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The successful introduction of innovative treatment strategies into clinical practise
strongly depends on the availability of effective experimental models and their reliable
pre-clinical assessment. Considering pre-clinical research for peripheral nerve repair and
reconstruction, the far most used nerve regeneration model in the last decades is the
sciatic nerve injury and repair model. More recently, the use of the median nerve injury
and repair model has gained increasing attention due to some significant advantages
it provides compared to sciatic nerve injury. Outstanding advantages are the availability
of reliable behavioural tests for assessing posttraumatic voluntary motor recovery and a
much lower impact on the animal wellbeing. In this article, the potential application of
the median nerve injury and repair model in pre-clinical research is reviewed. In addition,
we provide a synthetic overview of a variety of methods that can be applied in this
model for nerve regeneration assessment. This article is aimed at helping researchers
in adequately adopting this in vivo model for pre-clinical evaluation of peripheral nerve
reconstruction as well as for interpreting the results in a translational perspective.

Keywords: median nerve, injury, animal experimental model, repair, regeneration, translational research

INTRODUCTION

Peripheral nerve injuries are commonly caused by motor vehicle, domestic, work or sport accidents
or during surgeries (iatrogenic nerve injuries) (Jones et al., 2016). Nerve injuries can lead to
motor and sensory deficits that may result in disabilities permanently compromising the patients’
quality of life.

The general ability of peripheral nerves to regenerate has been recognised more than a century
ago, but until today functional recovery outcome after severe nerve injury and reconstructive
surgery is often still poor in many patients. Nowadays, the “gold standard” reconstructive technique
for bridging a nerve gap is autologous nerve grafting. This technique, however, is accompanied
by important drawbacks such as the donor site morbidity, the need of additional surgery and
the limited availability of graft material for extended repair (Konofaos and Ver Halen, 2013;
Faroni et al., 2015).
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Over the past decades, substantial effort has been made to
identify new strategies to improve peripheral nerve regeneration
after grafting and to substitute the autologous nerve graft.
Advancements in biomedical methods, the tissue-engineered
technology, gene therapy approaches, nanotechnology, biology,
and microsurgical skills have opened new research fields in
the nerve reconstruction area. Indeed, there is an exponential
increase in the number of publications dealing with experimental
nerve regeneration research over the years: a literature search
with the PubMed search string (“Nerve-Regeneration”[Mesh]
OR nerve-regenerat∗ OR nerve-repair∗) AND (rat∗ OR mouse
OR mice OR rabbit∗ OR sheep), delivered 26 results in 1970
and 479 in 2018.

In the context of pre-clinical peripheral nerve regeneration
research, the choice of the experimental animal model is
of fundamental importance. When a researcher moves on
to test a novel attempt in vivo, the animal model should
be chosen according to the study aims [e.g., for studying
the involvement of a specific molecule in the biological
process of nerve regeneration, the most appropriate choice
will most likely be different to the model chosen for
evaluating the effectiveness of a nerve conduit for long
gap (>50 mm) repair]. Obviously, the pros and cons
of the different available options must also be taken into
careful consideration.

The choice of the appropriate experimental nerve
injury model is usually guided by several factors. For
nerve repair studies, in particular, the size (diameter and
length) of the model nerve is certainly one of the main
aspects considered. Indeed, most nerve repair studies are
conducted on the sciatic nerve especially because of its
big dimension that facilitates experimental microsurgery
(Varejao et al., 2004; Bozkurt et al., 2011; Sinis et al.,
2011a). The sciatic nerve is the biggest nerve in the body
and the choice among mouse, rat, rabbit, dog, or sheep
already provides variability in nerve gap lengths to be applied
(Angius et al., 2012).

Different downsides resulting from experimental injury to
the sciatic nerve have, however, led to increasing interest in
the median nerve as alternative model nerve (Bertelli et al.,
2004). At first, injury to the sciatic nerve results in a paralysis
of the hind limb and, often, in automutilation behaviour, such
as biting and self-amputation of denervated toes and paw areas
by the subjected animal. Longer lasting paralysis (>4 weeks
in the rat) often leads to joint contractures and stiffness.
Automutilation behaviour and joint contractures reduce the
reliability of functional tests, such as estimation of the sciatic
function index or, in severe cases, will lead to exclusion of the
respective animal from a study for ethical and animal welfare
reasons. Furthermore, possibilities for evaluation functional
recovery of motor skills after sciatic nerve lesion in the awaken
animal are rather limited or need considerable efforts to be
realised (Navarro, 2016).

In the recent years employment of the median nerve injury
and repair model in the experimental research has increased
(Papalia et al., 2003b; Ronchi et al., 2009) because of several
advantages. Transection injury of the rodent median nerve,

results in only partial impairment of the upper limb function
(Bertelli et al., 1995). Incidence of automutilation is significantly
lower in comparison to the sciatic nerve model, ulcerations
are fewer and no joint contractures can be seen. This milder
phenotype results from the fact that after median nerve injury,
the ulnar and radial nerves still preserve sensitivity and motor
function in the forearm (Sinis et al., 2006). An additional
advantage of the rodent median nerve injury and repair model
is that positively evaluated attempts are more likely to be
translated into clinical practise, since surgical interventions
for the repair of a damaged human nerve are very often
performed at the upper limb level. In addition, the hand
functions require a fine finger movement that is quite similar
between rodents and humans (Whishaw et al., 1992). From
this perspective, the possibility to apply specific and precise
functional tests for motor recovery evaluation following median
nerve reconstruction is a further pro of this model in pre-
clinical research.

This review provides an overview on the use of the median
nerve injury and repair experimental model in pre-clinical
research. The different animal species (not only mouse and
rat but also larger animals such as rabbit, sheep, and monkey)
are taken into account as are the different options these
species provide with regard to comprehensive analysis of the
regeneration outcome.

THE PRE-CLINICAL MEDIAN NERVE
INJURY AND REPAIR MODEL IN
DIFFERENT ANIMAL SPECIES

The use of the median nerve injury and repair model as pre-
clinical model has progressively increased in the last years, but
the sciatic nerve injury and repair model is still more often
employed [in PubMed a research on (median-nerv∗) AND
(regenerat∗ OR repair) yielded 1002 papers, while (sciatic-nerv∗)
yielded 6612 papers].

Information from our literature search is presented
in Tables 1–5. The tables summarise peripheral nerve
regeneration studies after median nerve injury and repair
in the different animal models. In addition to the specific
reference, the tables list animal strain and sex, type
of injury/gap, follow up periods and type of analyses
conducted. We took our best efforts to include all articles
available until end of 2018; nevertheless, inadvertently, we
could have missed some papers and apologise in advance
with their authors.

In the following paragraph specificities of the different models
listed in the tables will be reviewed in more detail.

Mouse Model
Since most of the available transgenic animal models are mice,
they are often used for studying the role of specific genes in the
peripheral nerve regeneration process. For this purpose, genes of
interest are knocked-out, mutated or over-expressed. Moreover,
mice – especially wild type strains – are economical in their
keeping, simple to handle and to care for and can therefore
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TABLE 1 | Mouse model.

References Strain Sex Type of injury/gap Follow up Analysis

Jager et al., 2014 – F Crush injury (n = 5); Contralateral nerves
used as control (uninjured) nerves

25 days Functional analysis (grasping test), histological
analysis, TEM, morphometry

Park and Hoke, 2014 C57Bl/6J M Nerve repair (microsurgical 10/0 suture)
without Exercise (n = 8); Nerve repair
(microsurgical 10/0 suture) with
Exercise (n = 8); Control group (n = 8)

6 weeks Functional test, Electrophysiology,
morphometry, Immunohistochemistry, ELISA
assay (serum sample)

Speck et al., 2014 Swiss mice M Crush injury (n = 12); Control group
(n = 12)

21 days Functional test (IBB – Irvine, Beatties, and
Bresnahan – Forelimb Scale), Histology

Jaminet et al., 2013b CD1 and
C57BL/6

M Immediate microsurgical repair using
12/0 sutures (n = 48 WT); Immediate
microsurgical repair using 12/0 sutures
(n = 8 WT); Control (n = 8 WT)
Immediate microsurgical repair using
12/0 sutures (n = 8 heterozygous
Netrin-1(+/−); Control (n = 8
heterozygous Netrin-1(+/−)

0, 7, 14, 21, and
50 days

Real-time PCR, Western Blot, TEM,
morphometry, functional analysis (grasping test)

Jaminet et al., 2013a C57BL/6 – Immediate microsurgical repair using
12/0 sutures (n = 24 WT); Immediate
microsurgical repair using 12/0 sutures
(n = 12 WT); Control (n = 12 WT)
Immediate microsurgical repair using
12/0 sutures (n = 12 UNC5b+/−

heterozygous); Control (n = 12
UNC5b+/− heterozygous)

0, 7, 14, 21, and
50 days

Western Blot, TEM, morphometry, functional
analysis (grasping test)

Ronchi et al., 2013 BALB/c M Crush injury (n = 16 BALB-neuT); Crush
injury (n = 16 WT); Contralateral nerves
used as control (uninjured) nerves

2 and 28 days Functional analysis, immunohistochemistry,
histology, stereological analyses, TEM, western
blot, real-time PCR

Oliveira et al., 2010 C57/Black6 – Nerve lesion followed by tubulization
[polycaprolactone (PCL) conduits] with
DMEM (n = 10), 3-mm gap; Nerve
lesion followed by tubulization (PCL
conduits) with MSC in DMEM (n = 11),
3-mm gap Control (n = 10)

4, 8, and 12 weeks SEM, TEM, histomorphometry analysis,
immunohistochemistry, functional analysis

Ronchi et al., 2010 FVB M Crush injury (5 animals); Microsurgical
12/0 suture (end-to-end neurorrhaphy)
(n = 6) and controls (n = 6) from Tos
et al. (2008)

25 days Functional analysis, histology, stereological
analyses

Tos et al., 2008 FVB M Microsurgical 12/0 suture (end-to-end
neurorrhaphy) (n = 6); Controls (n = 6)

75 days Functional, histology, stereological analyses,
TEM

be studied in large groups. Mice nerves can be subjected to
different types of injury and repair and analysed with all kinds
of functional, morphological and biomolecular assays. The most
simple crush injury can be easily used and standardised. On
the other hand, peripheral nerves in mice are rather small and
experimental in vivo work employing more complex surgeries on
them, such as end-to-end repair, requires advanced microsurgical
skills. These skills are provided by many clinical researchers
from disciplines routinely performing nerve surgeries but are less
prevalent in the basic researcher community. Furthermore, when
it comes to studies evaluating new developments for bio-artificial
nerve guides, the much smaller diameter of mouse peripheral
nerves is not fitting the larger one of nerve guides that are
primarily commonly designed to fit human digital nerves.

Rat Model
Among rodents, rats are the most commonly used in vivo
model in peripheral nerve regeneration research. This relates

mainly to the dimension of their nerves. Surgery on rat
peripheral nerves requires less microsurgical skills than needed
for mouse models and rat limbs and nerves are long enough
to allow 1.5–2 cm gap repair to be studied at least in the
sciatic nerve. Moreover, rats can be investigated in large groups
because their keeping is economical, and they are mostly
simple to handle and to care for. Transgenic rat models are,
however, less available than mouse transgenic models and also
the availability of rat specific antibodies for molecular and
histological examination is rather limited. But due to their
prevalent employment, functional tests for evaluating motor
or sensory recovery in rats are more standardised (Navarro,
2016) and comparable among different research groups. Rat
nerves can be subjected to different types of injury and repair
and analysed in most comprehensive functional, morphological
and biomolecular assays (Ronchi et al., 2009; Navarro, 2016;
Ronchi et al., 2016). Different rat strains can be utilised, for
which varying willingness to enrol in specific functional tests is
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TABLE 2 | Rat model.

References Strain Sex Type of injury/gap Follow up Analysis

Casal et al., 2018 Wistar F Control (n = 17) Excision (n = 17) 10 mm autograft
(n = 19); Conventional flap (n = 19); Arterialised
venous nerve flap (n = 15); Prefabricate nerve flap
(n = 8)

100 days Grasping test; nociception evaluation;
running velocity; walking track analysis,
retrograde labelling, infra-red
thermography, electroneuromyography,
immunohistochemistry

Chen et al., 2018 Sprague-
Dawley

M Control (n = 6); Nerve constriction with four loose
ligatures for 1 (n = 6), 2 (n = 4), 3 (n = 4), and
4 weeks (n = 4); Median nerve transection (n = 5),
1 week intraplantar administration of saline, M871
(a GalR2 antagonist), or AR-M1896 (a GalR2
agonist)

1, 2, 3, and
4 weeks

Immunocytochemistry, von Frey
filaments test

Gao et al., 2018 Sprague-
Dawley

F Entire contralateral C7 root was transected and
transferred to the median nerve (n = 18); Only the
posterior division of the contralateral C7 root was
transected and transferred to the median nerve
(n = 18); The entire contralateral C7 root was
transected but only the posterior division was
transferred to the median nerve (n = 18)

8, 12, and
16 weeks

Electrophysiological examination,
Muscle tetanic contraction force test,
Muscle fibre cross-sectional area,
histological and morphometrical
analysis

Gluck et al., 2018 Sprague-
Dawley

F Control (n = 10); Low strain injury (strain of 14%
elongation) (n = 5/time point); High strain injury
(strain of 20% elongation) (n = 5/time point)

0, 1, 3, 8, and
12 weeks

Second Harmonic Generation (SHG)
microscopy, histology, and
Immunohistochemistry

Marchesini et al., 2018 Wistar M Autograft – 1.5 cm gap (n = 6) 1.5 cm median
nerve gap repaired with amnion muscle combined
graft (AMCG) conduits (n = 8)

90 days Grasping test, histological and
morphometrical analysis

Marcioli et al., 2018 Wistar M Neural compression without treatment (n = 6);
Neural compression and treated with neural
mobilisation for 1 min (n = 6); then 6 sessions on
alternate days of mobilisation; Neural compression
and treated with neural mobilisation for 3 min
(n = 6); then 6 sessions on alternate days of
mobilisation

14 days Histology and morphometric analysis,
PCR

Muratori et al., 2018 Wistar F Control (n = 6); Crush injury (n = 3/time point + 3
for histology); End-to-end repair (n = 3/time point);
Degenerating nerve (n = 3/time point)

1, 3, 7, 15, and
30 days

Real time PCR, western blot,
immunohistochemistry

Ronchi et al., 2018 Wistar F Nerve repaired with chitosan conduit (10 mm long)
(n = 5 for each time point); Nerve repaired with
chitosan conduit (10 mm long) filled with fresh
muscle fibres (n = 5 for each time point); Autograft
(n = 5 for each time point)

1, 7, 14, and
28 days and
12 weeks

Grasping test, histological analysis,
morphometrical analysis,

Meyers et al., 2017 Sprague-
Dawley

F End-to-end repair of the median nerve distal to the
elbow (n = 6); End-to-end repair of the median and
ulnar nerves proximal to the elbow (n = 6); Repair of
the median and ulnar nerves with a 7-mm
polyurethane tube (gap 5 mm) proximal to the
elbow (n = 9)

Up to 13 weeks Evaluation of volitional forelimb strength

Ronchi et al., 2017 Wistar F Immediate, 3 and 6 months delayed nerve repair
with a cross suture between the degenerated
median nerve distal stump and the freshly
axotomised ulnar proximal stump (n = 7/group);
Controls: healthy nerve (n = 5); 9-month
degenerated nerve (n = 5); 3-month regenerated
end-to-end–repaired median nerves (n = 5)

6 months Grasping test, histological analysis,
morphometrical analysis, gene
expression analysis, protein analysis

Stossel et al., 2017 Lewis F 7 mm-long nerve repaired with muscle-in vein graft
(n = 8); Control: autologous nerve graft (n = 8)

1, 2, and 3 months Electrophysiology, grasping test,
staircase test, histological analysis,
morphometrical analysis

Coradini et al., 2015 Wistar M Healthy nerve in obese rat model (8 rats); Crush
nerve injury in obese rat model (8 rats); Crush nerve
injury and physical exercise (swimming) in obese rat
model (8 rats); Controls: healthy nerve (8 rats);
crush nerve injury (8 rats); crush nerve injury plus
physical exercise (8 rats)

3, 7, 14, and
21 days

Nociception threshold, histological
analysis, protein analysis

(Continued)
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TABLE 2 | Continued

References Strain Sex Type of injury/gap Follow up Analysis

Fregnan et al., 2016 Wistar F 10 mm-nerve gap repaired with two different
types of chitosan membrane based conduit
(n = 4/group); Control: autograft (n = 4)

3 months Grasping test, histological analysis,
morphometrical analysis

Huang and Tsai, 2016 Sprague–
Dawley

M Control (n = 12); Median nerve compression
with four loose ligatures (n = 12/time point) with
delivery of the JNK inhibitor at different doses
[20 (n = 6), 40 (n = 6), or 80 nmol (n = 6), or
with vehicle (n = 6)]; Animals were given vehicle
(n = 18) or DHA at doses of 100 (n = 18), 250
(n = 18), or 500 nmol/kg (n = 18)

5 h, 1, 3, 5, 7, 14,
and 21 days

Immunohistochemistry,
double-immunofluorescence labelling and
Western blotting, Enzyme-linked
immunosorbent assay, Behavioural testing

Papalia et al., 2016 Wistar F 10 mm-nerve gap repaired with end-to-side
neurorrhaphy with or without epineurial window,
using ulnar nerve fixed by applying
cyanoacrylate solution (n = 7/group); Control:
healthy nerve (n = 5)

9 months Grasping test, histological analysis,
morphometrical analysis

Ronchi et al., 2016 Wistar F Crush nerve injury (n = 15); Nerve transection
and immediately repair with end-to-end
technique (n = 15); Nerve transection followed
by no repair (n = 15); Control: healthy nerve
(n = 7)

1, 3, 7, 14, and
28 days

Histological analysis, gene expression analysis,
protein analysis

Shaikh et al., 2016 Long Evans F Nerve transection and nerve wrapping with a
strip of Rose Bengal chitosan adhesive followed
by laser irradiation (n = 10); Nerve transection
repaired with end-to-end neurorrhaphy (n = 10);
Control: nerve wrapping with a strip of Rose
Bengal chitosan adhesive followed by laser
irradiation (n = 10)

3 months Cold and warm plate test, withdrawal threshold
tests

Gambarotta et al., 2015 Wistar F Transected nerve repaired with 10 mm-long
muscle-in-vein graft with muscle fibres
expressing AAV2-LacZ or AAV2-ecto-ErbB4
(n = 5/group); Control: 10 mm-long nerve graft
(n = 5)

3 months Grasping test, histological analysis,
morphometrical analysis

Beck-Broichsitter et al.,
2014b

Wistar F Nerve transection repaired with direct
coaptation plus pulsed magnetic therapy
(n = 12); Controls: nerve transection repaired
with direct coaptation (n = 12)

3 months Grasping test, histological analysis,
morphometrical analysis

Beck-Broichsitter et al.,
2014a

Wistar F 6 weeks delayed nerve repair with autograft
(n=); Nerve injury with sensory protection and
6 weeks delayed repair with autograft (n = 10)

15 weeks Grasping test, muscle weight, histological
analysis, morphometrical analysis

Li et al., 2014 Sprague-
Dawley

– Acute group (immediately after injury, n = 18)
and subacute (2 weeks after injury, n = 18)
group, each divided in three subgroups: Nerve
transected without repair; Nerve transected and
repaired immediately; Healthy control

Immediately and
2 weeks after injury

fMRI/fcMRI

Manoli et al., 2014 Wistar F Direct suture (n = 3); Direct suture plus
vein-graft wrapping (n = 4); Direct suture plus
vein-graft wrapping filled with Perineurin vehicle
(n = 2); Direct suture plus vein-graft wrapping
filled with Perineurin (n = 6); Direct suture (n = 5)
FloSeal application to the nerve stumps and
direct suture (n = 6); Electrocoagulation of the
nerve stumps and direct suture (n = 5)

12 weeks Electrophysiological and histomorphological
analysis

Oliveira et al., 2014 Wistar M Nerve transection (4 mm gap) repaired with
polycaprolactone conduit, with an injection of
cell medium alone (n = 3) or containing bone
marrow-derived mesenchymal stem cell (n = 3);
Control: healthy nerve (n = 4)

10 weeks Histological analysis, morphometrical analysis,
electrophysiological cortical mapping of the
somatosensory representation

Ronchi et al., 2014 Wistar F Control (n = 5); Crush injury (n = 5); Autograft
(n = 5)

12 weeks Histological and morphometrical analysis (at
light and electron microscopy)

(Continued)
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TABLE 2 | Continued

References Strain Sex Type of injury/gap Follow up Analysis

Ghizoni et al., 2013 Sprague-
Dawley

F 40 mm nerve gap repaired with autograft
(contralateral median nerve) and nandrolone
treatment (n = 20) 40 mm nerve gap repaired with
autograft (contralateral median nerve) (n = 20);
Control: non-grafted animals (n = 20)

6 months Electrophysiology, grasping test,
muscle weight, nociceptive sensation
recovery

Ho et al., 2013 Sprague-
Dawley

Nerve repaired with silicone rubber tubes (gap
5 mm) and subjected to acupuncture and
electroacupuncture at two different intensities
(n = 7/group); Control: nerve repaired with silicone
rubber tubes (gap 5 mm); no stimulation

5 weeks Electrophysiology, Histology, Grasping
test

Marcioli et al., 2013 Wistar M Nerve compression and treatment with neural
mobilisation for 1 or 3 min (n = 6/group); Control:
nerve compression without mobilisation (n = 6)

3, 5, 7, 11, and
13 days, 2 weeks

Nociception evaluation, histological
Analysis, morphometrical analysis

Moimas et al., 2013 Wistar F Transected nerve repaired using 10 mm-long
muscle-in-vein graft with muscular fibres expressing
AAV2-LacZ or AAV2-VEGF (n = 7/group). Control:
healthy nerve (n = 5)

3 months Grasping test, histological analysis and
morphometrical analysis of both nerve
and muscle, muscle immunochemistry

Papalia et al., 2013 Wistar F 10 mm-long defect repaired with adipose
tissue-in-vein conduit (n = 5) or muscle-in-vein
conduit (n = 5); Control: autologous nerve graft
(n = 5)

6 months Grasping test, histological analysis,
morphometrical analysis

Lanza et al., 2012 Wistar F Nerve transection immediately repaired with
end-to-side neurorrhaphy (n = 10); 2 mm-long
nerve segment exported and not repaired (n = 10)

6 and 12 days Histological analysis, gene expression
analysis

Muratori et al., 2012 Wistar F Crush injury (n = 5); Control: healthy nerve (n = 5) 8 and 24 weeks Histological analysis, morphometrical
analysis

Moges et al., 2011 Sprague
Dawley

F 7 mm-long nerve gap repaired with autograft (sural
nerve) with/without light therapy (n = 12/group).
Control: sham operated group without injury and
repair; Control: sham operated group (n = 12)

4 months Grasping test, muscle action potential
measurements, histological analysis,
morphometrical analysis

Nabian et al., 2011 Wistar M Right sciatic nerve and both median nerves (1 week
later) were excised (n = 10); Both median nerves
were excised, and the sciatic nerves were left intact
(n = 10); Control: no surgical intervention (n = 10)

17 days Sciatic functional index

Sinis et al., 2011b Wistar F Floseal application to nerve stumps before nerve
repair with end-to-end neurorrhaphy (n = 12);
Electrocoagulation of nerve stumps before
end-to-end neurorrhaphy (n = 12); Control: nerve
repaired with end-to-end neurorrhaphy (n = 12)

3 months Grasping test, muscle weight,
histological analysis, morphometrical
analysis

Chiono et al., 2009 Wistar F Repair of a 1.5 cm gap with PCL guides (2 cm
long); Cross chest median/median nerve (5 cm PCL
guides; 4.5 cm gap)

6 and 8 months,
respectively

Grasping test, histological and
immunohistochemical analysis

Nicolino et al., 2009 Wistar F 10 mm-long nerve gap repaired with muscle-in-vein
graft (n = 16); Nerve transection with no repair
(n = 16)

5, 15, and 30 days Histological analysis, expression
analysis in muscle

Ronchi et al., 2009 Wistar F Crush injury (n = 14); Control (no injury) (n = 6) Grasping test, histology,
morphometrical analysis, TEM

Sinis et al., 2009 Wistar F Nerve repaired with end-to-end neurorrhaphy, with
a wrapping by external jugular vein segment, filled
with iron chelator DFO; Control: nerve repaired with
end-to-end neurorrhaphy, with a wrapping by
empty external jugular vein segment

3 months Grasping test, muscle weight,
histological analysis, morphometrical
analysis, immunochemistry

Werdin et al., 2009 Wistar F Control group (n = 9); End-to-end nerve repair
(n = 18) 2-cm autograft (n = 27)

12 weeks Electrophysiological analysis

Audisio et al., 2008 Wistar F Nerve transection and repair with end-to-end
neurorrhaphy (n = 10); Nerve transection and repair
with end-to-side neurorrhaphy (distal stump
sutured to the ulnar nerve) (n = 10); Control: healthy
nerve (n = 10)

1, 2, and 3 weeks Gene expression analysis

(Continued)
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TABLE 2 | Continued

References Strain Sex Type of injury/gap Follow up Analysis

Ozalp and Masquelet,
2008

Wistar
albino

M 5-mm gap repaired with silicon tube; after 5 weeks,
the implant was removed and a nerve graft was
anastomosed inside the neo-formed biological
membrane (n = 10) 5-mm gap repaired with
autograft (n = 10)

12 weeks Grasping test

Geuna et al., 2007a Wistar F Median nerve repaired with muscle-vein-combined
conduit (n = 3/time point)

0 (2 h after
preparation), 5, 15,
and 30 days

IHC, Electron Microscopy, PCR

Geuna et al., 2007b Wistar F End-to-side neurorrhaphy on the intact ulnar with a
perineurial window; Tubulization by
muscle-vein-combined guides Y-shaped
muscle-vein-combined guides to repair both
median and ulnar nerves

5 and 30 days Grasping test, histological analysis
(light, confocal and electron
microscopy), PCR, muscle weight

Lee et al., 2007 Wistar F Controls (n = 4); End-to-end (median-to-median)
(n = 4); End-to end (ulnar-to-ulnar) (n = 4); Median
and ulnar nerve repaired with a 14-mm Y-shaped
muscle-in-vein conduit (n = 4)

10 months Grasping test, histological and
morphometrical analysis

Papalia et al., 2007 Wistar F Median nerve repaired with end-to-side
neurorrhaphy after epineurotomy on the radial nerve
(n = 10)

30 weeks Grasping test, histological,
morphometrical and
electrophysiological analysis

Sinis et al., 2007 Lewis F Control (n = 22); Autologous nerve graft (n = 22);
Empty TMC/CL conduit (n = 16); TMC/CL conduit
and SC (n = 22)

9 months Grasping test, electrophysiological and
histological analysis; muscle weight

Tos et al., 2007 Wistar F 10-mm-long nerve defect repaired with
muscle-in-vein conduit (15 mm long) using fresh
muscle (n = 12); 10-mm-long nerve defected
repaired with muscle-in-vein conduit (15 mm long)
using freeze-thawed muscle (n = 12)

5 days, 1 month Histological analysis, morphometrical
analysis, gene expression analysis

Sinis et al., 2006 Lewis Cross-chest (a gap of 40 mm was repaired with the
two ulnar nerves) (n = 12); Control (healthy) (n = 12)

12 months Grasping test, histological and
morphological analysis

Bontioti et al., 2005 Wistar F End-to-side neurorraphy median/ulnar nerves to the
musculocutaneous nerve (n = 11); End-to-side
neurorraphy radial nerve to the musculocutaneous
nerve (n = 11)

7 days and
6 months

Pawprints test, retrograde labelling,
histological and morphometrical
analysis, tetanic muscle force and
muscle weight

Sinis et al., 2005 Lewis F Nerve defect of 2 cm repaired with resorbable
hollow nerve conduit (n = 16); Nerve defect of 2 cm
repaired with nerve conduit containing Schwann
cells suspended in matrigel (n = 16); Nerve defect
of 2 cm repaired with autograft (n = 22); Control:
healthy nerve (n = 22)

9 months Electrophysiology, grasping test,
histological analysis, muscle weight

Gigo-Benato et al.,
2004

Wistar F Complete nerve transection (15 mm gap) repaired
with end-to-side neurorrhaphy on the ulnar nerve
plus laser therapy (laser used: continuous, pulsed
and a combination of the two) (n = 4/group). Nerve
transection repaired with end-to-side neurorrhaphy
on the ulnar nerve (n = 4); Controls: nerve
transaction without repair (n = 4), healthy nerve
(n = 5)

4 months Grasping test, muscle weight,
histological analysis, morphometrical
analysis

Tos et al., 2004 Wistar F Controls (n = 5); Median and ulnar nerve repaired
with a 14-mm Y-shaped muscle-in-vein conduit
(n = 5)

8 months Grasping test, histological and
morphometrical analysis

Papalia et al., 2003a Wistar F 10 mm-long nerve defect repaired with end-to-side
neurorrhaphy, through an epineurial window on the
ulnar nerve (n = 20)

7 months Grasping test, electrophysiology,
muscle weight, histological analysis,
morphometrical analysis

Papalia et al., 2003b Wistar F End-to-side neurorrhaphy (n = 6) 16 weeks Grasping test

Accioli De Vaconcellos
et al., 1999

Sprague-
Dawley

F Control group (n = 8); Fresh autograft 20 mm long
(n = 12); Frozen acellular autograft 20 mm long
(n = 12); Fresh xenograft 20 mm long (n = 12);
Frozen acellular xenograft 20 mm long (n = 12)

3, 6, 9, and
12 months

Grasping test, Retrograde labelling of
neurons, Histological and
histochemistry studies

(Continued)
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TABLE 2 | Continued

References Strain Sex Type of injury/gap Follow up Analysis

Bertelli and Mira, 1995 Sprague-
Dawley

F Median and ulnar nerve bilateral dissection (n = 15);
Left median nerve crush (n = 10); Left median nerve
crush and right median nerve transection (n = 10);
Left median nerve transection (n = 10); Left median
and ulnar nerve transection (n = 10)

14 days, 3, 4, and
5 weeks

Grasping test, muscle weight

reported (Nikkhah et al., 1998; Galtrey and Fawcett, 2007), but so
no comparative studies investigating differences in their ability to
regenerate have been published.

When using rodents (mice and rats) as animal models for
peripheral nerve regeneration, researchers must finally be aware
of the following immanent differences to mankind: (1) gaps that
can be produced are shorter than those commonly found in
human nerve lesions; (2) axonal regeneration rate is faster than
in humans; (3) recovery is often complete, while in humans it is
often incomplete (Kaplan et al., 2015).

Rabbit Model
In peripheral nerve regeneration research, rabbits offer the
possibility to study regeneration across gap lengths of up to
6 cm. Rabbits are, however, expensive to purchase and maintain,
and difficult to care for. Rabbits are more delicate and less
resilient than rats and mice, and their occurrence as pet animals
probably creates ethical problems for animal care takers and
researchers. Also, there are almost no valid functional assays
that can be applied in rabbit models, besides electrodiagnostic
evaluation. Finally, very few specific antibodies are available
to be used on rabbit tissue samples, so that conclusions on
the regeneration outcome can mainly only be based on nerve
morphometry studies.

Sheep Model
The sheep as an animal model is useful when nerve regeneration
across very long gaps should be evaluated. An ethical advantage of
this animal is provided by the fact that a median nerve transection
injury does not result in serious impairment of the limb usage
ability and functional read-outs have been described in the recent
years. To establish the model and to provide adequate housing
conditions is, however, a considerable challenge, and research in
this model will often only be realised through collaborative work.

Monkey Model
Although non-human primates could be useful to test safety and
efficacy of synthetic nerve conduits – because of the similarity
of non-human primates with human beings – their use is
considerably limited for ethical reasons. Monkeys are considered
as animal models mainly to study neuronal plasticity occurring
in the brain following peripheral nerve injury and repair. Again,
studies in this model will mainly be subject of collaborative work
and not appropriate for early stage pre-clinical research.

Other Animals
Other large animals can be used as models to study median nerve
injury and regeneration, such as pigs (Ochoa and Marotte, 1973;

Marotte, 1974), dogs (Lee et al., 1999), and cats (Murray et al.,
1997), but their use is limited for three main reasons: (1) animal
care for large species is considerably expensive; (2) for some
species the possibilities for functional testing are limited or
require complex training, therefore, nerve regeneration may only
be assessed with nerve morphometry; (3) dogs and cats are
domestic animals, and their use in research is more restricted for
ethical reasons.

METHODOLOGICAL
CONSIDERATIONS – APPROACHES FOR
THE TREATMENT OF NERVE INJURIES

The following criteria should be considered for selecting the most
suitable animal model for pre-clinical research on peripheral
nerve regeneration: (1) costs to purchase and house the animals;
(2) ease of handling, such as tolerance to captivity; (3) tolerance
for surgery and eventual repetitive anaesthesia, as well as
resistance to infection; (4) compliance with national policies and
with ethical principles; (5) inter-animal uniformity, life span of
the species, biological information and available tools; (6) overall
experimental plan (Angius et al., 2012). With regard to the latter,
especially when several time-points are to be analysed, rodents
represent the best choice. On the contrary, rodent life span is
short, therefore for long experiments (>1–1.5 years), it becomes
necessary to use lager animals as model organism.

In the last years, several approaches have been developed and
tested in pre-clinical animal models to improve peripheral nerve
regeneration. All these approaches can be applied on different
nerves and are not median-nerve specific. In this paragraph we
will present an overview of different techniques, including the
use of different conduits to guide regenerating axons, the use
of stem cell transplantation, the application of physical therapies
and optogenetics, all of which have been demonstrating variable
positive effects on nerve regeneration irrespectively of the model
they were investigated in.

Nerve Guidance Conduits
The major disadvantage of the autologous nerve graft technique
is the remarkable sensitivity loss (mainly sural nerve grafts are
harvested for this) and the limited availability of donor tissue
(Ray and Mackinnon, 2010). Reconstruction of a nerve with
artificial or non-artificial nerve conduit grafts is particularly
indicated in case of extensive nerve tissue loss. Nerve guidance
conduits made of several materials, artificial or of natural origin,
are available; most common and FDA approved for clinical use
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TABLE 3 | Rabbit model.

References Strain Sex Type of injury/gap Follow up Analysis

Sun et al., 2012 New Zealand
rabbits

M/F In situ anastomosis of the median nerves was
made in parallel to the surrounding elbow veins,
the transplanted epineurium and the adventitia
were sutured with nerve anastomosis line
(n = 30). Gap: 3 cm In situ anastomosis (control
group); (n = 30). Gap: 3 cm

1, 2, 4, 8, and
12 weeks

Electrophysiological testing,
and histopathology
observation, TEM

Yin et al., 2011 New Zealand
rabbits

– Groups 2 and 3: Proximal median/ulnar nerve
segment was served as father nerve to repair
the distal nerve stump (Dor–Dor) (n = 6/group)
Group 4: Serving as a donor nerve, the proximal
1/2 median nerve was fixed to the distal stumps
of 1/2 median and ulnar nerve simultaneously,
using biodegradable chitin conduits with a gap
of 1 mm. (1/2 Dor − 1/2 Dor + Rec) (n = 6)
Group 1: Control group (n = 6)

4 months Electrophysiology, histology
and morphometry

Kim et al., 2011 New Zealand
rabbits

M The ulnar nerve was transected and the distal
end sutured to the median nerve 3 cm above
the elbow (n = 30); The ulnar nerve was
transected and the distal end sutured to the
median 3 cm below the elbow joint (n = 30)

1, 2, 3, 4, 5, and
6 weeks

Morphometric analysis and
immunohistochemistry.

Wang et al., 2009 New Zealand
rabbits

– Proximal nerve segment as donor nerve (n = 6)
Intermediate nerve segment as donor nerve
(n = 6); Distal nerve segment as donor nerve
(n = 6); Right side nerves as control

3 months Electrophysiology, histology
and stereology; muscle
weights

Zhang et al., 2006 New Zealand
rabbits

– End-to-side nerve coaptation performed
immediately (n = 12); End-to-side nerve
coaptation performed after nerve degeneration
(n = 12); Control (n = 12)

3 and 6 months Electrophysiology,
Histomorphometry, Muscle
weight

Baoguo et al., 2004 Japanese white
rabbits

– Study 1: the median nerve was elongated for
10 days (n = 6), for 15 days (n = 7) and for
20 days (n = 6). Study 2: Right arm: the
proximal segment of an injured median nerve
was elongated for 10 days (n = 10) and for
15 days (n = 10). Left arm: a 10- for 15-mm
segment of the median nerve was removed,
and a 10- for 15-mm segment, respectively, of
the tibial nerve was grafted in its place.

4 months Electrophysiology,
Histomorphometry

Ruch et al., 2004 New Zealand
rabbits

M Group 1: nerve repaired with a tension-free
medial antebrachial cutaneous graft (n = 11);
Group 2: end-to-end repair without distraction
(n = 13); Group 3: end-to-end repair with
gradual distraction) (n = 12)

3 and 6 months Electrophysiology,
Histomorphometry, Muscle
weight

Gui et al., 1997 – – The injured median nerve regenerated through
degenerative latissimus dorsi muscle; The
injured median nerve regenerated through the
brachial triceps muscle

7, 14, 28, 45, 60,
and 180 days

Histology

Shibata et al., 1991 – – Median nerve immediately repaired with the
contralateral ulnar nerve graft (gap: 3-cm);
Median nerve repaired with the contralateral
ulnar nerve graft (gap: 3-cm) after resection of
scar and coaptation at the distal site done
10 weeks later.

24 and 62 weeks Electrophysiology,
Histomorphometry, Muscle
weight

Kawai et al., 1990 – – Nerve repaired with vascularised median nerve
graft; Nerve repaired with non-vascularised
median nerve graft. Length of the grafts: 2, 4,
or 6 cm.

8 and 24 weeks Histomorphometry

de la Monte et al., 1988 – – n = 34 total; Axonal regeneration across
allografts (fresh or predegenerated) or autograft
in cyclosporin A-treated/non-treated animals

– Histology
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TABLE 4 | Sheep model.

References Strain Sex Type of injury/gap Follow up Analysis

Kettle et al., 2013 – – Median-to-ulnar nerve end-to-side
neurorrhaphy (n = 12); Conventional method of
nerve repair (n = 18); Control (n = 8)

12 months Electrophysiology and
histology; Physiology of the
muscle

Forden et al., 2011 Suffolk ewes – Defect of 5 cm repaired with 7 cm of radial
sensory nerve (n = 12); Control (n = 1)

6 and 9 months Electrophysiology,
histology,
immunohistochemistry, and
morphometric analyses

Jeans L.A. et al., 2007 – – Microsurgical epineurial repair using 10/0
polyamide (n = 12); CRG-wrap and 6/0
polyglactin (n = 12); CRG-wrap and fibrin glue
(n = 12)

7 months Measure of transcutaneous
stimulated jitter (TSJ),
maximum conduction
velocity (CVmax), wet
muscle mass and
morphometric
measurements.

Jeans L. et al., 2007 – – Epineurial suture repair using 9/0 polyamide;
CRG-wrap secured by Tisseel glue; CRG-wrap
secured by polycaprolactone glue; Wrap
secured by suturing (6/0 polyamide)

7 months Electromyography, nerve
conduction studies, wet
muscle mass
measurements, and
morphometry

Kelleher et al., 2006a – – Entubulation within a biodegradable glass tube
(CRG tubes) (n = 6); Gap: 4/5 cm; Small
magnets were applied to the sides of the
biodegradable glass tube before the median
nerve was repaired (n = 6); Gap: 4/5 cm Control
(n = 6);

10 months Morphometry
electrophysiology and
isometric tension
assessment

Kelleher et al., 2006b – – Median nerve repaired using an epineurial
suture technique. CNTF was supplied into the
CSF at the level of C6 by an implanted osmotic
pump (n = 5). Median nerve repaired using an
epineurial suture technique. Physiological saline
was placed in the osmotic pump (n = 5);
Control (n = 5);

6 months Electrophysiological,
morphometric and
isometric tension
experiments; muscle mass.

Matsuyama et al., 2000 – – Autograft (right side) and allograft (left side);
immunosuppression with Cyclosporine A; 5-cm
gap repaired with two cables of the radial
sensory nerve (8-cm) (n = 4); Autograft (right
side) and allograft (left side); (control n = 4)

between 35 and
47 days

Histology, Morphometry

Fullarton et al., 1998 Scottish
black-faced
sheep

F Nerve immediately repaired with freeze-thawed
muscle autografts (n = 5); gap 3 cm; Nerve
repaired 30 days after injury with freeze-thawed
muscle autografts (n = 5); gap 3 cm.

6 months Electrophysiology and
morphometry. Blood flow

Glasby et al., 1998 Scottish,
black-faced
sheep

F Nerve immediately repaired with freeze-thawed
muscle autografts (n = 5); gap 3 cm; Nerve
repaired 4 weeks after injury with freeze-thawed
muscle autografts (n = 5); gap 3 cm.

6 months Electrophysiology and
morphometry. Blood flow

Lawson and Glasby,
1998

Scottish,
black-faced
sheep

F Nerve repaired with fascicular cable graft
(n = 5); Nerve repaired with freeze-thawed
muscle grafts (n = 5)

6 months Nerve blood flow, nerve
conduction velocity and
morphological indices

Glasby et al., 1998 Scottish,
black-faced
sheep

F Nerve immediately repaired with freeze-thawed
muscle autografts (n = 6); gap 3 cm; Nerve
repaired 30 days after injury with freeze-thawed
muscle autografts (n = 6); gap 3 cm.

6 months Electrophysiology and
morphometry. Blood flow

Strasberg et al., 1996 – – Fresh nerve autograft (n = 5); Fresh nerve
allograft (n = 5); Cold-preserved nerve (n = 5);
Cold-preserved nerve allograft (n = 5)

6 and 10 months Histological, morphometric,
and electrophysiologic
analyses.

Lawson and Glasby,
1995

Scottish,
black-faced
sheep

F Nerve immediately repaired with freeze-thawed
muscle autografts (n = 5); gap 3 cm; Nerve
repaired 30 days after injury with freeze-thawed
muscle autografts (n = 5); gap 3 cm.

6 months Electrophysiology and
morphometry. Blood flow
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TABLE 5 | Monkey model.

References Strain Sex Type of injury/gap Follow up Analysis

Pace et al., 2014 Macaca
fascicularis
monkeys

F Nerve repaired with bovine collagen I nerve
conduit (NeuraGen) filled with keratin hydrogel
(n = 8) (gap: 1 cm); Nerve repaired with bovine
collagen I nerve conduit (NeuraGen) filled with
sterile saline (n = 6) (gap: 1 cm)

12 months Electrophysiology, nerve
histology and morphometry,
muscle histology and
morphometry, antibody titer

Hu et al., 2013 Rhesus
monkeys

– Nerve defect (50 mm) repaired with: Autograft
(n = 3); Chitosan/PLGA scaffold, followed by
injection of autologous MSCs (n = 3);
Chitosan/PLGA scaffold alone (n = 3); Nerve
defect left untreated (control) (n = 3)

12 months Locomotive activity
observation,
electrophysiological
assessments, FG
retrograde tracing tests,
histological and
morphometric analyses,
blood test and
histopathological
examination

Hara et al., 2012 Macaca
fascicularis

– 20-mm-long-segment was resected and
repaired with: Lengthening of both nerve
stumps (n = 3); Autograft with the sural nerve
(n = 3);

16 weeks Electrophysiological,
histological, and functional
recovery

Zhang et al., 2009 Rhesus
monkeys

M Right sides: small gap (2 mm) repaired with
chitin conduit (length 10 mm); Left sides:
traditional epineurium suture (n = 8)

6 months Histology

Krarup et al., 2002 Macaca
fascicularis

M Nerve gap distances of 5, 20, or 50 mm were
repaired with nerve grafts or collagen-based
nerve guide tubes (total of 46 median nerve
lesion). Control: direct repair

3–4 years Electrophysiology

Florence et al., 2001 Macaca radiata – Median nerve was cut and sutured prenatally
(n = 1); sensory enrichment of the nerve-injured
hand; Median nerve was cut and sutured after
birth (n = 5); 4 animals received sensory
enrichment of the nerve-injured hand

3.5 months Electrophysiological
mapping studies (3b
somatosensory cortex)

Florence et al., 1996 Macaque
monkeys
(immature)

– Median nerve was cut and sutured prenatally
(n = 2); Median nerve was cut and sutured after
birth (n = 2)

10–18 months of
age

Retrograde labelling to
study the dorsal horn and
cuneate nucleus;
Electrophysiological
mapping studies (3b
somatosensory cortex)

Archibald et al., 1995 Macaca
fascicularis

– Autograft (gap 5 mm) in one side; In the
contralateral wrist, the 5 mm nerve gap was
bridged with a collagen nerve guide (n = 4);
Direct suture (positive controls) (n = 4); Nerve
gaps of mm bridged by polylactate nerve
guides (n = 1). After 630–679 d the nerve guide
was removed and the resulting gap of 15 mm
was bridged by a collagen nerve guide.

Average of 1,342 d
after surgery

Electrophysiology, motor
conduction studies,
sensory conduction
studies, responses evoked
by tactile stimulation,
morphometric analyses.

Florence et al., 1994 Macaque
monkeys

– Median nerve was cut and sutured (n = 3) 7–13 months Retrograde labelling to
study the dorsal horn and
cuneate nucleus;
Electrophysiology to study
the 3b of somatosensory
cortex

Tountas et al., 1993 – – Median nerve repaired by microsurgical suture
or tubulization with a non-woven,
bioabsorbable, polyglycolic acid device (n
tot = 30)

6 and 12 months Electrophysiology and
histology

Archibald et al., 1991 Macaca
fascicularis

M Nerve transected and repaired with: 4 mm
nerve autograft (n = 3); Collagen-based nerve
guide conduit (gap 4 mm) (n = 3)

760 days Electrophysiology

(Continued)
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TABLE 5 | Continued

References Strain Sex Type of injury/gap Follow up Analysis

Badalamente et al.,
1989

Capuchin
monkeys
(C. apella)

- Epineural repair (nerve stumps and thenar
muscles were first bathed/injected with
leupeptin) (n = 5); Epineural repair (nerve
stumps were bathed with saline solution) (n = 5)

6 and 8 weeks, 3,
6 months

Electrophysiology, histology

Wall et al., 1986 Aotus
trivirgatus

– Nerves reconnected with 10/0 epineural
sutures (n = 5)

From 76 to
322 days

Neurophysiological
recording (cortical areas 3b
and 1)

Grabb, 1968 Rhesus
monkeys

F Nerves were cut and sutured primarily (4 h after
nerve injury, n = 30), or secondarily (about
3 weeks after injury, n = 30).

9 months Electromyographic
examination

are conduits made of collagen, chitosan, or poly (DL-lactide-
ε-caprolactone) (Kornfeld et al., 2018). All devices currently on
the market and FDA-approved have proven good support for
the promotion of peripheral nerve regeneration in pre-clinical
models. Good clinical results, however, are obtained only for
lesions with a substance loss inferior to 3 cm in length, while
severe and enlarged injuries remain a critical condition (Kaplan
et al., 2015). For this reason, research in the field of novel nerve
conduit functionalisation strategies is still highly vivid.

Application of Stem Cells and Their
Secretome
In regenerative medicine and tissue engineering, the use of Stem
Cells and their secretome is fast expanding with the aim to
develop innovative therapeutic strategies for the treatment of
peripheral nerve injuries (Caplan, 2015; Caseiro et al., 2016;
Busuttil et al., 2017; Sayad-Fathi et al., 2019). In particular,
Mesenchymal Stem Cells (MSCs) present relevant key features:
they can be easily expanded, they can differentiate into different
cell types, they are immune-privileged and immune-modulatory,
they show preferential homing to injured sites (Frausin et al.,
2015; Sullivan et al., 2016; Jiang et al., 2017). Moreover, the
MSC secretome contains trophic mediators (Meirelles Lda et al.,
2009; Fu et al., 2017), modulating the function of several
tissues, including the skeletal muscle (Pereira et al., 2014)
and the peripheral nervous system (Lopatina et al., 2011;
Gartner et al., 2012, 2014).

The most widely source of MSCs for therapeutic purposes
is the bone marrow; as good alternative other sources are: the
umbilical cord blood, the stromal tissue of the umbilical cord, the
dental pulp, the adipose tissue (Jin et al., 2013).

Transgenic Models to Promote
Peripheral Nerve Regeneration
To study the biology of peripheral nerve regeneration, different
transgenic models can be used (Magill et al., 2008). Most of
the available transgenic animals are mice and they represent
a powerful tool to study the influence of over-expression or
depletion or mutation of a specific gene in a specific cell type,
using inducible systems, but it must be kept in mind that mice
are difficult subjects for microsurgical models due to the small
size of their nerves, as discussed above.

To investigate the function of specific genes in nerve
regeneration discriminating between motor and sensitive
neurons, transgenic mice over-expressing the gene of interest
in postnatal motoneurons or dorsal root ganglion neurons
can be obtained using Thy1 or NSE (neuron specific enolase)
promoters (Michailov et al., 2004; Gomez-Sanchez et al., 2009;
Velanac et al., 2012).

To obtain tissue specific expression or depletion of specific
proteins, the inducible cre-lox system can be applied:
transgenic mice driving motor neuron specific expression
of cre recombinase with the promoter of Mnx1 (motor neuron
and pancreas homeobox 1) gene can be used to specifically
in/activate the expression of floxed genes in motor neurons,
while specific in/activation in Schwann cells can be obtained
using the promoter of Mpz (myelin protein zero) gene
(La Marca et al., 2011).

Transgenic animals can also be developed as advanced
experimental models to study genetic diseases giving rise to
peripheral neuropathies (Hoke, 2012; Juneja et al., 2018), and
they can be studied to investigate their ability to regenerate
injured peripheral nerves.

Finally, the expression of neurotrophic factors or other
potentially therapeutic proteins in Schwann cells or in neurons
can be obtained through the use of different viral vectors
(Tannemaat et al., 2008).

Physical Therapies
The efficacy of brief Electric Stimulation (ES) of the proximal
stump of an injured nerve in promoting nerve regeneration in
animal models has been verified in several independent studies
reviewed by Gordon (2016) and Gordon and English (2016).
In particular, a 14 days period of ES was chosen (Al-Majed
et al., 2000) to accelerate the regenerative process and the
effect was dramatic: preferential motor reinnervation of motor
pathways was evident at 21 days rather than at 42 days, and,
importantly, all of the motoneurons had regenerated into the
motor nerve branch.

Another interesting study was aiming at evaluating the value
of electromagnetic stimulation for the neural regenerative process
of the rat median nerve after transection and end-to-end repair
(Beck-Broichsitter et al., 2014b). From the 1st day after surgery a
pulsed magnetic therapy was daily applied in the experimental
group. Magnetic stimulation was positively influencing the
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functional regeneration in terms of grasping force and reduced
muscular atrophy.

Optogenetics
Axonal regeneration and functional recovery are enhanced
by activity-related therapies, such as exercise and electrical
stimulation (Gordon, 2016). Unlike electrical stimulation,
optogenetics allows to selectively activate or inactivate specific
neurons: for example, selective expression of the light-sensitive
cation channel channelrhodopsin-2 (ChR2), that is maximally
activated by blue light, can be used to depolarise neurons, thereby
driving action potentials. Conversely, selective expression of the
light-sensitive inward chloride pump halorhodopsin (Halo), that
is maximally activated by amber light, can be used to obtain
neuron hyperpolarisation, thereby inhibiting action potentials
(Montgomery et al., 2016). Optically induced neuronal activity
has been shown to be sufficient to promote functional motor
axon regeneration in vivo (Ward et al., 2016). Moreover,
through the selective expression of opsins in sensory neurons
or motoneurons, it was possible to investigate the effect of
system-specific neuronal activation on axonal regeneration,
thus demonstrating that acute activation is sufficient to
enhance regeneration of both motor and sensory axons
(Ward et al., 2018).

Until now, in the peripheral nervous system, optogenetics
has been applied mainly to sciatic nerves in transgenic mice
expressing different opsins, but given its therapeutic potential
it will be certainly applied also to median nerves and in
other animal models, by injection of optogenetic constructs to
transduce opsin expression in peripheral nerves in the future.

Immunomodulation
The early inflammatory reactions undergoing in the course
of Wallerian Degeneration of the distal nerve, comprise
the activation of the complement system, arachidonic acid
metabolites, and inflammatory mediators involved in myelin
fragmentation and activation of repair Schwann cells. Fine-
tuned upregulation of the cytokine/chemokine network by repair
Schwann cells activates resident and hematogenous macrophages
to complete the clearance of axonal and myelin debris and
stimulate regrowth of axonal sprouts (Yona and Jung, 2010;
Cortez-Retamozo et al., 2012; Dubovy et al., 2013; Jessen and
Mirsky, 2016). An innovative approach in the field of peripheral
nerve regeneration is exploiting the endogenous capacity of the
body to repair itself through immune cells. In very promising
studies, starting from the known different pro-inflammatory and
pro-regenerative macrophage phenotypes, they were modulated
through their response to different IFN-γ or IL-4 cytokines
and studied in their ability to influence nerve regeneration in
a critically sized, 15 mm rat sciatic nerve gap. The results of
this research have shown that the administration of IL-4 at the
injury site increased the pro-regenerative effect and therefore
that the regenerative outcomes appeared to be influenced
not only by the macrophage presence, but by their specific
phenotype at the site of injury (Mokarram et al., 2012). A similar
approach was conducted later by the same authors, through
early stage administration of fractalkine, a chemokine able to

control the phenotype in monocyte recruitment and to increase
the regenerative potential. The pharmaceutical approach was
evaluated from a morphological and functional point of view
(Mokarram et al., 2017).

METHODOLOGICAL
CONSIDERATIONS – TECHNIQUES TO
INVESTIGATE PERIPHERAL NERVE
REGENERATION

A number of different techniques have been developed to
investigate the degree and the accuracy of nerve regeneration.
While functional tests must be nerve-specific, all other methods
can be applied to all types of peripheral nerves. In this paragraph
we describe in detail different functional tests that are used
to study the functional recovery of the median nerve and, in
addition, we present an overview of other methods used for
the investigation of nerve regeneration, including morphological
and morphometrical analysis, gene expression analysis and
fluorescent transgenic animal models.

Functional Evaluation
Several functional tests are available for rodents, both rats and
mice (Galtrey and Fawcett, 2007). Some have been designated
ad hoc to evaluate functional recovery following median nerve
repair (e.g., grasping test), others have been adapted from tests
normally used following other lesion types (injuries to the spinal
cord or sciatic nerves).

The tests described below refer to the rat, but most of them are
adaptable also to mice.

• The grasping test is a simple method to assess the flexor
function, first introduced by Bertelli and Mira (1995).
The modified method (Papalia et al., 2003a) consists in
presenting a small tower with only three bars forming
a triangle on its top instead of a grid for grasping.
With this modification the tendency to walk on the
grid is avoided and the presence of a band put just
below the three bars avoids that the rat employs the
wrist flexion to hold the bars. This device is connected
to a precision dynamometer. The animal is hold by its
tail and allowed to grasp the grid. Then, the animal is
pulled upward until it loses its grip. The balance records
the maximum weight that the animal managed to hold
before losing the grip.
• The staircase test is a functional test which assesses

skilled forepaw reaching and grasping (Montoya et al.,
1991). Two/three food pellets are placed on each step
of two staircases located one on either side of a central
platform. Both stairs are composed of seven steps. The
animal is placed in a box and can only reach the pellets
from the left staircase with its left paw and those from the
right staircase with its right paw. The rat can grasp, lift,
and retrieve food pellets from the steps of the staircase.
The number of pellets completely removed from the
staircase box provides a quantifiable measure of the
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distance and efficiency of fine motor reaching skills.
Rats need to be pre-trained in the staircase test before
surgery, put on restrictive diet before testing and need
to be accomodated again to the test conditions for some
days before the following evaluation. Therefore, this test
is more complex to be applied than the grasping test
described above.
• The walking track analysis is used to evaluate forelimb

motor recovery (Ozmen et al., 2002; Galtrey and
Fawcett, 2007). The rat forepaw is dipped in an ink
solution and the animal is allowed to walk down
the track upon a strip of white or graph paper. The
prints by the ink are left to dry and then analysed.
Different parameters can be analysed (longest length
and widest width of the paw impression, widest width
between the second and third fingers, distance between
homologous points of sequential paw impressions on a
given side, perpendicular distance between the central
portion of the paw impression and the direction of
movement). Moreover, walking track analysis can be
performed by 2D digital video motion analysis, which
allows also to quantify the movement of the wrist and
the metacarpophalangeal joint (Wang et al., 2008).
• The Von Frey filament test is used to evaluate mechanical

allodynia (Galtrey and Fawcett, 2007). The animal is
placed in a box on a wire mesh floor. Von Frey filaments
of different bending forces are used to examine the
mechanical threshold of the rat forepaws. The test
starts with the smallest bending force and continues in
increasing order. Each filament is inserted through the
mesh and applied in the medial surface of the forepaw.
To perform the test, the rat must be stationary and
standing on the four paws. The first filament in the series
that evoked withdrawal three times is regarded as the
paw withdrawal threshold.
• The Irvine, Beattie, and Bresnahan (IBB) scale test

(Irvine et al., 2014) is used for the assessment of fine
control of the forelimb and digit movements. Spherical-
and donut-shaped pieces of cereal are given to the rat.
The forelimb behaviour (joint position, object support,
wrist and digit movement, and grasping method) used
while eating both cereal shapes is analysed. An IBB score
is assigned using the 10-point (0–9) ordinal scale for
each shape, and the highest score reflects the greatest
amount of forelimb recovery.
• The ladder rung walking test is used to assess forelimb

strength, stepping, placing, and co-ordination during
skilled locomotion (Metz and Whishaw, 2002; Galtrey
and Fawcett, 2007). The apparatus consists of two side
walls with rungs inserted into the walls to create a ladder.
The ladder is elevated and can also be inclined. The
animal is conditioned to run on the ladder on several
training sessions. Performance is scored (successful
steps/total steps).
• The Randall-Selitto test is used to assess the nociceptive

withdrawal threshold (Galtrey and Fawcett, 2007).
The test consists in the application of an increasing

mechanical force with the tip of an algesimeter on
the medial portion of the forepaw until a withdrawal
response results.
• For the cold sensory test an ice probe is made by freezing

water in a 1.5-ml tube (Lindsey et al., 2000; Galtrey and
Fawcett, 2007). When the rat is drinking from the water
bottle, the ice probe is applied to the glabrous skin of
the forepaw. The withdrawal latency is measured. At
least 1 min between trials is needed to allow the skin
to return to body temperature and prevent sensitisation.
If the rat does not withdraw the paw after 10 s, the
probe is removed.
• The cold and hot plate test is used to assess temperature

sensation. The rat is placed in a Plexiglas chamber
where the metal base temperature is 25◦C. For cold
plate testing, the temperature is rapidly lowered and
the animal behaviour is observed for signs of pain-
like behaviour (avoiding contact with the cold plate,
suspension of the affected forelimb, licking of the
paw, lack of grooming and exploration vocalisation,
or freezing behaviour). Once pain-like behaviour is
observed, the temperature is increased to a higher
temperature. For hot plate testing, the temperature is
raised and the behaviour is assessed as described above
(Shaikh et al., 2016).
• The CatWalk automated quantitative gait analysis is

a computer-assisted method that can simultaneously
measure dynamic as well as static gait parameters,
including duration of different phases of the step cycle
and pressure applied during locomotion (Bozkurt et al.,
2008). The animal is placed in the CatWalk walkway,
which is comprised of a glass plate with two Plexiglas
walls, a high-speed colour camera, and recording and
analysis software. The animal walks voluntarily from
one side of the glass plate to the other. Its footprints
are captured. The intensity of the signal depends on the
degree of paw floor contact and increases with pressure
applied. The more pressure is exerted, the larger the
total area of skin–floor contact and thus the brighter
the pixel. An appropriate software visualises the prints
and calculates statistics related to print dimensions and
the time and distance relationships between footfalls
(Chen et al., 2012a,b).
• Electrophysiology is often used in rat, while in the mouse

model it is less used probably for the small size. The
maximum amplitude and latency of evoked compound
muscle action potentials recorded from the thenar
muscles are usually evaluated (Werdin et al., 2009).

In conclusion, the list provided above clearly demonstrates
that a large variety of tests can be used to evaluate the functional
recovery after median nerve transection and repair in rodents.

From a translational point of view, tests should be selected
in way to model as closely as possible the course of functional
recovery as it is observed in human patients. Recently, the
combination of electrodiagnostic evaluation, with the commonly
used grasping test (reflex-based gross motor function) and the
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staircase test (skilled forelimb reaching) has been described to
produce results with high translatability (Stossel et al., 2017).

A final comment needs to be put on the fact that different rat
strains have been described to demonstrate different motivation
degrees to participate in more complex tasks, like, e.g., the
staircase test. Especially, Lewis rats have been described to be
less motivated and also to eventually be less capable of learning
how to perform more complex motor tasks (Nikkhah et al., 1998;
Galtrey and Fawcett, 2007).

In the other animals, the functional recovery is assessed mainly
by electrophysiology. Indeed, while in rats and mice the fingers do
a fine movement quite similar to humans and their functionality
can be assessed by different suitable and specific tests, the other
animals can do gross movements only.

Morphology and Morphometry
(Stereology)
Regardless of the animal model used, nerve regeneration
assessment must necessarily have an accurate morphological and
morphometrical evaluation (Geuna and Herrera-Rincon, 2015).
Among the techniques that allow this type of analysis, immuno-
histochemistry offers the possibility to specifically identify the
different structures of the regenerating nerve, such as Schwann
cells, motor or sensory axons, blood vessels, and other cell
types, including macrophages, fibroblast-like cells, perineurial
cells, endothelial cells (Carriel et al., 2014b). Moreover,
immunofluorescence or immunohistochemical techniques allow
to accurately quantify the fraction area and the intensity
of the expression of specific proteins which are correlated
with regenerative processes. For example, the expression of
markers such as Neurofilament in neurons or S-100 in
Schwann cells are indicative of an excellent regenerative process,
when these levels reach the values of the control nerves
(Carriel et al., 2014a).

To quantify the number of sensitive and motor neurons which
were able to regenerate axons across a nerve gap, the retrograde-
labelling technique can be applied. A dye will be applied into the
distal nerve and taken up by regenerated axons and retrogradely
transported into the neuronal soma of sensory neurons in the
dorsal root ganglia or motor-neurons in the ventral horn of the
spinal cord (Hayashi et al., 2007; Kemp et al., 2017).

Together with functional assessment, quantitative estimation
of regenerated nerve fibres is a key investigation tool in
nerve regeneration research (Kanaya et al., 1996; Geuna et al.,
2004). The toluidine blue staining of resin-embedded semithin
sections allows to clearly identify most of the myelinated
axons and their myelin organisation thanks to the post-
fixation with OsO4 (Raimondo et al., 2009). Usually, morpho-
quantitative analysis is performed on one randomly selected
toluidine blue semi-thin transverse nerve section. The total
cross-sectional area of the nerve is measured. Then, an
adequate number of fields of interest (according to the size
of the nerve) is randomly selected following a systematic
random protocol and analysed (Raimondo et al., 2009).
The parameters used as nerve regeneration indicators are
myelinated fibre number and density, fibre and axon diameter,

myelin thickness and g-ratio (axon-diameter/fibre-diameter)
(Geuna, 2000, 2005).

In order to compare results obtained by different research
groups, different potential sources of bias should be considered.

First of all, the strain, the gender and the age of experimental
animals, that can affect the quantification outcome.

The second aspect that can influence the results of a
stereological analysis is the level at which it is conducted and,
obviously, the different investigation time points. The analysed
parameters can vary significantly depending on the distance from
the lesion point, especially in the early time points after injury,
considering that a nerve can grow approximately 1 mm/day
(Santos et al., 2007). Therefore, only quantitative data taken at the
same location along the nerves can actually be compared (e.g.,
5 mm distal to the lesion site). Obviously, also the time point
analysed gives different results and should always be considered
(with the same lesion type, a 3-month regenerated nerve will
be different from a 6-month regenerated nerve). Finally, it must
possibly be considered to analyse all branches of a nerve. The
portion of the median nerve that is usually injured and repaired
in experimental studies goes from the axillary region to the
elbow. In this tract, the median nerve is unifascicular, but for
more distal investigation sites the anatomy of the nerve needs to
be considered. The median nerve gives off three palmar digital
branches more distally, at the level of the carpal bones, that
in turn bifurcate between the 1st, 2nd, and 3rd digit (Barton
et al., 2016). Other nerves (i.e., the sciatic nerve) release branches
in the tract that is commonly investigated. Therefore, if the
morphological/morphometrical analysis requires the nerve cross
section (for example to estimate the total number of nerve fibres),
all branches must be analysed.

The third aspect is represented by the chosen method for
measuring the selected size parameters (computerised or manual
analysis). It is important to note how computers can certainly
make quantitative morphology easier and faster (Williams and
Rakic, 1988; Dolapchieva et al., 2000), but a comparison of the
performance of automated cell detection revealed that a manual
approach is still the most appropriate method for stereological
counting (Schmitz et al., 2014).

Gene Expression Analysis
Injured median nerve gene expression analysis can be carried
out both at mRNA and protein level. To reduce the number of
animals and comply with the 3R’ Principle (Replace, Reduce, and
Refine) (Tannenbaum and Bennett, 2015) a good strategy is to
extract from the same nerve sample both total RNA and proteins,
using commercially available kits.

The first point that should be considered when analysing
a nerve sample is that protein extraction involves all nerve
components, neuronal axons and peripheral cells (Schwann
cells, fibroblasts, macrophages, and so on). RNA extraction
mostly encloses peripheral cells, because neuronal RNA is mainly
localised in the cell bodies of sensory neurons (in the dorsal root
ganglia) or motor neurons (in the ventral horn of the spinal cord),
with only few mRNAs locally translated in the axon after nerve
injury (Terenzio et al., 2018).
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The second point that should be carefully considered is the
portion of the injured nerve to be analysed and the time window
for the analysis. Indeed, in the 1st days after injury, regenerating
axons start to colonise the proximal portion of the repaired
nerve, while in the distal portion axons are still undergoing
Wallerian degeneration (Girouard et al., 2018). In the following
days, regeneration occurs also in the distal stump. Therefore,
gene expression analysis will give information about regeneration
or Wallerian degeneration taking place according to the region
and the time point analysed: for gene expression analysis, like
previously discussed for morphology and morphometry, the
region and the time point analysed must be the same for all
samples and for comparison with other studies.

For mRNA analysis, quantitative real time PCR can be
carried under paying attention to the housekeeping genes
used for normalisation: indeed, it is really important to
normalise data to genes whose expression is not affected by
nerve injury (Vandesompele et al., 2002). To this aim, stable
housekeeping genes suitable for gene expression analysis were
identified (Gambarotta et al., 2014; Wang et al., 2017). To avoid
amplification of contaminant genomic DNA, a good strategy
is to design primers on different exons, possibly separated by
introns larger than 1,000 bp, or straddling two contiguous exons.
For protein analysis, western blots can be carried out using
the stain-free technology, which is a good strategy, because
protein expression is normalised to the total protein content,
bypassing the problem of the choice of suitable housekeeping
genes (Gurtler et al., 2013).

Transgenic Models to Evaluate
Peripheral Nerve Regeneration
A transgenic model that can be used for evaluating and
monitoring peripheral nerve regeneration in mice and rats
is Thy1-GFP, in which Thy1 promoter drives neuron specific
expression of GFP, allowing imaging of nerve regeneration
following nerve injuries (Porrero et al., 2010; Moore et al., 2012;
Kemp et al., 2013).

CONCLUSION

In this review we emphasised the use of the median nerve
as pre-clinical experimental model to study nerve regeneration
in vivo. Accordingly, in the last years the median nerve model
is increasingly used due to different reasons, including a better
animal well-being, and availability of different functional tests
which, specifically in rodents, allow testing the digital fine
movement, making the results obtained with this model more
translatable into the clinic.

With regard to the animal choice, the rat definitely represents
the easiest and more translatable model, especially for studies
evaluating regeneration across short nerve gaps, while for
large nerve gaps the use of other, larger, animals would be
recommended. In case large animal facilities are not available, an
alternative and very interesting approach might be the cross-chest
median nerve transfer in the rat animal model (Sinis et al., 2006).
Indeed, this method would allow the use of rodents, which are less
expensive and easier to handle compared to large animals, but at
the same time would allow studying nerve regeneration across
long gaps (up to 40 mm).
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