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Introduction: Hypothermia attenuates cerebral ischemia-induced neuronal cell death
associated with neuroinflammation. The calcineurin inhibitor cyclosporin A (CsA) has
been shown to be neuroprotective by minimizing activation of inflammatory pathways.
Therefore, we investigated whether the combination of hypothermia and treatment with
CsA has neuroprotective effects in an oxygen-glucose deprivation/reperfusion (OGD/R)
injury model in neuronal and BV-2 microglia monocultures, as well as in an organotypic
hippocampal slice culture (OHSC).

Methods: Murine primary neurons, BV-2 microglia, and OHSC were pretreated with
CsA and exposed to 1 h OGD (0.2% O2) followed by reperfusion at normothermia
(37◦C) or hypothermia (33.5◦C). Cytotoxicity was measured by lactate dehydrogenase
and glutamate releases. Damage-associated molecular patterns (DAMPs) high mobility
group box 1 (HMGB1), heat shock protein 70 (Hsp70), and cold-inducible RNA-binding
protein (CIRBP) were detected in cultured supernatant by western blot analysis.
Interleukin-6 (IL-6), Interleukin-1α and -1β (IL-1α/IL1-β), tumor necrosis factor-α (TNF-α),
monocyte chemotactic protein 1 (MCP1), inducible nitric oxide synthase (iNOS), glia
activation factors ionized calcium-binding adapter molecule 1 (Iba1), and transforming
growth factor β1 (TGF-β1) gene expressions were analyzed by RT-qPCR.

Results: Exposure to OGD plus 10 µM CsA was sufficient to induce necrotic cell
death and subsequent release of DAMPs in neurons but not BV-2 microglia. Moreover,
OGD/R-induced secondary injury was also observed only in the neurons, which
was not attenuated by cooling and no increased toxicity by CsA was observed.
BV-2 microglia were not sensitive to OGD/R-induced injury but were susceptible
to CsA-induced toxicity in a dose dependent manner, which was minimized by
hypothermia. CsA attenuated IL-1β and Iba1 expressions in BV-2 microglia exposed
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to OGD/R. Hypothermia reduced IL-1β and iNOS expressions but induced TNF-α
and Iba1 expressions in the microglia. However, these observations did not translate
to the ex vivo OHCS model, as general high expressions of most cytokines
investigated were observed.

Conclusion: Treatment with CsA has neurotoxic effects on primary neurons exposed
to OGD but could inhibit BV-2 microglia activation. However, CsA and hypothermia
treatment after ischemia/reperfusion injury results in cytotoxic neuroinflammation in the
complex ex vivo OHSC.

Keywords: cyclosporin A, hypothermia, oxygen-glucose deprivation/reperfusion, organotypic hippocampal slice
culture, BV-2 microglia, primary neuron, inflammation, DAMPs

INTRODUCTION

Therapeutic hypothermia (TH), also referred to as targeted
temperature management (TTM), is a clinically established
strategy for neuroprotection against ischemia/reperfusion injury.
Several clinical studies in newborns and infants suffering
from perinatal asphyxia and neonatal encephalopathy have
demonstrated the efficacy of cooling to 33–34◦C, resulting
in lower mortality rates and improved neurological outcomes
(Shankaran et al., 2012; Azzopardi et al., 2014). Additionally,
cooling to a targeted temperature of 32–36◦C has been
established as a standard of care in patients after out-of-
hospital cardiac arrest to reduce risk of death and improve
neurological outcome (Hypothermia after Cardiac Arrest Study,
2002; Callaway et al., 2015; Nolan et al., 2015). Accumulating
data also promotes hypothermia as a promising neuroprotective
strategy in rodent models of traumatic brain injury (Liu
et al., 2016b; Zhao et al., 2017) and stroke (Lee et al.,
2016; Liu et al., 2018), but have yet to be translated to
human trials. The recent Prophylactic Hypothermia Trial
to Lessen Traumatic Brain Injury–Randomized Clinical Trial
(POLAR-RCT) trial reported no benefits in neurological outcome
at 6 months after applying early moderate hypothermia after
severe traumatic brain injury (Cooper et al., 2018) and an acute
ischemic stroke trial (Intravascular Cooling in the Treatment
of Stroke) reported increased incidents of pneumonia and
mortality in the hypothermia vs. normothermia treated group
(Lyden et al., 2016).

Experimental investigations on the cytoprotective effects
of hypothermia implicate a complex multi-modal response to
protect from various ischemia/reperfusion injury mechanisms,

Abbreviations: AP1, activator protein 1; CIRBP, cold-inducible RNA-binding
protein; CNS, central nervous system; CsA, cyclosporin A; DAMP, damage-
associated molecular pattern; DIV, days in vitro; GAPDH, glyceraldehyde
3-phosphate dehydrogenase; HMGB1, high mobility group box 1; Hsp70, heat
shock protein 70; iNOS, inducible nitric oxide synthase; Iba1, ionized calcium-
binding adapter molecule 1; IL-6, interleukin-6; IL-1α, interleukin-1α; IL-1β,
interleukin-1β; LDH, lactate dehydrogenase; MAPK, mitogen-activated protein
kinase; MCP1, monocyte chemotactic protein 1; NFAT, nuclear factor of activated
T-cells; OGD, oxygen-glucose-deprivation; OGD/R, OGD and reperfusion; OHSC,
organotypic hippocampal slice culture; PI, propidium iodide; PLL, poly-L-
lysin; RAGE, receptor for advanced glycation endproducts; RT-qPCR, reverse
transcription quantitative polymerase chain reaction; TGF-β1, transforming
growth factor-β1; TH, therapeutic hypothermia; TLR, toll-like receptor; TNF-α,
tumor necrosis factor-α; TTM, targeted temperature management.

including calcium influx, oxidative stress, mitochondrial
dysfunction, apoptosis, excitotoxicity (neuronal death), and
inflammation (Krech et al., 2017; Kurisu and Yenari, 2018),
but the complete mechanism underlying hypothermia-induced
neuroprotection remains to be elucidated. Additionally, these
studies also did not investigate the effects of hypothermia on the
injury-induced sterile inflammatory response.

In contrast to inflammation induced by pathogens, a sterile
inflammatory response is induced by an acute condition, such
as ischemia/reperfusion injury, in the absence of pathogens.
Necrotic cells and other irritant particles are the stimuli
for sterile inflammation by activating NLRP3 inflammasomes
and inducing the release of interleukin-1 (IL-1), however,
the complete mechanism is still not fully understood (Rock
et al., 2010; Kono et al., 2014). Increasing evidence points
to a sterile inflammatory response within the first few days
after an ischemic insult that can exacerbate neuronal cell
death (Ceulemans et al., 2010; Jin et al., 2013). Necrotic cell
death due to an acute hypoxic-ischemic incident results in
the release of DAMPs into the extracellular matrices, where
they bind to pattern recognition receptors (e.g., TLRs) on local
immunocompetent glial cells and initiate a neuroinflammatory
response (Gulke et al., 2018).

CsA is an immunosuppressor used primarily in
transplantation medicine to suppress the activation of
T-lymphocytes (Borel et al., 1976). CsA binds to intracellular
cyclophilin A and inhibits calcineurin, which regulates the
immune response by modulating transcription factors activity
(Clipstone and Crabtree, 1992). CsA has also been intensively
discussed as a potential neuroprotectant as it inhibits the
formation of the mitochondrial permeability transition pore
by binding to cyclophilin D, thereby preventing mitochondrial
dysfunction and apoptosis (Crompton, 1999; Osman et al.,
2011; Fakharnia et al., 2017). Therefore, we investigated the
anti-neuroinflammatory and neuroprotective effect of clinically
established hypothermia in combination with CsA treatment
in a murine primary neurons and BV-2 microglia monoculture
model of simulated ischemia/reperfusion-induced injury.
Additionally, we developed a complex murine OHSC simulated
ischemia/reperfusion model where the tissue structures and
cell interactions are preserved, and which is well suited
for studying cell death and neuroprotective agents ex vivo
(Li et al., 2016).
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MATERIALS AND METHODS

Cell Culture
BV-2 microglial cells are immortalized murine microglial cells
(Blasi et al., 1990) with a phenotype functionally identical
to native primary microglia (Henn et al., 2009), and were
a kind gift from Prof. Ullrich (Zurich, Switzerland). BV-2
cells were cultured in high glucose Dulbecco’s Modified Eagle’s
Medium supplemented with 1 mM pyruvate (Biochrom), 10%
heat inactivated fetal bovine serum (Biochrom), and 100 U/ml
penicillin/100 µg/ml streptomycin (Merck Millipore) in a 5%
CO2 humidified atmosphere at 37◦C. Cells were seeded 24 h
prior to experimental start at a density of 500,000 cells in a
60 mm (21 cm2) dish (Sarstedt) pre-coated with 10 µg/ml PLL
(Sigma-Aldrich).

Animals and Preparation of Primary
Cultures
All animal experiments were approved and performed
in accordance with the guidelines of the Charité –
Universitätsmedizin Berlin, Germany, and animals were
housed in a conventional animal facility (FEM, Charité –
Universitätsmedizin Berlin, Germany).

Preparation of Primary Neurons
Primary neurons were prepared from embryonic day 15 (E15)
C57BL/6N mice with slight modifications to the protocol
previously described (Schmitt et al., 2006). Briefly, after removal
of the meninges, cerebral cortices and hippocampi were digested
in Hanks Balanced Salt Solution (Thermo Fisher Scientific),
containing 0.2% Trypsin (Biochrom) and 100 µg/ml DNase I
(Roche Diagnostics), and dissociated with a glass pipette. Cells
were initially plated on 200 µg/ml PLL (Sigma-Aldrich; in 0.1 M
borate buffer) pre-coated 35 mm dishes (9.2 cm2, TPP) in
Minimum Essential Medium (MEM, Gibco) supplemented with
10% heat-inactivated horse serum (Biochrom), 6 g/L glucose
(B. Braun), and 1 mg/ml Primocin (InvivoGen). The plating
medium was changed to serum free Neurobasal R© Medium
(Gibco) supplemented with 1x B-27TM (Gibco), 0.5 mM
L-glutamine, and 1 mg/ml Primocin. After 5 days in vitro (DIV5)
medium was changed to Neurobasal R© Medium supplemented
with 1x B-27TM minus antioxidants (Gibco). Primary neurons
were cultured at 37◦C in a humidified atmosphere with 5% CO2.

Preparation of Organotypic Hippocampal
Slice Cultures
Hippocampal slice cultures were prepared from C57BL/6N mice
at postnatal day 3–5, with slight modifications to the protocol
previously described (Schmitt et al., 2007). Briefly, mice were
sacrificed by decapitation and the hippocampi were quickly
removed and placed in ice cold MEM supplemented with 2.2 g/L
sodium bicarbonate, 2 mM L-glutamine, and 8 mM Tris base
(all Merck Millipore; pH 7.2). The hippocampi were transversely
cut into 350 µm thick slices using a tissue chopper (McIlwain)
and 6–8 slices were randomly distributed onto 30 mm membrane
inserts with 0.4 µM pore size (Merck Millipore). The inserts

were placed in a six-well culture dish with 1.3 ml culture
medium, containing MEM, 20% heat-inactivated horse serum,
30 mM hepes (Biochrom), 2 mM L-glutamine, 2.2 g/L sodium
bicarbonate, 1 µg/ml insulin (Insuman Rapid), 2.3 g/L glucose,
0.1 mg/ml Primocin, and 88 µg/ml vitamin C (Rotexmedica) at
pH 7.2. Slices were cultured at 37◦C in a humidified atmosphere
with 5% CO2 for 14 days and medium was changed 1 day after
preparation and every second to third day thereafter.

Oxygen-Glucose Deprivation and
Reperfusion (OGD/R)
Ischemia was simulated in vitro by incubation for 1 h in pre-
equilibrated glucose and serum free medium at 0.2% O2, 5% CO2,
and 94.8% N2 in a CO2 incubator (Binder). Control cells were
maintained in glucose containing medium at Normoxia for 1 h
(21% O2). OGD exposure in primary neurons (DIV7) and OHSC
(DIV14) was conducted in glucose-free Neurobasal R©-A Medium
and in BV-2 microglia in glucose-free DMEM. After OGD,
reperfusion was simulated by restoration of glucose, serum and
21% O2 for 24 h in all groups in appropriate complete medium.

Time-Temperature Protocol
An experimental time-temperature protocol is illustrated
in Figure 1. All cultures were exposed to OGD (0.2% O2) at
normothermic temperature (37◦C) for 1 h, followed by either
normothermic (37◦C) or moderate hypothermic (33.5◦C)
simulated reperfusion (21% O2) for 24 h. Control groups were
maintained under normoxic and normothermic conditions
(21% O2 and 37◦C) for the duration of the experiment.

Cyclosporin A Treatment
Cyclosporin A was purchased from Cayman (#12088). A 20 mM
stock solution dissolved in ethanol (EtOH) was aliquoted and
stored at −20◦C. Working CsA dilutions (1 or 10 µM) in
appropriate culture medium were prepared freshly and used to
pre-treat cultures at 37◦C and 21% O2 for 1 h prior to exposure to
OGD and maintained throughout the duration of the experiment.
Control cells were incubated with equal amount EtOH solvent.

FIGURE 1 | Experimental time-temperature protocol. Cyclosporin A (CsA)
was applied 1 h before the simulated ischemia phase by
oxygen-glucose-deprivation (OGD at 0.2% O2 in glucose-depleted medium)
and maintained after the reperfusion phase for the duration of experiment.
Exposure to OGD for 1 h was performed at 37◦C, followed by reperfusion
(OGD/R) for 24 h at 37◦C (normothermia) or 33.5◦C (hypothermia).
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Assessment of Lactate Dehydrogenase
(LDH) Release
Cell death was assessed by LDH released into the cultured
supernatant using a colorimetric Cytotoxicity Detection
Kit (Roche Diagnostics) according to the manufacturer’s
instructions. Briefly, cultured supernatants were separated
from cells by centrifugation and mixed with reagents (1:1)
in a 96-well plate. Extinction was measured at 490 nm minus
630 nm using a microtiter plate reader (Thermo Fisher Multiskan
Ascent). LDH release is expressed as a percentage of total LDH
content, as determined from lysed normoxic control cells using a
freeze/thaw method at−80◦C.

Assessment of Glutamate Release
Glutamate release into the cultured supernatant was measured
using the Glutamat-GloTM Assay (Promega) according to the
manufacturer’s instruction. Briefly, cell free supernatant was
incubated with glutamate detection reagent (1:1) in a 96-well
plate and luminescence signal was measured using a microplate
reader (Tecan Infinite R© M200 Pro). Glutamate concentration was
extrapolated from a concentration curve and expressed in µM.

Assessment of Propidium Iodide (PI)
Staining in the OHSCs
Cell death in the OHSCs was assessed by PI staining. OHSCs were
incubated with 4 µg/ml solution of PI (Sigma-Aldrich, Germany)
for the last 30 min of the reperfusion phase. After staining,
samples were washed twice with PBS and documented using a
Keyence BZ-9000 inverted microscope.

Extracellular Proteins Isolation and
Western Blot Analysis
Supernatants were collected after 1 h of OGD or Normoxia
and extracellular proteins were isolated by trichloroacetic acid
precipitation. Briefly, supernatants were incubated with 20%
trichloroacetic acid (VWR) for 30 min on ice, and then
centrifuged at 16,000 × g for 20 min. The precipitated proteins
were washed with ice cold aceton and dissolved in RIPA buffer.
Samples were incubated with Pierce Lane Marker Reducing
Sample Buffer (Thermo Scientific) at 95◦C for 5 min and
subjected to a 15% SDS polyacryl gel electrophoresis. Proteins
were transferred onto a polyvinylidene fluoride membrane (PALL
Life Sciences) overnight at 30 V using a tank blot procedure
(Bio-Rad Laboratories). The membrane was blocked for 1 h
at room temperature using 5% bovine albumin fraction V
(Carl Roth) for Hsp70 and HMGB1 or 5% dry milk (Applied
Biosystems) for CIRBP in TBS + 0.1% Tween 20. Primary
antibodies against Hsp70 (1:1000, Cell Signaling Technology,
Cat#4872) HMGB1 (1:1000, Chondrex, Cat#7028), and CIRBP
(1:1000, Abclonal, Cat#A6080) were diluted in blocking solution
and blots were incubated overnight at 4◦C. HRP-conjugated
secondary antibodies (anti-rabbit IgG, 1:20,000 Dianova) were
incubated on the blots for 1 h at room temperature. We used Dura
Super Signal West (Thermo Fisher Scientific) to visualize protein
expression and ChemiDocTM Imaging Systems and Image LabTM

Software (Bio-Rad) for densitometry analysis.

RNA Isolation and Semi-Quantitative
Real-Time qPCR
Total RNA from BV-2 microglia and primary neurons was
isolated by acidic phenol/chloroform extraction using RNA
PureTM (Peqlab) and RNA from OHSC was isolated by using
the GenUPTM Total RNA Kit (Biotechrabbit) followed by
genomic DNA digestion using Turbo DNA-freeTM Kit (Ambion)
according to manufacturers’ instructions, respectively. RNA
concentration and purity was determined by spectrophotometric
measurements at 260 nm and 280 nm using a Nanodrop
2000 (Nanodrop) and agarose gel electrophoresis. cDNA was
transcribed from 1 µg total RNA using High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems) in a
thermal cycler (PTC200, MJ Research). Expression of target
genes and the endogenous control, GAPDH, was assessed
by real-time qPCR using the TaqMan R© Gene Expression
Assays (summarized in Table 1) and StepOnePlusTM Real-Time
PCR System (Applied Biosystems) according to manufacturer’s
recommendations. Reactions with no templates and RNA control
were included as negative controls. Relative quantification of
gene expression was normalized to the housekeeping gene
GAPDH, using the 2−11ct method, and illustrated as fold change
(Livak and Schmittgen, 2001).

Statistical Analysis
Experimental data from at least four independent experiments
were analyzed using GraphPad Prism 7 (GraphPad Software,
La Jolla, CA, United States). Values are presented as box-and-
whiskers plot (box from 25th to 75th percentile and whisker
min to max). Comparisons between experimental groups were
made using one-way ANOVA followed by the Tukey post-
test for multiple comparisons and p < 0.05 was considered
to be significant.

RESULTS

Cyclosporin A is an immunosuppressant medication that has
been reported to exhibit neuroprotective properties in multiple
experimental models (Trumbeckaite et al., 2013). Therefore, we
investigated the potential neuroprotective effect of pre-treatment
with CsA (1 and 10 µM) in a simulated ischemia/reperfusion-
induced injury model (1 h OGD followed by 24 h restoration

TABLE 1 | TaqMan R© Gene Expression Assays.

Gene Assay ID

GAPDH 99999915_g1

Iba1 00479862_g1

IL-1β 00434228_m1

IL-1α 00439620_m1

IL-6 00446190_m1

iNos 00440502_m1

MCP1 (Ccl2) 00441242_m1

TGF-β1 01178820_m1

TNF-α 00443260_g1
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of oxygen, glucose, and serum) in either a monoculture of
murine primary neurons (DIV7) prepared from E15 mice, BV-
2 microglia, or in an OHSC (DIV14) prepared from early
postnatal (P3–5) mice that retains the cytoarchitecture and
synaptic circuits of the hippocampus. Additionally, moderate
hypothermia (33.5◦C) was applied post-OGD to both, the
in vitro and ex vivo models, to investigate any potential additive
neuroprotective effects of the combined treatment.

Cytotoxicity in Primary Neuron and
Microglia Monocultures
We observed that initial exposure to OGD for 1 h did not
significantly induce necrotic cell death compared to normoxic
control in the primary neuronal and BV-2 microglial cell cultures,
as measured by LDH release (Figures 2A,B). However, treatment
with 10 µM CsA under both normoxic and OGD conditions
resulted in measurable toxicity in the primary neurons, as
observed by significantly increased LDH release compared to
Normoxia control (2.8-fold and 4.1-fold increase, respectively),
while 1 µM CsA was not toxic (Figure 2A). Furthermore, BV-2
microglia were resistant to CsA-induced toxicity, as no significant
increases in LDH releases were measurable after exposure to 1 h
OGD and treatment with 1 and 10 µM CsA (Figure 2B).

Exposure to 1 h OGD followed by 24 h reperfusion
(OGD/R) resulted in a significantly higher LDH release (4.4-fold
increase relative to Normoxia/R control) in the primary neurons
(Figure 2C). Treatment with 1 and 10 µM CsA had no additive

cytotoxic effect and necrotic cell death was not attenuated by
cooling. In contrast, BV-2 microglia exposed to OGD/R showed
no observable necrotic cell death, but treatment with CsA
was observed to be toxic in a dose dependent manner under
both Normoxia/R and OGD/R conditions, as measurable by
an incremental increase in LDH release that was significant
with 10 µM CsA (Normoxia/R: 4.0-fold; OGD/R: 3.8-fold)
(Figure 2D). Treatment with hypothermia resulted in only slight
decreases in LDH releases that did not reach significancy under
all test conditions.

Interestingly, longer exposure to CsA [1 h (Figure 2B) vs.
1+24 h (Figure 2D)] induced higher LDH release in BV-2
microglia, which was not observable in the neuronal cultures.
BV-2 exposed to 1 µM CsA under normoxic conditions resulted
in an increase of LDH release from 1.6-fold to 3.0-fold, and
10 µM CsA resulted in an increase from 1.9-fold to 4.0-fold,
respectively (Figures 2B,D).

Cytotoxicity in Organotypic Hippocampal
Slice Cultures
Organotypic hippocampal slice culture are a suitable model
for studying cell death and neuroprotective agents ex vivo,
as the complex cellular structures and cell interactions are
preserved. Therefore, we further investigated the cytotoxic
effects of exposure to 1 h OGD and treatment with 10 µM
CsA in OHSCs prepared from early postnatal (P3–5) mice
and cultivated for 14 days (DIV14). Necrotic cell death was

FIGURE 2 | Lactate dehydrogenase releases were measured from primary neurons (A) and BV-2 microglia cells (B) in the experimental control group exposed to 1 h
normoxia (21% O2 in glucose-containing medium) and simulated ischemia group exposed to 1 h oxygen-glucose deprivation (OGD at 0.2% O2 in glucose-depleted
medium) at 37◦C, and also after reperfusion from primary neurons (C) and BV-2 microglia cells (D) exposed to 1 h normoxia + 24 h reperfusion with complete
medium (Normoxia/R) or 1 h OGD + 24 h reperfusion (OGD/R) at either 37 or 33.5◦C. All CsA groups were pre-treated 1 h before experimental start with either 1 or
10 µM CsA at 37◦C. Data from 4 to 6 individual experiments are presented as box-and-whiskers plot (box from 25th to 75th percentile and whisker min to max).
Statistical analysis were conducted using one-way ANOVA followed by the Tukey post hoc test; ∗∗p < 0.01, ∗∗∗p < 0.001 compared to Normoxia at 37◦C, and
#p < 0.05 for group comparison were considered significant.
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FIGURE 3 | (A) LDH and (B) glutamate releases from OHSCs were assessed from the cultured supernatants of the experimental control group exposed to 1 h
normoxia (21% O2 in glucose-containing medium) and simulated ischemia group exposed to 1 h oxygen-glucose deprivation (OGD at 0.2% O2 in glucose-depleted
medium) at 37◦C. All CsA containing groups were pre-treated 1 h before experimental start with 10 µM CsA at 37◦C. Data from 4 to 5 individual experiments are
presented as box-and-whiskers plot (box from 25th to 75th percentile and whisker min to max). Statistical analysis were conducted using one-way ANOVA followed
by the Tukey post hoc test; ∗∗p < 0.01, ∗∗∗p < 0.001 compared to Normoxia at 37◦C, and #p < 0.05 for group comparison were considered significant.

assessed by the release of LDH and glutamate, a neuronal
excitotoxicity marker. We did not observe a significant increase
in LDH release after 1 h exposure to OGD or treatment
with 10 µM CsA under normoxic condition alone. However,
treatment with 10 µM CsA under OGD condition resulted
in an increase in LDH release that was significantly higher
than for both treatments with normoxic CsA and OGD
alone (Figure 3A). Interestingly, we observed significantly
higher glutamate release in the OHSC exposed to 1 h OGD
compared to the normoxic control (3.9 vs. 0.8 µM, respectively)
(Figure 3B). Significantly higher release of glutamate was
also observed in OHSC treated with 10 µM CsA under
OGD condition compared to normoxic control (6.42 vs.
0.83 µM, respectively), confirming our LDH assessment
indicating necrosis in the OHSCs.

Due to high serum concentration in the reperfusion medium,
LDH and glutamate levels were not detectable after OGD/R-
induced injury. Therefore, we performed PI staining to assess
necrotic cell death in the OHSC after reperfusion (Figure 4).
Exposure of the OHSCs to OGD/R at 37◦C resulted in a marked
increase in PI positive cells, as compared to Normoxia/R at 37◦C.
OHSCs exposed to OGD/R at 33.5◦C resulted in less observable
PI positive cells. OHSCs exposed to Normoxia/R +10 µM
CsA at 37◦C also showed a marginal increased in PI positive
cells that dramatically increased when CsA was applied in
combination with OGD/R at 37◦C. No observable differences in
PI positive cells were seen between OGD/R and OGD/R+CsA
slices incubated at 37◦C, nor with OGD/R+CsA slices
incubated at 33.5◦C.

Release of DAMPs
Soluble inflammatory mediators are released from the necrotic
brain tissue. Therefore, we isolated extracellular proteins
from cell-cultured supernatants to investigate the release of
inflammation inducing DAMPs from primary neurons and
BV-2 microglia exposed to 1 h OGD. Correlating with the
LDH measurements, western blot analysis showed significantly
higher releases of HMGB1 and HSP70 in primary neurons

treated with 10 µM CsA under OGD conditions, in comparison
to normoxic control, as well as to all other OGD treated
groups (Figures 5A,B). Additionally, we observed a trend
toward a higher release of CIRBP in neurons treated with
10 µM CsA under OGD conditions (Figure 5C). Also
in correlation to LDH release, no significant increases in
extracellular HMGB1 and HSP70 were observed in non-necrotic
BV-2 microglia exposed to OGD and treated with 10 µM CsA
(Figures 5D,E). Interestingly, we observed elevated but non-
significant DAMPs releases in all OGD damaged BV-2 cells in
comparison to Normoxia control, which was not seen in the
primary neurons. Extracellular CIRBP was not detectable in
the BV-2 microglia cultured supernatant. Furthermore, none
of the investigated DAMPs were detectable in the cultured
supernatant of the OHSCs.

Cytokine and Chemokine Expression in
BV-2 Microglia, Primary Neurons, and
OHSC
Based on our observation of increased DAMPs release from
necrotic primary neurons, we next investigated the inflammatory
response in the immune competent BV-2 microglia, in primary
neurons, and OHSC after exposure to OGD/R and treatment
with CsA where necrosis was detectable in neurons and OHSC.
Additionally, we also investigated the effect of cooling (33.5◦C)
applied during the reperfusion phase on inflammatory cytokines
and chemokines gene expressions.

Cytokine Expressions in BV-2 Microglia
and Primary Neurons
We observed a significant increase in IL-6 expression in
the BV-2 microglia treated with 10 µM CsA under both
Normoxia/R and OGD/R conditions, which correlated with the
observed necrotic cell death (Figure 6A). Cooling significantly
reduced IL-6 expression in CsA treated Normoxia/R control
and in weaker extend in the OGD/R injury group. Similar
increased IL-6 expression was also observed in the primary
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FIGURE 4 | Propidium iodide (PI) staining; OHSCs in the experimental control group (Normoxia/R) were exposed to 1 h normoxia (21% O2 in glucose-containing
medium) + 24 h reperfusion (21% O2 in glucose-containing medium) and simulated ischemia groups were exposed to 1 h oxygen-glucose deprivation (OGD at
0.2% O2 in glucose-depleted medium) + 24 h reperfusion (OGD/R at 21% O2 in glucose-containing medium) at either 37 or 33.5◦C. All cyclosporin A (CsA)
containing groups were pre-treated 1 h before experimental start with 10 µM CsA at 37◦C and maintained throughout the duration of the experiment. Images are
shown at 40× magnification. CA, Cornu Ammonis; DG, Dentate Gyrus.

neurons treated with 10 µM CsA (Figure 6I). Interestingly,
TNF-α expression was significantly induced by cooling under
both Normoxia/R and OGD/R conditions in BV-2 microglia,
which was attenuated by treatment with CsA (Figure 6B).
Additionally, cooling and CsA alone and in combination
significantly inhibited IL-1β expression under both Normoxia/R
and OGD/R conditions (Figure 6C), but had no significant effect
on IL-1α expression in BV-2 microglia (Figure 6D). TNF-α,
IL-1β, and IL-1α expressions were under detection limit in the
primary neurons.

Cytokine Expressions in the OHSC Model
We next investigated if exposure to OGD/R injury and treatment
with CsA had a similar cytokine expression regulation in
the OHSC model as observed in the BV-2 microglia. In
general, inflammatory cytokines expressions in the OHSC model
did not reflect what we observed in the BV-2 microglia
monoculture. Interestingly, the combined treatment of 10 µM
CsA, OGD/R, and cooling resulted in the greatest general
increase in cytokines expressions. Under these combined
conditions, IL-6 expression was significantly higher than
Normoxia/R control and OGD/R+CsA, indicating a profound
effect of cooling on IL-6 expression (Figure 6E). TNF-α
expression was significantly higher than Normoxia/R control
in the OGD/R+CsA treated group with no observable effect
of cooling (Figure 6F). IL-1β expression was not suppressed
as observed in the BV-2 microglia (Figure 6G), and IL-1α

expression appears to be more induced by cooling under
both OGD/R and OGD/R+CsA treatments compared to 37◦C
Normoxia/R group (Figure 6H).

Chemokine and Growth Factor
Expressions in BV-2 Microglia and
Primary Neurons
Furthermore, we investigated the expression of targets regulating
migration and activation of microglia and monocytes. In BV-2
microglia we observed a trend toward hypothermia-induced
MCP1 expression, whereas treatment with CsA rather reduced
MCP1 expression in comparison to Normoxia/R control
(Figure 7A). In contrast to BV-2 microglia, we found an increased
MCP1 expression in primary neurons treated with 10 µM
CsA, which was even higher at 33.5◦C in the OGD/R injured
group (Figure 7I).

Activation of microglia is associated with increased Iba1
expression (Hovens et al., 2014). Similar to MCP1, we found
Iba1 expression significantly induced in the cooled OGD/R
injured group, while treatment with CsA significantly decreased
Iba1 expression (Figure 7B). The expression of growth factor
TGF-β1 was unchanged in all BV-2 microglia groups (Figure 7C).
Additionally, we found iNOS expression to be significantly
suppressed by cooling under Normoxia/R, and to a less extend
by OGD/R at 33.5◦C and by CsA treatment (Figure 7D). Iba1,
TGF-β1, and iNOS expressions were under detection limit in the
primary neurons.

Chemokine and Growth Factor
Expressions in OHSC
In the OHSC model we observed a strong increase in chemokine
MCP1 expression in OGD/R and OGD/R+CsA compared
to Normoxia/R control (Figure 7E). A similar response
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FIGURE 5 | Western Blot analysis was used to assess extracellular DAMPs, (A,D) heat shock protein 70 (Hsp70), (B,E) high mobility group box 1 (HMGB1),
and (C) cold-inducible RNA-binding protein (CIRBP) released into the cultured supernatant from primary neurons and BV-2 microglial cells. The experimental control
group was exposed to 1 h normoxia (21% O2 in glucose-containing medium) and simulated ischemia group was exposed to 1 h oxygen-glucose deprivation (OGD
at 0.2% O2 in glucose-depleted medium) at 37◦C. Quantitative densitometric analysis from 5 to 6 individual experiments is presented as box-and-whiskers plot (box
from 25th to 75th percentile and whisker min to max), along with the representative immunoblots. Statistical analysis were conducted using one-way ANOVA
followed by the Tukey post hoc test; ∗∗p < 0.01, ∗∗∗p < 0.001 compared to normoxia at 37◦C, and #p < 0.05 for group comparison were considered significant.

was also found in primary neurons (Figure 7I). Iba1 gene
expression was induced in OGD/R injury alone and in
combination with CsA (Figure 7F). Comparable to Iba1,
the expression of growth factor TGF-β1 was increasingly
expressed in OGD/R injured slices, while cooling and CsA
treatment had no additional effect (Figure 7G). Interestingly,
iNOS expression was significantly decreased by OGD/R-
induced injury and increased to Normoxia/R level by
OGD/R+CsA (Figure 7H).

DISCUSSION
Neuroinflammation plays a central role in the pathogenesis of
ischemic brain injury (Bhalala et al., 2014; Hagberg et al., 2015).

Therefore, we evaluated the anti-inflammatory and
neuroprotective effect of clinically discussed hypothermia
in combination with CsA immunosuppressant treatment
on OGD/R injured brain cells. In our study treatment
with hypothermia and CsA caused an alteration in the
inflammatory pathways. While pro-inflammatory IL-1β and
iNOS expressions are effectually suppressed in BV-2 microglia
and OHSC, expression of TNF-α, IL-1α, MCP1, Iba1, and
TGF-β1 are increased in OGD/R injured OHSC. We found
that primary neurons undergo cell death by OGD/R-induced
injury and by CsA treatment, suggesting a complex activation
of inflammatory pathways through the involvement of a
secondary damage mechanism in complex slice culture. Our
findings demonstrate that CsA, a highly specific inhibitor
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FIGURE 6 | RT-qPCR was used to assess gene expressions in BV-2 microglia, OHSCs, and primary neurons for inflammatory (A,E,I) IL-6, (B,F) TNF-α, (C,G) IL-1β,
and (D,H) IL-1α after exposure to Normoxia/R (1 h normoxia + 24 h reperfusion at 21% O2 in glucose-containing medium) or OGD/R (1 h OGD + 24 h reperfusion at
0.2% O2 in glucose-depleted medium) at either 37 or 33.5◦C. All CsA containing groups were pre-treated with 10 µM CsA at 37◦C. Data from 4 to 5 individual
experiments are presented as box-and-whiskers plot (box from 25th to 75th percentile and whisker min to max). Statistical analysis were conducted using one-way
ANOVA followed by the Tukey post hoc test; ∗p < 0.01, ∗∗p < 0.01, ∗∗∗p < 0.001 compared to Normoxia/R at 37◦C, and #p < 0.05 for group comparison were
considered significant.

of calcineurin, affects the survival of primary neurons and
modulate the inflammatory response in microglial cultures, as
well as in the OHSC.

Cytotoxicity-Induced DAMPs Release
Primary neurons pre-treated with 10 µM CsA followed by 1 h
exposure to OGD undergo necrotic cell death, as indicated
by increased LDH release. Additionally, increased amounts of
DAMPs, namely Hsp70, HMGB1, and CIRBP were detected
in the cultured supernatants. Hsp70 and HMGB1 are classical
DAMPs and have been extensively investigated (Asea et al., 2000;
Muhammad et al., 2008), whereas the inflammation-inducing
DAMP property of extracellular CIRBP is a recent observation
that has been shown to perpetuate the inflammatory response
in hemorrhagic shock and sepsis patients (Qiang et al., 2013).
Although both, intracellular Hsp70 and CIRBP, have been shown

to have desirable anti-apoptotic properties, their presence in the
extracellular matrix has been shown to initiate inflammatory
responses (Liao et al., 2017; Kim et al., 2018). Their affinity to bind
to surface receptors, including RAGE, toll-like receptor 2 (TLR2),
and 4 (TLR4) on adjacent cells leads to the activation of the
nuclear factor “kappa-light-chain-enhancer” of activated B-cells
(NF-κB) pathway and transcription of inflammatory cytokines,
such as TNF-α, IL-1β, and IL-6 (Johnson and Fleshner, 2006;
Andersson and Tracey, 2011; Zhou et al., 2014). In comparison to
neurons, BV-2 microglia were more vulnerable to OGD-induced
release of HMGB1 and Hsp70, which did not reach significance,
but were less vulnerable to OGD+CsA-induced cytotoxicity,
which resulted in no additional DAMPs release.

Organotypic hippocampal slice culture exposed to 1 h
of OGD had a significant increased release of glutamate,
but no increase in LDH release was measureable. Under
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FIGURE 7 | RT-qPCR was used to assess gene expressions in the BV-2 microglia, OHSCs, and primary neurons for (A,E,I) MCP1, (B,F) Iba1, (C,G) TGF-β1,
and (D,H) iNOS after exposure to Normoxia/R (1 h normoxia + 24 h reperfusion at 21% O2 in glucose-containing medium) or OGD/R (1 h OGD + 24 h reperfusion at
0.2% O2 in glucose-depleted medium) at either 37 or 33.5◦C. All CsA containing groups were pre-treated with 10 µM CsA at 37◦C. Data from 4 to 5 individual
experiments are presented as box-and-whiskers plot (box from 25th to 75th percentile and whisker min to max). Statistical analysis were conducted using one-way
ANOVA followed by the Tukey post hoc test; ∗p < 0.01, ∗∗p < 0.01, ∗∗∗p < 0.001 compared to Normoxia/R at 37◦C, and #p < 0.05 for group comparison were
considered significant.

non-pathological conditions glutamate in the extracellular
space is cleared by astrocytes via glutamate transporters, but
under ischemic conditions the uptake is reversed due to ion
gradients changes, resulting in the release of glutamate to
the extracellular space. High concentration of glutamate can
cause extensive neuronal injury and subsequently trigger
cell death (Rossi et al., 2000; Nishizawa, 2001; Zhang et al.,
2019). The addition of CsA during the OGD phase resulted
in an increase in LDH release and an additional increase
of glutamate in the cultured supernatant, presumably
by necrotic cells, as we also observed CsA-induced cell
death in both microglial and neuronal mono-cultures. Our
findings are in line with an in vitro study of primary mixed
neurons-astrocytes culture showing CsA-induced cytotoxicity
only in the neurons, while the astrocytes were unharmed
(Kaminska et al., 2001).

Reperfusion-induced injury occurs when restoration of energy
and oxygen after an OGD phase is achieved, causing alterations
in multiple pathways affecting inflammation, redox-system, and
many other signaling pathways (Lopez-Neblina et al., 2005;
Mizuma and Yenari, 2017). In line with previous findings
describing a higher resistance of microglia than neurons to
OGD/R-induced injury, we also observed a marked increase
in necrosis in primary neurons but absent in BV-2 microglia
after exposure to OGD/R (Goldberg and Choi, 1993; Lim et al.,
2006; Li et al., 2007). Surprisingly, neither treatment with
moderate hypothermia for 24 h, nor CsA protected the neurons
from OGD/R-induced cell death. Conversely, treatment with
CsA resulted in BV-2 microglia cell death in a concentration
dependent manner, which could be partially attenuated by
cooling. In the ex vivo OHSCs, we observed a dramatic
increase in PI positive cells after exposure to OGD/R at 37◦C,
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which was decreased by cooling to 33.5◦C. Similar exposure
to OGD/R at 37◦C also resulted in significant cell death in
the primary neuronal culture. However, treatment with CsA
during OGD/R had no observable protective effect in the slice
cultures independent of temperature, as similar intensities in
PI staining were also observed in the slices exposed to OGD/R
alone. This is in contrast to Liu et al. (2016a), who reported
a protective effect of CsA on the mitochondria which was
augmented by hypothermia in an in vivo rat cardiac arrest
model. Unfortunately, quantification of DAMPs release in the
reperfusion phase was not possible by western blot analysis due
to the high serum concentration in the cultured medium, and
warrants further investigation.

Hypothermia
To date, it is widely accepted that multiple pathways and
mechanisms are involved in the protective effect of hypothermia
(Kurisu and Yenari, 2018). Preclinical studies in vitro and
in vivo suggest that anti-inflammatory mechanisms induced by
hypothermia play an important role (Lee et al., 2016). Exposure
of BV-2 microglia to hypothermia for 24 h had variable effects
on known pro-inflammatory mediators, resulting in increased
TNF-α and MCP1 expressions and decreased IL-1β and iNOS
expressions under both Normoxia/R and OGD/R conditions.
While increased iNOS and IL-1β levels are generally associated
with neurotoxic effects, TNF-α also exhibits neuroprotective
properties (Kawabori and Yenari, 2015). Lambertsen et al.
(2009) showed in an in vivo cerebral ischemia model that
microglia derived TNF-α enhances neuronal survival. Other
ex vivo OHSC studies showed that deep hypothermia induces
TNF-α secretion, resulting in neurite outgrowths (Schmitt et al.,
2010). Nevertheless, neurotoxic effects by high levels of TNF-α
in the ischemic brain injury are also well documented (Sriram
and O’Callaghan, 2007). Also the expression of the chemokines
MCP1 leads to recruitment and migration of leukocyte from the
periphery to the site of injury. MCP1 is upregulated in models
of cerebral ischemia and inhibition of MCP1 can decrease brain
injury (Chen et al., 2003).

When the same OGD/R injury protocol was applied to the
OHSC model ex vivo, neither significant induction of TNF-α
and MCP1 expressions, nor a significant inhibition of IL-1β by
cooling was observed. The heterogeneity of cells in the OHSC,
with 5–15% of microglial cells in the hippocampus (Lawson et al.,
1990) may explain the variability.

Cyclosporin A
Cyclosporin A is a cyclophilin binding substance whose
primary immunosuppressive function is to inhibit calcineurin,
a Ca2+/calmodulin dependent protein phosphatase. Calcineurin
is ubiquitously expressed in most tissues, but at particularly
high concentrations in the brain. In glia cells calcineurin
plays a global role in neuroinflammation, as it interacts
and modulates multiple transcription factors, including NFAT,
NF-κB, and AP1, which are associated with cytokines expression
(Furman and Norris, 2014).

In the BV-2 microglia, cooling suppressed IL-1β and iNOS
expressions, but also induced TNF-α and MCP1 expressions,

which was attenuated by CsA treatment. Increased pro-
inflammatory iNOS expression has been observed to result in the
production of high amounts of NO, which attributes to brain
cytotoxicity and promotes ischemic cell death (Amantea et al.,
2009; Terpolilli et al., 2012). Zawadzka et al. (2012) observed
that CsA inhibits iNOS expression in an in vitro model of
lipopolysaccharide stimulated microglia, by interfering with the
MAPK and NF-κB signaling pathways. Our findings indicate that
NF-κB driven cytokines expressions are also inhibited by CsA
treatment. This is not surprising as calcineurin has been shown
to be indirectly involved in the activation of NF-κB by degrading
IκBα, as well as NFATs regulated cytokine gene expressions by
coupling with AP1 or NF-κB, amongst others (Macian et al.,
2001; Sama et al., 2008; Palkowitsch et al., 2011). Multiple
isoforms of NFAT that are calcineurin activated transcription
factors have been shown to be expressed by microglia and can
be specifically inhibited by the NFAT inhibitor VIVIT, resulting
in decreased secretions of TNF-α and MCP1 (Nagamoto-Combs
and Combs, 2010; Rojanathammanee et al., 2015). Additionally,
microglia activation marker, Iba1, expression was also inhibited
by CsA. In contrast to reduced MCP1 expression observed in
the BV-2 microglia, CsA induces expression of MCP1 in the
primary neuronal cultures under both Normoxia/R and OGD/R
conditions. This is not surprising, as neurons have been observed
to be capable of expressing chemokines, including MCP1, during
the early phase after ischemia in an in vivo model of focal cerebral
ischemia (Che et al., 2001).

Interestingly, treatment with CsA upregulated IL-6
expression, but had no measurable effect on TGF-β1 and
IL-1α expressions in the BV-2 microglia. IL-6 was also the only
cytokine we observed to be expressed under OGD/R+CsA
treatment in primary neurons. IL-6 can be secreted by both
immune (microglia) and non-immune (neurons) cells and
function as a neurotrophic factor and inhibitor of neuronal
death (Loddick et al., 1998). At the same time IL-6 is involved
in the pathological progression of several inflammatory diseases
(Rothaug et al., 2016).

Altogether, CsA exhibits an immunosuppressive effect in a
BV-2 microglia model, but it also had a toxic effect at the same
concentration in a murine dissociated neuronal culture. The
response to OGD/R-induced injury in combination with CsA and
hypothermia treatment was also investigated in a more complex
ex vivo OHSC model, which shows a different pattern of response
to simulated ischemia than the individual primary neuronal
cultures and BV-2 microglia. We did not observe significant
increased induction of the inflammatory pathways investigated
in the OGD/R-induced injured slices, but surprisingly increases
in TNF-α, IL-1α, IL-6, and MCP1 expressions were observed
when 10 µM CsA was additionally introduced, which was not
observed in the Normoxia/R control treated with CsA nor in
the BV-2 microglia under OGD/R+CsA conditions. As astrocytes
are the most abundant glial cell type in the brain capable
of participating in the immune response (Becerra-Calixto and
Cardona-Gomez, 2017), the observed increase in inflammatory
response in our ex vivo OHSC model could be considered
to be astrocytes driven. Increased MCP1 expression has been
observed in hippocampal astrocytes after in vivo transient global
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ischemia (Sakurai-Yamashita et al., 2006), which can trigger
the adaptive immunity response in the inflamed CNS (Farina
et al., 2007). Additionally, in vitro studies with primary astrocytes
showed longer exposure to OGD (24 h) resulted in increased
TNF-α and IL-1β secretions, which was attenuated by CsA
treatment (Gabryel et al., 2004). Moreover, in vivo studies of
transient middle cerebral artery occlusion in a rat model found
decreased TNF-α secretion after treatment with CsA containing
nanoliposomes compared to non-treated animals (Partoazar
et al., 2017). This is in contrast to our findings in the OHSC
treated with OGD/R+CsA, indicating that the putative protective
effect of CsA may be dominated by or overlaid with other
pro-inflammatory mediators.

Other studies showed DAMPs released from necrotic neurons
in hippocampal slices or treated with exogenous HMGB1
lead to induced expression of inflammatory cytokines TNF-α
and IL-1β via TLR4 activation in microglia cells (Zou and
Crews, 2014). As we found LDH and glutamate secretions
are increased in OGD+CsA-induced damaged OHSC, it is
likely that various DAMPs are released from necrotic neurons,
thereby activating neighboring microglia and astrocytes to
drive the secondary inflammatory process after OGD/R-
induced injury. While CsA mediated suppression of microglia
activation, it is not sufficient to reduce the overall inflammatory
response in the complex OHSC. To our knowledge, the effect
of CsA on the inflammatory response in OGD/R-induced
OHSC injury has not been investigated, as most research
studies have investigated the amelioration of cell death by
CsA treatment, and protection of the mitochondria from
OGD/R-induced opening of the mitochondrial permeability
transition pores (Kawakami, 2013; Trumbeckaite et al., 2013;
Yu et al., 2013).

An inflammatory response in the brain can be both beneficial
and harmful, depending on the type and amount of cytokines
expressed. An increase in Iba1 expression is associated with
microglia activation (Hovens et al., 2014). TGF-β1 is mainly
expressed by these activated microglial cells and is associated
with a reduction of neuronal cell death and decreased infarct
size after cerebral ischemia (Meyers and Kessler, 2017). We
observed both Iba1 and TGF-β1 expressions to be increased
in OGD/R injured slices, whereas other cytokines were not
significantly altered. Our findings indicate a beneficial activation
of inflammatory processes after exposure to OGD/R in the OHSC
model, but it becomes highly neuroinflammatory when CsA is
additionally applied.

We acknowledge several limitations of our study. First, we
only assessed cytokine and chemokine mRNA expressions and
not the secreted form. Therefore, any conclusion concerning
inflammation should be approached with caution, as intracellular
and secreted levels may differ. Second, quantifiable necrosis
in the hippocampal slice cultures as well as any subsequent
DAMPs release after reperfusion was not possible due to
high serum concentrations in the cultured media. Therefore,
further studies are needed to investigate the impact of
DAMPs associated sterile inflammation in CNS cells. Finally,
our protocol focused on ischemia sensitive neurons and
immunocompetent microglia. As astrocytes constitute a large

population of cells in the brain and have an important
role in neuroprotection, further studies investigating the
effects of CsA and cooling on OGD/R-induced injury in
astrocytes are warranted.

CONCLUSION

We found CsA treatment to be effective in suppressing
inflammation in a pure microglia culture after OGD/R-induced
injury, but causes necrotic cell death in primary neurons.
In the complex ex vivo slice culture CsA treatment lead to
an exacerbated immune response, which was not diminished
by hypothermia but instead potentiated an additive effect
leading to an increase in neuroinflammation. Based on our
findings, the combination of cooling and CsA treatment can
hereby not be considered as neuroprotective. In contrast to
other studies describing the neuroprotective effects of CsA and
hypothermia, we observed the induction of neuroinflammation
to the combined treatment in a complex OHSC model.
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