diabetes, obesity, leukemia, cancer, and so on
(Kaczocha et al., 2014; Nikaido et al., 2015; Corona and Duchen,
2016; Wang et al., 2016; Cheng et al., 2019), paving the way
for new developments and facilitating drug repurposing, what
may save years of research and development. Noteworthy, in
the case of FFARs with multiple signal transduction pathways,
the concept of biased signaling is of particular interest, where a
partial agonistic ligand may only and selectively activate a single
pathway over the others available for that receptor. For example,
FFARs partial agonist could activate β-Arrestin-mediated but not
G protein-mediated signaling (Mancini et al., 2015). This kind of
developments has attracted substantial attention for its potential
to model molecular differences in receptors functionality that
could yield enhanced therapeutic strategies, with improved
efficacy and reduced adverse effects (Whalen et al., 2011; Kenakin
and Christopoulos, 2013; Correll and McKittrick, 2014).
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