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Brain Derived Neurotrophic Factor (BDNF) is a key molecule involved in plastic
changes related to learning and memory. The expression of BDNF is highly regulated,
and can lead to great variability in BDNF levels in healthy subjects. Changes in
BDNF expression are associated with both normal and pathological aging and also
psychiatric disease, in particular in structures important for memory processes such
as the hippocampus and parahippocampal areas. Some interventions like exercise
or antidepressant administration enhance the expression of BDNF in normal and
pathological conditions. In this review, we will describe studies from rodents and humans
to bring together research on how BDNF expression is regulated, how this expression
changes in the pathological brain and also exciting work on how interventions known
to enhance this neurotrophin could have clinical relevance. We propose that, although
BDNF may not be a valid biomarker for neurodegenerative/neuropsychiatric diseases
because of its disregulation common to many pathological conditions, it could be
thought of as a marker that specifically relates to the occurrence and/or progression
of the mnemonic symptoms that are common to many pathological conditions.
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BDNF: A DYNAMICALLY REGULATED PLAYER IN SYNAPTIC
PLASTICITY AND MEMORY

The brain derived neurotrophic factor (BDNF) belongs to a family of neurotrophins that have a
crucial role in survival and differentiation of neuronal populations during development (Huang
and Reichardt, 2001). In the adult brain, BDNF also maintains high expression levels and
regulates both excitatory and inhibitory synaptic transmission and activity-dependent plasticity
(Tyler et al., 2002; Wardle and Poo, 2003).

The expression of BDNF is regulated during transcription and translation, and also by post-
translational modifications. The presence of a complex multi-level regulation demonstrates the
importance and diversity of BDNF functions. Transcription is controlled by multiple promoters
that determine activity-dependent and tissue specific expression (Timmusk et al., 1993; Chen
et al., 2003). There have been identified at least four BDNF promoters in the rat (Timmusk et al.,
1993), each one driving the transcription of mRNAs that contain one of the 8 non-coding exons
spliced to the common 30 coding exons, which produce an heterogeneous population of BDNF
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transcripts. BDNF splicing has been described for several species,
including humans (Liu et al., 2005), mice (Hayes et al., 1997),
and rats (Timmusk et al., 1993). Additionally, the expression of
specific BDNF exons can be regulated by epigenetic mechanisms
(Lubin et al., 2008), suggesting that environmental experiences
dynamically influence mature BDNF levels.

Regarding the pattern of expression of BDNF in the
brain, high levels of this molecule have been detected in the
hippocampus, amygdala, cerebellum and cerebral cortex in
both rodents and humans, with the highest levels found in
hippocampal neurons (Hofer et al., 1990; Timmusk et al., 1993).
Lower levels of BDNF have been detected in organs such as the
liver, heart, lung, among others (Ernfors et al., 1990; Maisonpierre
et al., 1991). The regulation of each transcript is controlled and/or
modulated by factors like neuronal activity (Metsis et al., 1993),
exercise (Oliff et al., 1998), antidepressants (Russo-Neustadt et al.,
2004), stress (Lauterborn et al., 1998), and hormones such as
estrogens (Singh et al., 1995).

Brain derived neurotrophic factor is synthesized as the
precursor proBDNF, that can be stored in either dendrites or
axons (Lessmann et al., 2003), and undergoes cleavage intra
or extracellularly (Lee et al., 2001; Mowla et al., 2001) to
produce a mature BDNF protein. BDNF is released in an
activity dependent manner as a mixture of pro and mature
BDNF (Pang et al., 2004). Interestingly, BDNF and proBDNF
are associated with opposing effects on cellular function, which
gives BDNF protein function an additional level of complexity.
The proBDNF form is secreted under both pathological and non-
pathological conditions (Barker, 2009). ProBDNF preferentially
binds p75 NTR receptor, which facilitates LTD (Woo et al.,
2005) and induces apoptosis (Friedman, 2010). On the other
hand, BDNF in its mature form binds specifically to tyrosine
kinase receptors (TrkB) and promotes cell survival (Volosin
et al., 2006), facilitates LTP and increases spine complexity
(McAllister et al., 1999; Zagrebelsky et al., 2005). When p75NTR
is co-expressed with TrkB receptor it increases neurotrophins
binding affinity thereby facilitating ligand discrimination (Bibel
et al., 1999). In this way, proBDNF can be thought as
part of a regulatory mechanism of BDNF activity in non-
pathological conditions. In addition, the truncated forms of
TrkB receptor can act as dominant negative inhibitors of BDNF
signaling by internalizing and clearing BDNF from the synapse
(Haapasalo et al., 2002; Figure 1).

Many studies have shown the critical role of BDNF
for the regulation of plastic changes in the adult brain,
including regulation of the trafficking (Caldeira et al., 2007),
phosphorylation (Lin et al., 1998) and expression levels of
NMDARs (Suen et al., 1997) associated with augmented synaptic
strength. Due to its critical role in LTP, BDNF has been postulated
to be an essential part of the cellular mechanism supporting
memory formation and maintenance by promoting synaptic
consolidation (Bramham and Messaoudi, 2005). According to
this hypothesis, BDNF increases memory storage by favoring
changes in spine morphology leading to the stabilization of
LTP. BDNF can also increase the number, size and complexity
of dendritic spines (Horch and Katz, 2002; Alonso et al.,
2004), probably through unpregulated actin polymerization

(Rex et al., 2007). Furthermore, BDNF increases neurogenesis
through changes in cell survival (Lee et al., 2007) and
proliferation (Katoh-Semba et al., 2002).

Changes in synaptic connections are thought to support
memory storage. There are several lines of evidence that directly
link BDNF with learning and memory. For example, BDNF
could be a mediator of the plastic changes underlying both
spatial and recognition memory processes (Kesslak et al., 1998;
Mizuno et al., 2000; Cirulli et al., 2004; Bekinschtein et al., 2007;
Heldt et al., 2007).

In this review, we will focus on the role of BDNF in cognitive
function in the adult brain under normal and pathological
conditions, and evaluate the potential therapeutic actions of
BDNF for the treatment of cognitive alterations associated with
aging, neuropsychiatric and neurodegenerative diseases. We
will particularly focus on the effects of these treatments on
mnemonic function.

THE BDNF Val66Met POLYMORPHISM

In the human BDNF gene, a common single nucleotide
polymorphism identified with a Met to Val substitution at codon
66 in the pro-domain of BDNF, called rs6265 or Val66Met
polymorphism, affects synaptic targeting of BDNF-containing
vesicles and activity-dependent neuronal release of BDNF (Egan
et al., 2003). Met66 homozygous knock-in mice showed a
selective impairment in activity-dependent synaptic plasticity
in vitro (Ninan et al., 2010). Additionally, exogenous application
of proBDNF in Val-carriers facilitated LTD and inhibited LTP,
while not in Met carriers (Kailainathan et al., 2016). Because of
its frequency in the human population [up to 30% Met carriers
in a European sample (Egan et al., 2003)] and its association
with lower serum levels of BDNF (Ozan et al., 2010), this
single nucleotide polymorphism has been a matter of great
interest. This polymorphism has been associated with structural
(Pezawas et al., 2004) and functional differences in the brain,
such as synaptic plasticity (Kleim et al., 2006) and memory
performance (Hariri et al., 2003). Some of these structural
changes include volumetric decreases in specific regions -such
as the hippocampus (Szeszko et al., 2005), the parahippocampal
gyrus, the prefrontal cortex and the amygdala (Matsuo et al.,
2009; Montag et al., 2009)-. The presence of the Met allele
is, in turn, associated with poor mnemonic performance on
verbal tasks both at short and long delays and also deficits in
working and spatial memory tasks (Dempster et al., 2005; Hansell
et al., 2007; Goldberg et al., 2008). Since most studies relayed
mainly on tasks that evaluate item memory, and particularly,
verbal memory, the effects over other more complex cognitive
functions remain to be tested (Mandelman and Grigorenko,
2012). Yogeetha et al. (2013) did evaluate multiple types of
memories, finding only an influence on visuospatial memory,
although Raz et al. (2009) describes an additional effect of
associative memory.

Besides these correlational studies of Met allele dosage,
hippocampal volume/activation and memory performance in
healthy subjects, evidence for a role of Val66Met polymorphism
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FIGURE 1 | The interplay between genetic and environmental factors modulates the expression of the BDNF variants. BDNF gene expression is controlled at many
levels. The inclusion of particular exons and the differential use of polyadenylation sites and/or starting codons modify not only the BDNF variant but also the
temporal dynamics of its expression through the modification, for instance, of the stability of the BDNF mRNA. Variability at any of these levels of regulation can lead
to differential levels of mature BDNF in healthy or diseased subjects. These differences could be related to genetic (i.e., Val66Met and other polymorphisms) or
environmental factors (chronic stress, exercise, and amongst others). In addition to correlational studies performed in humans, the use of non-human animal models,
particularly rodent models, can lead to establish certain relationships schematized above between these factors. Blunt arrows indicate that a decrease in BDNF
expression and the sharped ones symbolize the opposite pattern. Although the consensus agrees that aging, the development of Alzheimer’s disease and the
exposure to chronic stress are related to reductions in BDNF levels, some studies could not find those associations or found the opposite pattern (cases represented
with dashed lines). On the other hand, some external interventions are able to enhance BDNF expression, such as exercise, enriched environment and
antidepressants. For this reason, the aforementioned interventions could be potential treatments for cognitive impairments related to low BDNF expression. Since
these external factors can interact with each other (represented by the orange circular arrow), it is important to take into account all of these potential interactions at
the time of determining causal links between the effects of any of these variables on BDNF expression.

in brain structure and function is not conclusive and, even meta-
analysis studies show patterns of conflicting results. Kambeitz
et al. (2012) conducted three separate meta-analyses to determine
the effect of the Val66Met polymorphism on declarative memory
performance, hippocampal volume and hippocampal activation
in humans. They reported that all these measures are reduced
in carriers of the Met allele compared to Val homozygotes and
this effect cannot be explained by random variables such as age,
gender or diagnosis criteria. However, Dodds et al. (2013) argued
that the effect sizes of fMRI data are susceptible to the method
used to select the voxels and that the one used in Kambeitz
et al. may have led to an inflated estimate of the effect size. In
fact, the meta-analysis conducted by Mandelman and Grigorenko
(2012) did not detect a significant association between the BDNF
Val66Met polymorphism and several phenotypes including
general cognitive ability, memory, executive function, visual
processing skills, and cognitive fluency. They hypothesized
alternative scenarios to explain this incongruence in the
literature and proposed that instead of being grouped by their
behavioral similarity, cognitive phenotypes should be categorized

depending on the brain activation pathways engaged. Although
an important group of studies could not found an association
between Val66Met genotype and memory performance (Tsai
et al., 2008; Houlihan et al., 2009; Karnik et al., 2010), the
results linking BDNF polymorphism and memory are not likely
spurious. It is possible that differences in the effect that the BDNF
gene exerts across the lifespan and the uncontrolled effects of
variables such as gender, stress and physical exercise, known
to affect BDNF levels, may have led to a dilution of the effect
in certain samples. Furthermore, Met carriers might be able to
compensate for the deficiency in BDNF levels. In fact fMRI
studies suggest that they present increased medial temporal lobe
activity during the engagement of an episodic memory task when
compared with non-carriers, and this might “hide” the potential
deficits (Dennis et al., 2011). In conclusion, these studies suggest
that presence of the Met allele may confer a disadvantage in
cognitive performance, and particularly episodic memory (for a
review, see Bath and Lee, 2006), but that the effects of BDNF
polymorphism may be too complex to be analyzed under the idea
of a simple “risk allele.”
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BDNF IN THE AGING BRAIN

Aging is a major risk for the development of cognitive disorders
(Horn and Cattell, 1966). Cognitive performance gradually
declines with age, probably as a result of cellular and metabolic
changes that lead to a progressive reduction in synaptic plasticity
in brain regions crucial for cognitive functions (Barnes, 1994;
Smith et al., 2000; Erickson and Barnes, 2003). Aging is related
to a significant shrinkage of gray matter (Driscoll et al., 2003,
2009; Raz et al., 2005), an important reduction in the number
of synapses (Burke and Barnes, 2006) and also changes in
neuroplasticity-related proteins (Assuncao et al., 2010; Erickson
et al., 2010). The hippocampus is a brain region with high
levels of plasticity-related molecules (Neves et al., 2008) and is
particularly sensitive to aging-related cellular alterations that lead
to volume reductions (Greene and Naranjo, 1987; Lee et al., 1994;
Rosenzweig and Barnes, 2003). Particularly numerous changes
were reported in the dentate gyrus local inhibitory and excitatory
circuitry (Patrylo and Williamson, 2007). Furthermore, decreases
in adult neurogenesis in the dentate gyrus start emerging at
middle age and continue throughout the aging process (Drapeau
et al., 2003). Other structures also linked to episodic memory
formation, such as the frontal and entorhinal cortices, also show
volume reduction and may contribute to the deterioration of
cognitive function (Driscoll et al., 2009).

At the cellular level, changes in hippocampal LTP have also
been reported in aged animals, with deficits either related to
induction, maintenance and/or expression of LTP depending on
the stimulation pattern used for induction (Erickson and Barnes,
2003; Gooney et al., 2004). Given that alterations in the thresholds
for LTP and LTD in the MTL region have been associated with
impairments in long-term memories (for review, see Kumar,
2011), age-related cognitive impairment could also be linked to
altered LTP function.

In fact, one of the most consistent plasticity-related deficits
associated with aging is the reduction in neurotrophic signaling.
BDNF-LTP in the dentate gyrus is impaired in the aged brain,
and may be reverted by endogenous BDNF induction by
manipulations such as ampakine administration (Rex et al.,
2006), which can also ameliorate age-associated memory deficits
in rodents (Granger et al., 1996). Since dysfunction of synaptic
plasticity and changes in neuronal activity are associated with
worse performance in different cognitive tasks (Lynch et al.,
2006), efforts have been done to link changes in BDNF levels to
aging-dependent cognitive decline and to the related alterations
in structural and functional integrity of neuronal networks (for
review, see Tapia-Arancibia et al., 2008). Mattson et al. (2004)
suggested that age-dependent impairment in cognitive function
could be associated with decreases in BDNF expression in the
primary regions of the brain affected by aging. Consistent with
this idea, the circulating concentrations of BDNF are reduced
in aged primates and humans (Hayashi et al., 2001; Shimada
et al., 2014) and brain concentration reduced in rats (Silhol et al.,
2005). In aged rodents, the BDNF system is affected at different
levels, including reduced transcription, protein synthesis and
processing (Calabrese et al., 2013), however, other publications
could not find an association between age-related plastic changes

and BDNF (Lapchak et al., 1993; Driscoll et al., 2012). The found
reductions correlate with hippocampal shrinkage (Erickson et al.,
2010), spatial memory decline (von Bohlen und Halbach, 2010)
and neuronal atrophy (Murer et al., 2001). For example, higher
BDNF mRNA induction levels were reported after Water Maze
task on unimpaired rats in comparison with aged animals
(Schaaf et al., 2001). The decrease in BDNF levels observed
in aged individuals, was accompanied by a reduction in the
expression and/or activation of TrkB receptor and a concomitant
increase in the levels of proBDNF and p75NTR, suggesting the
presence of additional age-related deficits in BDNF signaling
pathway and in the processing of proBDNF to mature BDNF.
Additionally, these changes were negatively correlated with
performance on the Water Radial Maze (Buhusi et al., 2017).
Furthermore, the induction of specific BDNF transcripts after
fear conditioning is altered in aged rats (Chapman et al.,
2012), suggesting that aging is not only associated with reduced
neurotrophin expression under resting conditions, but might lead
to a functional impairment of BDNF in response to a specific
task. This is consistent with the aforementioned role of BDNF
in activity and experience-dependent structural and functional
connectivity changes.

However, some researchers found no change or even an
increase in BDNF (Lapchak et al., 1993; Narisawa-Saito and
Nawa, 1996; Newton et al., 2005) associated with aging. This
could suggest that the loss of hippocampal BDNF is not part of the
mechanisms involved in age-related cognitive decline. However,
considering that neuronal cell death is an undoubtedly important
element of age-related cognitive impairment (Morrison and
Hof, 1997), a transient BDNF-related response to neuronal
degeneration could be the underlying reason for the increasing
levels of hippocampal BDNF reported in some studies. However,
since in vivo measurements of BDNF in the brain are not possible,
studies in humans rely on inferences about the levels of BDNF
on central nervous system. Given that there is evidence that
BDNF can cross the blood-brain barrier (Pan et al., 1998), these
studies assume that serum BDNF is a proxy of BDNF levels in
the brain. Consistently, measures of BDNF in the central nervous
system (brain BDNF, b-BDNF) correlate with measures of BDNF
from the periphery (serum BDNF, sBDNF) (Sartorius et al., 2009;
Klein et al., 2011) with as much as 75% of brain origin BDNF
(Rasmussen et al., 2009). However, the functional significance
of BDNF in the serum is a matter of debate. BDNF is also
secreted in several peripheral sites such as platelets, lymphocytes,
and skeletal and smooth muscle cells, and also recent studies
have questioned the idea of BDNF being able to cross the
blood-brain barrier (Pardridge et al., 1998; Di Lazzaro et al.,
2007). Another important consideration in these measurements
is whether pro and mature forms of BDNF are being measured,
because only some assays can differentiate mature BDNF and,
considering that they can have opposing effects, these should
be taken into account (Polacchini et al., 2015). For this reason,
the results of serum studies should be interpreted cautiously, as
this could be a potential cause for inconsistencies reported in
sBDNF levels between studies. The use of enriched extracellular
vesicles of neuronal origin from peripheral blood could provide
a novel way to bypass these issues since they could more closely
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reflect brain changes compared to plasma (Mustapic et al., 2017;
Suire et al., 2017).

There are several reasons to think that a decrease in BDNF
levels could be detrimental to normal brain functioning, like its
role in synaptic plasticity, as described above. Another motive is
that BDNF exerts various trophic effects on hippocampal neurons
that could help counteract the noxious effects of neuronal cell
death (Almeida et al., 2005). In fact, high levels of BDNF in
the hippocampus are related to both survival and differentiation
of dentate gyrus progenitor cells in the adult (Pencea et al.,
2001; Shetty et al., 2004), and low levels of BDNF have been
linked to deficient neurogenesis in aged animals (Apple et al.,
2017). Moreover, BDNF is known to increase with oxidative
stress as part of an antioxidant defense during aging (Mattson
et al., 2002). Neuronal loss is an important component of normal
aging, however, it does not contribute significantly to learning
and memory impairments (West, 1993; Rapp and Gallagher,
1996; Rasmussen et al., 1996), suggesting that memory deficits
associated with aging are more likely related to alterations
in synaptic physiology and aberrant cell signaling, that might
contribute to an altered connectivity (Lister and Barnes, 2009).

While aging-related neuroanatomical changes are evident,
there is an enormous variability amongst healthy individuals
in the pattern of cognitive decline (Morris and Price, 2001).
Memory performance is also partly under genetic control
(Payton, 2006), probably because of age-sensitivity in many
cognitive processes (Kremen et al., 2007; Lessov-Schlaggar et al.,
2007). Genetic variance could explain these individual differences
in cognitive capacity, especially since heritability of cognitive
function increases over the lifespan as brain resources decrease
(Haworth et al., 2010), and can account for as much as one
third of the variance in cognitive decline (Finkel et al., 2005).
Both apolipoprotein E (APOE) (Wisdom et al., 2011) and BDNF
(Miyajima et al., 2008) have been associated with variance in
cognitive performance in healthy individuals more frequently
than other genes, although some results have not been reliably
replicated (Harris and Deary, 2011).

Since BDNF decreases throughout life (Erickson et al., 2010),
it would be interesting to assess the possible associations between
the Val/Met polymorphism and age-related cognitive decline. For
example, Miyajima et al. (2008) reported poor verbal recall in
a sample of healthy elderly Met homozygotes, and Sambataro
et al. (2010) found that Met carriers showed greater age-related
decline in hippocampal activation during both encoding and
retrieval, while other studies also limited to older adults found no
impact of age on cognitive tests evaluating learning and memory
(Houlihan et al., 2009; Laing et al., 2012). Considering these
results, this polymorphism could help understand individual
differences in cognitive function by genetic-dependent changes
in neurotransmitter and neurotrophic factor levels, amongst
other factors (Raz and Lustig, 2014). However, since reports
indicate that both APOE and BDNF polymorphisms accounts
for less than 2.3% of the variance, it is fundamental to take into
account the complex interplay between associations with other
genes and interactions with environmental factors to interpret
these results. Many environmental and hormonal factors such
as physical exercise (Cotman and Berchtold, 2007), caloric

restriction (Mattson et al., 2003), estrogen levels (Scharfman
and Maclusky, 2005), and environmental enrichment (van Praag
et al., 2000) can influence BDNF levels, making it challenging to
link BDNF to age-related memory impairment and hippocampal
atrophy. For example, BDNF genotype can modulate the effect
of physical exercise on episodic memory performance and brain
volume. This is evident by the fact that only Val homozygous
benefited from physical exercise with larger MTL volume and
hippocampal gray matter, whereas in Met carriers the contrary
effect was found (Brown et al., 2014). In another study, in a
cohort aged 65 or older the strength of the association between
incidence of cognitive decline and physical activity increased
with the number of Met alleles, suggesting that the Met allele
may confer vulnerability to dementia in elders with less physical
activity (Kim et al., 2011). On the other hand, there are studies
reporting a reduced vulnerability of Met carriers to age-related
decline in executive function (Harrisberger et al., 2014), pointing
toward a differential effect of BDNF on cognitive function related
to the areas supporting the task.

The influence of BDNF on cognitive function may change
across the lifespan. In fact, the effects of the BDNF Val66Met
polymorphism on brain structure and cognitive function were
found to differ in an age-dependent manner: while Met carriers
showed a reduction in episodic memory performance and
hippocampal/parahippocampal volume in samples of around
65 years in comparison to Val carriers (Egan et al., 2003; Pezawas
et al., 2004), in the elderly (mainly samples of around 75 years)
Val/Val individuals had diminished entorhinal cortex thickness,
white matter tract integrity, and episodic memory performance
(Harris et al., 2006; Erickson et al., 2008; Voineskos et al., 2011).
It has been hypothesized that this effect could be related to
changes in the level of cleavage, since cleavage molecules such
as tPA are known to decline with age (Cacquevel et al., 2007)
which could create a paradoxical effect where greater BDNF
secretion would, in fact, lead to cognitive decline (Pang et al.,
2004). Another explanation could be a decrease in the penetrance
of the BDNF genotype across the lifespan, as other factors such
as the independent incidence of age-related diseases increase
their influence on brain structure and cognition (Lindenberger
et al., 2008). In fact, there are results that suggest that Met
carriers have more preserved frontostratial functions than Val/Val
subjects (Gajewski et al., 2012), what may lead to an increase in
the use of stratium-dependent mnemonic strategies, that could
give a potential advantage on Met carriers that might hinder the
original deficits reported in young individuals. This might help
explain conflicting results in this regard, since there are studies
showing that aged Met-carriers still have deficits in mnemonic
performance and they experience a steeper impairment in
memory tasks as they age (Kennedy et al., 2015) and have
diminished performance in remembering neutral faces when
compared with Val/Val individuals (Mascetti et al., 2013).

Aging is normally accompanied by a loss of memory function
(Erickson and Barnes, 2003). Episodic memories are particularly
more sensitive to the aging process (Verhaeghen et al., 1993)
than procedural or non-declarative memories (Light, 1991).
Within the limits of the episodic memory domain, some aspects
can be more vulnerable to aging than others. For example,
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associative memory tasks that require binding of multiple pieces
of information can be more sensitive to the aging process (Naveh-
Benjamin, 2000; Old and Naveh-Benjamin, 2008). This deficit is
mostly related to spatial (Tanila et al., 1997; Oler and Markus,
1998) and recognition memory loss (Moss et al., 1988; Danckert
and Craik, 2013). The vulnerability of particular mnemonic
processes to aging is probably due each of these functions being
supported by distinct brain regions showing differential rates
of functional decline with age (Buckner, 2004). Diminished
input from the EC to the DG could contribute to deprive
the HP from sensory information crucial for discrimination
of novel versus familiar stimuli when this stimuli are similar
(Wilson et al., 2005; Holden and Gilbert, 2012), and in
fact reductions in DG-CA3 connectivity are associated with
spatial learning decline in old animals (Smith et al., 2000).
The medial temporal lobe region (MTL), that is thought to
support episodic memory function, is particularly vulnerable to
cellular alterations that happen during aging and/or pathological
dysfunction (Jobst et al., 1994). Since episodic memory decline
is correlated to decreases in hippocampal volume (Charlton
et al., 2010), these changes could explain age related mnemonic
deficits. Another important structure for episodic memory in
the MTL is the perirhinal cortex (Prh), a region involved in
the discrimination of novel and familiar stimuli (Malkova et al.,
2001; McTighe et al., 2010) that is particularly crucial to solve
tasks involving ambiguous features (Bartko et al., 2007). Aging
alters discrimination in both in rats and humans increasing
a propensity to identify novel stimuli as familiar (Plancher
et al., 2009; Burke et al., 2010). This effect was, in some cases,
interpreted as a deficit in the ability to bind features of an
object, so that decisions are made based on the familiarity
of a single component. The consequence is the incapacity to
detect novel compositions of familiar features (Jones and Jacoby,
2005). In fact, complexity and ambiguity of the features was
proposed as a determining variable in recognition memory
deficits in aged rats (Burke et al., 2011; Gamiz and Gallo,
2012), as well as in Prh-lesioned animals using a configural
task with complex objects (Norman and Eacott, 2004). Several
molecular and biochemical alterations have been reported in
the Prh of aged animals that could contribute to the associated
cognitive deficits (Liu et al., 2008; Moyer et al., 2011). Since
exposure to novel objects is related to an increase in BDNF
levels in the Prh (Romero-Granados et al., 2010), and familiarity
discrimination in the presence of ambiguous stimuli (and not
clearly distinguishable ones) is impaired with BDNF antisense
ODNs infusions during a restricted time window after the
task (Seoane et al., 2011; Miranda et al., 2017), BDNF is an
interesting molecular candidate that could help to establish a link
between molecular and biochemical alterations and the pattern
of both spatial and recognition memory deficits associated
with aging. In particular, because optimal cognitive function
is linked to efficient neuronal plasticity, these memory deficits
might be coupled to alterations in the expression and regulation
of plasticity-related proteins such as BDNF, a protein whose
expression is both affected in the aging brain and is crucial
for memory consolidation and particularly for discrimination of
similar memories.

In correspondence with this idea, decrease in BDNF
expression has been associated with neuronal atrophy and death
occurring in some neurological disorders (Murer et al., 2001).
Administration of exogenous BDNF can prevent pathological
changes in the nervous system associated with aging (Nagahara
et al., 2009) [but see Fischer et al. (1994) for inconsistent results;
for review, Fumagalli et al. (2006)], and can rescue both BDNF-
induced LTP and spatial memory performance in aged animals
(Rex et al., 2006). Since BDNF has been linked to synaptic
plasticity, neurogenesis, neuronal survival and protection against
brain insults (Bath and Lee, 2006), the above results imply the
possibility that BDNF could act as a synaptic repair molecule.
There are a few evidence that support this idea, for example, acute
application of the TrkB agonist 7,8-dihydroxyflavone rescues
synaptic plasticity in the hippocampus of aged rats in vitro (Zeng
et al., 2011). Additionally, chronic treatment also prevents age-
related impairments in contextual and cued fear conditioning
with a simultaneous normalization of the spine levels that
normally decrease with age (Zeng et al., 2012). Furthermore, the
Lou/C rat, an animal model of successful aging that presents
a preserved cognitive performance across its longer lifespan
(Kollen et al., 2010), showed higher hippocampal BDNF than
Wistar rats and a decrease in proBDNF with age. This contrasts
with the increase in proBDNF seen in aged Wistar rats (Tapia-
Arancibia et al., 2008). However, the beneficial effect of BDNF
on neuroprotection and mnemonic performance in rats decrease
as age increases (Sohrabji and Bake, 2006), probably due to
additional changes in the processing and signaling pathway.
Consistent with the role of BDNF on synaptic plasticity and
memory, elderly Lou/C rats never showed short- or long-
term memory decline in recognition memory tasks or impaired
LTP (Kollen et al., 2010). However, Silhol et al. (2007) found
that learning-associated cognitive training could increase TrkB
receptor expression in aged animals and also increased proBDNF
processing both in aged and young rats, indicating that learning
leads to a strengthening of BDNF pathway, especially in aged
animals where this pathway is affected.

BDNF AND ALZHEIMER’S DISEASE

Reduced levels of BDNF have been reported not only under
normal aging conditions but also in pathological conditions
including Huntington (HT), Alzheimer’s disease (AD), and
Parkinson’s disease. However, the profile of cognitive deficits
greatly differs between these pathologies according to the
brain regions affected by degeneration. For example, the most
profound BDNF deficits are reported in the hippocampus,
parietal, entorhinal and frontal cortex for AD (Hock et al., 2000)
and in the striatum and motor cortex for HT (Zuccato et al.,
2008). In this section we will focus on AD because it starts mainly
as impairment in declarative memories, without affecting other
neurological functions (Walsh and Selkoe, 2004). It has been
proposed that this feature is related to the degenerative profile
of the disease that starts in the hippocampus, parahipocampal
cortices and amygdala, but not in primary sensory and motor
cortices (Selkoe, 2001).
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There is a substantial amount of studies supporting the
idea that neurotrophic factors are crucial for the etiology of
AD, in particular BDNF. BDNF protein and mRNA levels
(Hock et al., 2000) as well as proBDNF (Peng et al., 2005) are
reduced in the post-mortem brain of AD patients compared
with age-matched controls, with no changes in TrkB levels
(Savaskan et al., 2000). This reduction was also reported in Mild
Cognitive Impairment (MCI) (Shimada et al., 2014), a potentially
prodromal stage of AD (Flicker et al., 1991). Furthermore,
reduced circulating levels of BDNF were also found in MCI
(Forlenza et al., 2010). BDNF levels are correlated to the
severity of the disease and with episodic memory performance
in patients (Peng et al., 2005), suggesting that these decreases
could be related to the pathogenesis of the disease. In conclusion,
downregulation of BDNF and proBDNF are thought to be
an underlying mechanism related to early AD (Peng et al.,
2005). However, Laske et al. (2006) found that patients in the
early stages of AD had significantly higher sBDNF levels than
patients in the late stages and also than age-matched controls.
This highlights that it is difficult to establish a causal link
between BNDF downregulation and the development of this
neurodegenerative disease because the pathology is accompanied
by a loss of cell density and dendritic spines that could
secondarily affect BDNF levels. In this regard, there are also
post-mortem and serum level studies that report an increase
in BDNF and TrkB concentrations in the hippocampus and
parietal cortex of AD patients (Durany et al., 2000; O’Bryant
et al., 2009). This increase may be related to compensatory
mechanisms that could contribute to the repair by degradation
of β-amyloid. In addition, other potential moderators could
contribute to differences and heterogeneity seen in these studies.
Differences in diagnostic criteria, stages of the disease, sex and
education and the use of pharmacological treatments such as
acetylcholinesterase inhibitors or psychotropic medication that
are known to raise BDNF levels (Leyhe et al., 2008), or could
come from other potential sources outside the CNS such as
immune cells (Kerschensteiner et al., 1999).

Given that synaptic loss is the major correlate of cognitive
impairment, much stronger than the presence of plaques or
tangles (Terry et al., 1991), there is a recent view of AD as
a “synaptic pathology” (Lippa et al., 1992; Heffernan et al.,
1998). Aβ monomers are normally generated and secreted at
firing synapses, and are not toxic but neuroprotective as they
have an active role in synaptic regulation (Giuffrida et al.,
2009) and are crucial for neuronal function (Abramov et al.,
2009). Aβ monomers are one of the many factors that regulate
synaptic function and they can activate CREB via the PI3K/AKT
pathway, leading to a sustained CREB-regulated transcription
and release of BDNF (Giuffrida et al., 2018; Zimbone et al.,
2018). In this way, BDNF can act as a converging point of many
synaptic regulators. In Alzheimer’s disease (AD), neurotoxic
β-amyloid (Aβ) oligomers are formed from the self-association
of Aβ monomers. These oligomers can promote neurotoxicity
through different ways (Pearson-Leary and McNay, 2012).
Arshavsky (2006) suggested that the selective vulnerability of
memory related areas could be, in fact, a result of specific
cellular modifications required for the process of memory

consolidation. An important event in AD is the pathogenic
Aβ-mediated alterations in the levels of neurotrophic factors
(NTFs) (Budni et al., 2015). Since pathogenic Aβ oligomers
cannot can activate PI3K/AKT pathway and induce CREB
activation, the increase in the levels of Aβ-oligomers can lead to
an impairment in CREB activation in the brain of patients with
AD and mouse models of AD (Bartolotti et al., 2016). Soluble
Aβ oligomers are known to alter signal transduction pathways
crucial for learning and memory processes such as CREB-
regulated transcription (Caccamo et al., 2010) and trafficking
of NMDA type of glutamate receptors (Snyder et al., 2005).
Thus, alterations in those pathways could play an important
role in the etiology of the disease. Altered levels of BDNF in
AD are downstream of Aβ-accumulation and could be related
to Aβ–induced dysregulation of CREB transcription (Caccamo
et al., 2010; Pugazhenthi et al., 2011). Even if BDNF does
not modify Aβ accumulation, it could have an important
function in moderating the effects of Aβ on cognitive and
structural aspects (Nagahara et al., 2009). BDNF protects against
Aβ-mediated toxicity by contributing to its degradation and
preventing tau hyperphosphorylation (Elliott et al., 2005; Tapia-
Arancibia et al., 2008). In this sense, BDNF is expressed by
microglial and astroglial cells in the plaque vicinity and seems
to protect from neuroinflammation, thereby supporting neuronal
survival (Lindvall et al., 1994; Kerschensteiner et al., 1999)
and preventing apoptosis (Tamatani et al., 1998). On the other
side, Aβ down-regulates BDNF mRNA in vitro via reduction
of CREB (Rosa and Fahnestock, 2015) and disrupts retrograde
axonal transport of BDNF (Poon et al., 2011) and conversion
of pro-BDNF to mature BDNF (Zheng et al., 2010). It also
interferes with synaptic plasticity mediated by BDNF even at
concentrations that do not kill the cells (Wang et al., 2006).
This downregulation occurs before the appearance of plaques
and is linked to memory deficits in AD animal models (Francis
et al., 2012) and in MCI (Peng et al., 2005). Tau, a mediator of
Aβ-induced toxicity, can significantly downregulate BDNF via
transcript IV both in vitro and in vivo by itself (Rosa et al.,
2016). As mentioned before, many studies found that decreases
in serum BDNF levels can be detected in individuals with
MCI, so it is tempting to speculate that BDNF loss could be
involved as an early event in this synaptic dysfunctions. However,
the presence of some inconsistencies between studies with
MCI patients warns us to be cautious with these speculations.
Nevertheless, these results suggest a critical role of BDNF in
the regulation of Aβ-amyloid toxicity, suggesting that BDNF
dysregulation could contribute to synaptic dysfunction and
mnemonic impairment related to AD. This data implies that,
although central to the development of AD, changes in BDNF
expression could be an effect of earlier functional modifications
in other synaptic related proteins. In particular, one of these
proteins could be Aβ, that in its monomeric form has a normal
physiological role in synaptic plasticity and neuronal survival
in the brain and can actually have an active role in these
BDNF changes by regulating BDNF transcription and release
(Parihar and Brewer, 2010). In any case, the beneficial effects
of BDNF on memory and cognition could reflect its synapse
repair features.
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Changes in the cell microenvironment, where a lack of
trophic support can lead to a decrease in neuronal survival
and proliferative activity (Drapeau and Nora Abrous, 2008),
could contribute to the degeneration of specific neuronal
subpopulations in pathological conditions. During this period,
changes in BDNF levels contribute to age-related hippocampal
volume changes, and atrophy associated with pathological
conditions (Erickson et al., 2012). There is evidence of as much
as 1–2% annual hippocampal atrophy in the elderly without
signs of dementia, while in patients with AD this deterioration
goes up to 3–5% per year (Jack et al., 1998). In patients with
MCI, hippocampal volume is predictive of rapid conversion to
dementia (Jack et al., 1998), evidencing its importance in the
progress of the disease.

Most studies report that BDNF genotype is not related to
the risk of developing AD (Combarros et al., 2004; Nishimura
et al., 2004; Li et al., 2005) [but see for evidences of effects
present only in women (Fukumoto et al., 2010)], and Genome
Wide Association Studies could not find a relationship between
BDNF Val66Met polymorphism and risk of AD (Lambert et al.,
2013). However, some studies do report an increase in the
risk for AD in Val carriers (Ventriglia et al., 2002; Matsushita
et al., 2005; Voineskos et al., 2011). Other studies found an
association between Met carriers and greater rates of decline
in episodic memory and hippocampal atrophy in patients with
MCI (Forlenza et al., 2010; Lim et al., 2013, 2016), leaving
Aβ accumulation unaffected (Lim et al., 2013). Although there
are certain inconsistencies among the literature, BDNF role
in the development of AD seen with Val66Met has been
replicated with other BDNF polymorphisms (Kunugi et al., 2001;
Riemenschneider et al., 2002). The lack of consistency between
studies could be related to differential effects of BDNF during
distinct stages of the disease, with more circulating BDNF in MCI
patients, and less in AD patients (Yu et al., 2008; Forlenza et al.,
2010). Lower BDNF levels may be linked to neuronal death in
AD, concealing any effect of the BDNF gene. Since the complexity
of the pathological changes stemming from the disease increases
as the severity progresses, associations between BDNF Val66Met
polymorphism and AD should be more obvious in preclinical
stages in which the disease presents almost exclusively subtle
alterations in mnemonic performance (Fahnestock, 2011).

Neurotrophic factors not only moderate neuronal and
synaptic dysfunction but also cognitive decline in AD
(Fahnestock, 2011). Higher sBDNF is associated with a
protection against future occurrence of dementia and AD
(Weinstein et al., 2014) and predictive of slower rates of decline
(Laske et al., 2011). In the same manner, changes in BDNF
levels induced pharmacologically or by aerobic exercise are
related to better cognitive function and diminished synaptic
dysfunction both in humans at risk of developing AD and
in animal models of AD (Baker et al., 2010; Intlekofer and
Cotman, 2013). These effects could be related to the ability of
BDNF to prevent lesion-induced neuronal degeneration (Morse
et al., 1993; Kiprianova et al., 1999). According to this idea,
post-lesion gene transfer of BDNF partially restored the deficits
in learning capacity and synaptic plasticity in an AD model in
which BoNTx-induced damage to the entorhinal cortex was used

to mimic AD pathology (Ando et al., 2002). Neural stem cell
transplants or CREB binding protein gene transfers reversed
spatial memory deficit via BDNF in AD mouse models, despite
widespread Aβ plaque and tau pathology (Blurton-Jones et al.,
2009; Caccamo et al., 2010). In a recent study, delivery of BDNF
to the entorhinal cortex in amyloid transgenic mice reversed
neuronal atrophy and synaptic loss, regulated neuronal signaling,
and diminished the related mnemonic deficits without changes
in the amyloid plaque load (Nagahara et al., 2009) indicating
that BDNF can act through amyloid-independent mechanisms
to exert its protective effect. Furthermore, 7,8-dihydroflavone
(7,8-DHF), Neotrofin (a hypoxanthine derivative that stimulates
neurotrophic factor production) and Neuropep-1 (a BDNF
modulating peptide) have shown to reverse memory deficits
in animal models of AD or even in preclinical trials (Glasky
et al., 1994; Devi and Ohno, 2012; Shin et al., 2014). In this way,
BDNF could mediate the protective effect of exercise and caloric
restriction on neurodegeneration (Vaynman et al., 2004b).
This strengthens the need to develop behavioral interventions
that could prevent the risk of developing dementia or slow
the progression to dementia in patients with MCI, a path that
is currently in progress. Many of these new paths point to
lifestyle changes that range from antioxidant diet, environmental
enrichment and social interaction to physical or cognitive
exercise as potential interventions (Fahnestock et al., 2012).

THE EFFECT OF CHRONIC STRESS ON
BDNF AND THE LINK TO PSYCHIATRIC
DISORDERS

Chronic stress is a known factor involved in the incidence of
AD and cognitive impairment (Wilson et al., 2007c). Structures
involved in the control of the physiological status of an organism
are susceptible to modulation by chronic stress. In particular,
the hippocampus is altered by prolonged exposure to aversive
situations (Kim et al., 2015). These abnormalities are reflected
in deficits in spatial memory tasks and novel object recognition
(Luine et al., 1994; Vedhara et al., 2000; Baker and Kim,
2002), but also in altered synaptic plasticity processes (Shors
et al., 1989; Kim and Yoon, 1998) like suppression of LTP
(Artola et al., 2006). Chronic stress typically decreases BDNF
hippocampal expression (Smith et al., 1995; Murakami et al.,
2005), however, when the cause of the stress disappears, the
hippocampus shows amelioration of the cognitive and synaptic
deficits (Sousa et al., 2000; Hoffman et al., 2011).

To this date, a wide variety of strategies have been assessed to
reduce the deleterious effects caused by chronic stress. Infusions
of BDNF in the rat hippocampus before a chronic restraint stress
protocol can protect against the deficits in learning and memory
in the MWM and in LTP (Radecki et al., 2005) and shRNA against
BDNF before a stress protocol can revert the spatial reference
memory deficits during the post-stress-rest period.

Exercise, is a well-known strategy to increase BDNF brain
levels, so it has been proposed as a non-invasive way to mimic
the effects of direct BDNF administration over chronic stress.
Radahmadi et al. (2016) found that the hippocampal BDNF
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increases in response to exercise after a chronic stress protocol.
On the other hand, Dief et al. (2015) showed that animals
that followed a 30 days swimming training program improved
their performance in the T maze after being exposed to chronic
stress and this enhancement correlated with upregulation of
hippocampal BDNF. Also, Kwon et al. (2013) described a BDNF-
mediated improvement in MWM performance in chronically
stressed mice that started treadmill running 12 weeks before the
beginning of the stress protocol and continued throughout it.

Shafia et al. (2017) investigated the palliative effects of exercise
(alone or combined with fluoxetine) on a rat model of post-
traumatic stress disorder. This model shows impairments in
fear conditioning and extinction, inhibitory avoidance task and
location recognition memory. Interestingly, in most tests, the
effects of the combined treatment were similar to the ones
obtained with exercise alone. They also found, in agreement with
the work of Garza et al. (2004), that exercise alone and exercise
plus antidepressant enhanced hippocampal BDNF expression,
but not antidepressant alone.

Enriched environment (EE) has been shown to increase BDNF
levels in the hippocampus in comparison with standard housing
conditions (Novkovic et al., 2015). Thus, EE could be an easy
way to promote the systemic and neural recovery from the effects
of chronic stress. Shilpa et al. (2017) showed that exposure to
EE following 10 days of immobilization (2 h/day) ameliorates
spatial memory deficits in a version of the radial arm maze and
depressive-like behavior. Recovery seems to be achieved through
the modulation of several signaling cascades, including BDNF’s.

Seong et al. (2018) suggested that EE is as effective as
Fluoxetine when it occurs after exposure of the animals to
a chronic stress protocol, but additional measures of the
effectiveness of the stress protocol would be needed to establish
the success of the treatment. Interestingly, BDNF levels were
increased in the hippocampus of rats that receive either EE or
Fluoxetine in comparison with the control group (stressed but
without posterior treatment). Considering that chronic stress
is linked to depressive-like symptoms (Garcia, 2002; Calabrese
et al., 2009), the results obtained using antidepressants do not
seem surprising. The mechanisms of antidepressant actions over
chronic stress and the putative involvement of BDNF have
also been extensively studied but with no consistent results
yet. Larsen et al. (2010) showed that chronic antidepressant
treatment reversed depressive-like behavior caused by chronic
unpredictable stress-induced and increased BDNF mRNA
expression in the granular cell layer of the dorsal hippocampus
(independently of exposure to stressors). Using a different
stress model, Tsankova et al. (2006) were able to normalize
behavioral alterations in mice exposed to a social defeat stress
protocol followed by chronic (but not acute) administration
of imipramine They proposed a model in which chronic
stress induces repression and chronic imipramine induces de-
repression of the bdnf gene in the hippocampus through changes
in the chromatin structure.

Some studies are focusing in compounds that have been
originally used to treat other diseases but have shown some
antidepressant effects in animal models, such as resveratrol.
Resveratrol and curcumin, when chronically administrated,

prevent the behavioral and biochemical alterations induced by
chronic restraint and unpredictable stress, respectively, and those
effects seem to be mediated by an increment in the expression
of BDNF (Xu et al., 2006; Zhang et al., 2017). Zhou et al.
(2017) show that biperiden alleviates depression-like symptoms
induced by chronic unpredictable stress, increasing performance
in the sucrose preference, novelty suppression feeding and forced
swimming tests. Importantly, these effects were inhibited by
pretreatment with the TrkB antagonist K252a.

Since the evidence suggests that BDNF may drive the recovery
from stress-induced effects on the hippocampus, an interesting
question emerges: Is BDNF capable of reversing the effects of
chronic stress in the presence of the stressor?

Radahmadi et al. (2016) tested the effect of exercise during the
exposure to stressors (“protective exercise”). Unlike preventive
and therapeutic exercise, no increment on BDNF hippocampal
levels was found. On the other hand, Miller et al. (2018)
explored, in mice, the potential palliative effects of running on
chronic stress-related impairments when exercise and stress are
co-occurring. They found that the TrkB receptor had higher
expression levels in both exercised groups (stressed and non-
stressed) compared with both sedentary groups, supporting the
hypothesis that the mitigation of the negative consequences of
stress by exercise could be mediated by BDNF.

Depending on the chronic stress protocol (duration and type
of stressor), different and even contrasting results have been
found (Vasquez et al., 2014). BDNF appears to be an important
underlying molecule behind the restitution of a normal cognitive
phenotype in animal models of chronic stress. The fact that
BDNF could be increased with non-invasive protocols and/or
drugs -some of which are used in clinical trials- makes it attractive
for human therapies.

The link between stress, specific genes and the development of
psychiatric disorders has been extensively studied (Abbott et al.,
2018), and a causal role has been ascribed of gene-environment
interactions in the etiology of many of them (Rogers et al.,
2019). In fact, psychiatric disorders can be defined as clinical
entities emerging from the genetic-environmental interaction
(for review, Gallo et al., 2018).

PSYCHIATRIC DISORDERS AND BDNF

In the last few years, evidence from animal models and clinical
studies strongly suggest that dysregulation of neurotrophic
factors could play an important role in the etiology of the
bipolar disorder (BD), major depressive disorder (MDD), and
schizophrenia (SZ) (Duman and Monteggia, 2006; Autry and
Monteggia, 2012; Nieto et al., 2013). Due to the role of BDNF
in neural plasticity, there could be a link between BDNF
expression and the cognitive symptoms associated with memory
impairments (Autry and Monteggia, 2012).

The mnemonic domain is commonly affected in different
psychiatric disorders, such as BD (Zhou et al., 2018; Lin et al.,
2019), MDD (Roca et al., 2015; Ahern and Semkovska, 2017),
or SZ (Ricarte et al., 2017). Moreover, studies of post-mortem
brain tissue of patients with BD and MDD reported that BDNF
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levels are decreased in structures involved in memory processes,
such as the hippocampus (Reinhart et al., 2015) and the prefrontal
cortex (Dwivedi et al., 2003). In the case of SZ, post-mortem brain
tissue analyses have shown more controversial results. While
some studies observed an increase in BDNF expression in the
prefrontal cortex (Takahashi et al., 2000) and the hippocampus
(Iritani et al., 2003), others have shown a decrease in both
structures (Weickert et al., 2003; Issa et al., 2010). Although
BDNF was originally thought as a viable indicator of pathological
brain functioning for early detection of BD, MDD, SZ, or AD,
the discriminative power of BDNF as a biomarker is highly
limited, since it seems to be a non-specific marker of many
neuropsychiatric disorders.

The BD is a neuropsychiatric disorder that emerges from the
interaction between genetic and environmental factors and is
characterized by the switching between maniac and depressive
episodes (for review, Harrison et al., 2018). It has been proposed
that BDNF signaling participates in the physiological effects
produced by some pharmacological treatments used for BD
(Shaltiel et al., 2007). It has been shown that sBDNF decreases
in the first episode of unmedicated BD patients and that, after
1-year of pharmacological intervention, sBDNF concentration
increases (Palomino et al., 2006). in addition, there was a
a negative correlation between the number of episodes and
sBDNF levels (Kauer-Sant’Anna et al., 2009). It has been
reported that sBDNF positively correlates with the duration of
the maniac and depressive episodes (Dias et al., 2009). This
evidence suggests that episode-related changes in the structure
of the brain could be linked to peripheral BDNF concentration.
Cao et al. (2016) have shown that hippocampal volume is
reduced in patients with BD that present Val66Met BDNF
polymorphism compared with controls and patients with MDD.
Moreover, they proposed a link between the hippocampal volume
and the performance in an episodic memory task. Another
work has shown that the peripheral BDNF correlates with the
performance in episodic memory task in BD patients with the
BDNF Val66Met polymorphism (Chang et al., 2018). In this
line, a recent study has shown that high levels of sBDNF are
associated with good cognitive performance, including verbal
memory (Mora et al., 2019). This evidence suggests that changes
in BDNF expression in BD patients could produce structural
modifications in the hippocampal formation related to episodic
memory impairments. Despite this, most of the studies report
alterations in other cognitive domains that are important for a
good performance in episodic memory tasks, such as attention
and working memory (for review, Sole et al., 2018). Thus, BDNF
dysregulations could be related with the emergence of more
complex symptom’s profiles. For this reason, the relationship
between BDNF and episodic memory in BD remains unclear.

Major depressive disorder is one of the most common mood
disorders worldwide and is characterized by the absence of
pursuit of pleasurable activities and the presence of negative
thoughts (Kim and Moore, 2019). Since most common drugs
used as antidepressant block the serotonin transporter (SERT),
increasing extracellular serotonin in the raphe’s nucleus post-
synapses (for review, Teissier et al., 2017), it has been
proposed that a misbalance in the serotonergic release could

be related to the etiology of the depressive symptoms (for
review, Liu et al., 2018). BDNF regulates the growth and
reconstruction of 5-HT containing neuronal terminals in the
cortex (Mamounas et al., 1995), and administration of BDNF
in the raphe nucleus reduces behaviors related to depressive
symptoms in rats (Siuciak et al., 1997). In addition, MDD patients
present cognitive decline in different domains (Zuckerman et al.,
2018), including episodic memory (Jayaweera et al., 2016) but
only recently these deficits have been studied in detail. A large
amount of work shows that sBDNF is decreased in MDD
(Molendijk et al., 2011). Oral et al. (2012) found that patients
that recurrently present depressive episodes show lower levels of
sBDNF compared with those patients that were cursing their first
episode. Interestingly, antidepressant treatment increases sBDNF
concentration (Molendijk et al., 2011), but there is no consensus
on whether lower sBDNF correlate with poor performance in
memory tasks observed in this pathology (Oral et al., 2012).

In the case of the SZ, different studies have shown that
the level of sBDNF correlates with cognitive performance in
different domains (Carlino et al., 2011). Despite the lack of
consensus on whether basal sBDNF is increased or decreased in
SZ patients (Fernandes et al., 2015), some studies have indicated
a correlation between memory performance and sBDNF levels
(Zhang et al., 2012; Hori et al., 2017). Interestingly, there
are evidences that pro-cognitive effects of pharmacological
interventions in SZ could be mediated by BDNF (Einoch et al.,
2017). For example, Zhang et al. (2018) have found that a 12-
week chronic treatment with olanzapine produced an increase
in BDNF plasma concentration. Moreover, BDNF concentration
positively correlated with cognitive performance in a RBANS
scale of memory. Not only the pharmacological interventions
were effective on the reduction of mnemonic symptoms, different
cognitive training protocols were also designed to enhance
specific cognitive domains, especially memory (Guimond et al.,
2018; O’Reilly et al., 2019). Fisher et al. (2016) conducted
a computerized cognitive training in SZ patients and the
patients exposed to this program present higher levels of sBDNF
compared to the control group. They observed an enhancement
in memory, but a causal link between sBDNF and memory
remains unclear (Heitz et al., 2018).

BDNF AS A POTENTIAL MEDIATOR
UNDERLYING THE BENEFITS OF
THERAPEUTIC STRATEGIES

Considering all the results mentioned above, it would be
tempting to suggest the use of BDNF as a therapeutic target
for both age-related and neuropsychiatric-related cognitive
dysfunction. This idea has found many difficulties to be put
to practice because of the poor brain barrier penetration of
BDNF and short half-life on plasma. Moreover, gene therapy
and BDNF mimetic strategies came across many negative
side effects that led to their abandonment (Thoenen and
Sendtner, 2002). Clinically plausible alternative approaches could
include a natural increase the production of endogenous BDNF
(Balkowiec and Katz, 2000). In this sense, epidemiological studies
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have suggested that a number of lifestyle factors such as
physical exercise, diet and social activity and education may
reduce the long-term risk of cognitive impairment and dementia
(Larson et al., 2006; Wilson et al., 2007b; Verburgh, 2015), and
animal studies are consistent with this idea (Adlard et al., 2005).

In particular, the risk of developing AD is highly increased
in a lonely person (Wilson et al., 2007a), indicating that social
interaction could delay the onset of the disease. Physical activity
is another lifestyle factor that could influence the progress
of the disease. Recent reports from both epidemiological and
interventional studies reinforce the idea of using physical activity
as a strategy to increase neuroplasticity in pathological conditions
(Gregory et al., 2012). The influence of behaviors such as exercise
and social interaction on learning and memory processes has
been thoroughly studied. Researchers have found a relationship
between frequent social activity and improved cognitive function
(Stern, 2006). In the same direction, the cognitive improvement
due to physical exercise has also been well documented (Smith
et al., 2010). Physical exercise has shown not only to ameliorate
structural changes in the brain, but also to protect against aging-
related cognitive decline (Voss et al., 2013; Duzel et al., 2016).

Considering that lifestyle implementations have the ability to
impact in the brain, a central question is how these changes in
energy metabolism and social stimuli can impact on the brain
structure and interact with synaptic plasticity and molecular
systems to improve cognitive function.

A current model explains the effects of these lifestyle factors
in terms of changes in vasculature and neurotrophic and
neurotransmitter-support system (Vivar et al., 2013). Of all
these changes, BDNF is the only one that is present in all the
aforementioned lifestyle manipulations. BDNF is increased by
social interaction with conspecifics in APP/PS1 mice, leading to
the reversal of memory deficits (Hsiao et al., 2014). Also, BDNF
could be important for the regulation of energy homeostasis,
since diminished BDNF levels are associated with disorders of
energy metabolism such as obesity and hyperglycemia (Rios
et al., 2001). In fact, a high fat diet was shown to decrease
BDNF levels in the hippocampus and impair learning and
memory (Molteni et al., 2002a). Additionally, the increase in
BDNF is one of the most consistent changes reported following
exercise, as recently discussed in a meta-review (Szuhany et al.,
2015). The most robust experiments supporting the fundamental
role of BDNF in exercise-induced improvement in cognitive
function are the ones in which blockade of BDNF impaired the
cognitive improvements induced by exercise (Vaynman et al.,
2004a; Garcia-Mesa et al., 2014; Kim and Leem, 2016). Vaynman
et al. (2004a) showed that the exercise-induced enhancement
of learning in the MWM task was blocked by TrkB-IgG
administrated during the exercise period. Furthermore, exercise
enabled the acquisition of sub threshold experiences (object
location memory task) and this effect was dependent on BDNF.
A similar effect was reported by Intlekofer and Cotman (2013)
using BDNF siRNA to diminish BDNF function.

For its practicality, physical activity is the lifestyle change with
more potential as a therapeutic/prevention strategy. A bulk of
studies have focused on the idea of aerobic exercise as a potential
non-pharmacological and low cost treatment to maintain and

improve neurocognitive function (Hillman et al., 2008). A meta-
analysis of several longitudinal training studies showed that
exercise improved cognitive function regardless of the task type
(Colcombe and Kramer, 2003). Recent studies confirmed this
effect showing that not only spatial or contextual hippocampal
dependent- memory tasks improve with exercise (Albeck et al.,
2006; Luo et al., 2007), but also non-spatial memories such as
object recognition that are thought to rely more heavily on the
Prh than the HP (Hopkins and Bucci, 2010). A single session
of cardiovascular exercise benefits long-term memory but does
not influence short-term memory (Roig et al., 2013). Moreover,
exercise can improve memory in aged animals specifically during
a restricted time window after the experience, reinforcing the
specific role of exercise over the memory consolidation process
(Snigdha et al., 2014). Interestingly, many studies found that sex
may be an important variable when evaluating the effectiveness
of exercise interventions (Barha et al., 2017) and this is consistent
with the sex-specific mechanisms of action of BDNF (Chan
and Ye, 2017). The timing of the intervention could also be
relevant. In several models of traumatic neurological injury, when
interventions are given prior to the damage, induction of BDNF
reduced neuronal degeneration and improved cognitive outcome
(Bruce-Keller et al., 1999; Zhang et al., 2011). Although the effects
of exercise are somewhat short-lived (Alaei et al., 2007; Hopkins
and Bucci, 2010), some interventions can improve the outcome
even when given after the damage (Griesbach et al., 2004).
However, the duration of the benefits depends on the age of the
subject during the exercise exposure. While adolescent exercise
training did not affect BDNF levels immediately after an object
recognition task, it did lead to greater BDNF levels in the Prh if
the task was done 2 weeks after. In adulthood, exercise increased
BDNF levels immediately after the task but this effect was short-
lived and lasted less than 2 weeks (Hopkins et al., 2011). These
data suggest that exercise could modulate learning related plastic
changes in an age-dependent manner. Although the benefits
of exercise are related to many growth factors, BDNF is the
only one consistently elevated after a few weeks of continuous
exercise (Molteni et al., 2002b). This neurotrophin is rapidly
induced in the hippocampus and cortical regions (Cotman and
Berchtold, 2002), and remains elevated for several days after
exercise (Erickson et al., 2010). In addition, BDNF levels can
be rapidly re-induced up to peak levels by a subsequent sub
threshold exposure to exercise, even several days after the end of
the exercise program (Berchtold et al., 2005).

Exercise does not influence brain regions uniformly, but
affects them in a more selective way, which suggests location-
specificity of the molecular pathways involved in exercise-
induced plasticity. Interestingly, the effects of exercise on BDNF
expression occur in regions related to mnemonic functions such
as the anterior hippocampus, cerebellum and frontal cortex, but
not others such as the striatum (Neeper et al., 1996). This is
in accordance with previous reports indicating that exercise-
induced increases in sBDNF levels are associated with changes
in hippocampal volume, which, in turn, correlate with spatial
memory performance (Erickson et al., 2011).

The positive effects of exercise on plasticity are particularly
relevant for the aging population, in which BDNF levels are
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decreased (Erickson et al., 2010). Considering that the aging
brain is still capable of plasticity, lifestyle related experiences
could be a way to recruit plastic processes and counteract
the detrimental effects of aging (Churchill et al., 2002). In
aged animals, hippocampal neurogenesis and BDNF levels can
increase with exercise (Marlatt et al., 2012). Although these
effects are not as robust as those seen in younger animals (van
Praag et al., 2005), the increase in BDNF seems to ameliorate
mental deterioration and improve memory function (Erickson
et al., 2012). In fact, long-term exercise programs are able
to rescue these cognitive deficits even after the first signs of
mnemonic impairment (Tsai et al., 2018). A recent clinical trial
examined the impact of aerobic cardiorespiratory training versus
stretching on MCI patients and reported sex-dependent cognitive
improvements related with trophic factor and Ab-40 and Ab-42
circulating levels (Baker et al., 2010).

Physical activity is also associated with a lower risk of
developing dementia (Friedland et al., 2001). Many clinical trials
point toward improved cognition and reduced incidence of
psychiatric symptoms when patients with mild AD received a
physical training protocol (Hoffmann et al., 2016; Cammisuli
et al., 2018). However, some studies suggest that environmental
enrichment could be more beneficial for cognition than physical
exercise alone (Wolf et al., 2006; Cracchiolo et al., 2007).

Coordinative exercise (Niemann et al., 2014) and cognitive
training (Basak et al., 2008; Hall et al., 2009) can also induce gray
matter plasticity and enhance cognitive functions in older adults.
However, the improvement generated by prior training is usually
domain-restrictive and only acts over memory systems affected
by the previous experience (Markowska and Savonenko, 2002;
Green and Bavelier, 2008). Nonetheless, there are some reports
that show a generalized benefit of prior experience to different
tasks and contexts (Buschkuehl et al., 2008). A combination
of physical and cognitive training with control of nutritional
and cardiovascular risk factors during a 2-year period led
to improved cognitive performance in old adults at risk of
developing dementia (Ngandu et al., 2015). In animal studies,
environmental enrichment could be seen as a multidomain
intervention. It consists of social enrichment, physical exercise
and environmental changes and has been shown to increase
BDNF levels and enhance learning and memory in different
domains such as object recognition, spatial learning and motor
abilities (Greenough et al., 1972; Frick and Benoit, 2010). The
combination of both sensory enrichment and physical activity
has more impact on neuronal plasticity than these elements
given independently. This motivated original therapeutical
proposals in human research. For example, a novel dancing
program with higher cognitive and coordinative demands than
previous physical activity programs induced more gray matter
increases in an aged group than a traditional sport program
with comparable cardiovascular demands (Muller et al., 2017;
Rehfeld et al., 2018).

One important question regarding the effects of exercise on
cognitive function is to establish the mechanisms responsible
for the cross talk between cardiovascular/muscle activity and
the central nervous system. The muscle higher metabolic
rates could lead to the secretion of signaling molecules, that

could subsequently upregulate plasticity related gene expression
and protect the brain from damage. In this way, elevated
plasticity molecules such as BDNF could prime the brain to
be better prepared for subsequent changes related to learning
or could be selectively secreted in an activity-dependent
manner during learning experiences. As a result, exercise
could enhance the activity of a general molecular machinery
important for learning and memory. In accordance with this
view, molecules such as CREB, NMDARs subunits and BDNF
are particularly induced following exercise (Molteni et al., 2002b)
and brain regions important for memory formation such as
the hippocampus are selectively influenced by physical activity
(Vaynman et al., 2004b).

A potential mechanism for the exercise-related
neuroprotective effects of BDNF is via modulation of synaptic
and structural plasticity. Plastic changes induced by exercise
include increased neurogenesis (van Praag et al., 1999b; Merkley
et al., 2014), greater arborization of neuronal dendrites and
synaptogenesis (Eadie et al., 2005; Dietrich et al., 2008), as well
as increased amplitude and reduced threshold for LTP (van
Praag et al., 1999a). Since these effects are accompanied by a
concurrent increase in BDNF levels (Ding et al., 2006; Ferris
et al., 2007), BDNF could be a potential mediator. In addition,
increased vascularization (Morland et al., 2017) accompanied
by greater dendritic complexity and neurogenesis could explain
the increase in hippocampal volume following exercise (Erickson
et al., 2011). The progressive age-related decline in neurogenesis
has been associated with a non-permissive microenvironment
with low levels of neurogenesis-promoting factors. However, this
microenvironment is still responsive to environmental changes
and can be stimulated even at late stages to provide molecular
cues for proliferation (van Praag et al., 2005; Kronenberg et al.,
2006; Lugert et al., 2010; Silva-Vargas et al., 2013; Smith et al.,
2018). Changes in growth factor levels such as BDNF might
underlie the decrease in neurogenesis seen as a consequence
of disease or aging, and the aged brain retains the capacity to
respond to the neurogenesis-stimulating effects of growth factors.

Exogenous application of BDNF can restore the levels
of hippocampal neurogenesis in aged animals (Scharfman
and Maclusky, 2005). In the same way, exercise-induced
increases in neurogenesis are necessary for the physical activity-
dependent enhancement in learning and memory (Clark et al.,
2008). This led to the idea that neurogenesis could be the
substrate of this cognitive enhancements mediated by BDNF
(Bekinschtein et al., 2011).

Another potential beneficial effect of BDNF is its ability to
protect neurons from oxidative damage or excitotoxic stress
(Cheng and Mattson, 1994; Wu et al., 2004) and from Aβ-induced
degeneration (Counts and Mufson, 2010) in animal models of
normal and pathological aging. In fact, BDNF is upregulated
in response to different kinds of insults to the nervous system
(Hsu et al., 1993; Yang et al., 1996; Hayashi et al., 2000).
An exercise regime can lessen the accumulation of oxidative
cell damage and the dysfunction characteristic of aged animals
(Radak et al., 2001), and selective suppression of BDNF increases
the vulnerability of neurons to excitotoxicity (Jiang et al., 2005)
and increases amyloidogenesis (Matrone et al., 2008).
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Although there should be a clear excitement to establish
a systematic exercise program to ameliorate or even prevent
symptoms of memory deficits related to aging, psychiatric
disorders or diseases, many limitations still exist for this
therapeutic line. One of the most important drawbacks of this
approach is that the high prevalence of chronic diseases in
the aged population affects exercise performance and feasibility,
increasing the potential risks of the treatment, especially for high
intensity protocols (Hundley et al., 2001). This directly impacts
on the motivation to follow these kinds of treatments, which
are known to have low adherence (Kosse et al., 2013). Programs
with lower intensities could be a better choice, since they are
still able to impact positively on cognition and neurophysiology
in aged subjects without affecting adherence to the treatment
(van der Bij et al., 2002). It has been reported that the lack
of time is also one of the main reasons for avoiding regular
practice of aerobic exercise (Gillen and Gibala, 2014). Thus,
there is interest in developing more efficient training programs
involving less time demand but inducing a similar BDNF
response. Pietrelli et al. (2018) demonstrated, in animals, that
the practice of low/moderate intensity aerobic exercise through
2 to 18 months of life increased BDNF in various brain structures
like the prefrontal cortex and the hippocampus and reduces the
normal decline due aging. Moreover, this protocol improved both
novel object recognition and context discrimination capacity.
Szuhany et al. (2015) conducted a meta-analysis to determine
the impact of acute and regular exercise on BDNF levels in
humans. They found that the moderate effect from a single
session of exercise was intensified if it was executed after
a regular program of exercise. They posit that each episode
of exercise results in a “dose” of BDNF activity and that
the magnitude of this “dose” can be enhanced over time by
regular exercise.

On the other side, attempts to directly use recombinant BDNF
as a therapy have found many methodological limitations. One
of the main problems for translating BDNF-based therapies into
the clinic is problem of delivery to the brain and the challenge
of sustaining the expression for longer intervals since since the
recombinant protein has a very short half-life. In this sense,
some preclinical studies were oriented to using BDNF fused
to cell-penetrating peptides and packed in AAV-constructs and
intranasal delivery of these AAV constructs to central nervous
system (Arregui et al., 2011; Ma et al., 2016). A10-day-AAV
treatment could alleviate depression-like behaviors in mice (Ma
et al., 2016), and AAV delivery of BDNF striatal neurons induced
neurogenesis and increased the lifespan of an animal model
of HD (Benraiss et al., 2012). Although beneficial, the use of
AAV has been limited by difficulties in biodistribution and the
immunogenicity to the virus. An alternative approach is the use of
stem cell transplants that can express BDNF and other beneficial
factors and can migrate into damaged areas of the brain by their
selective tropism to inflammation and apoptosis sites, although
they are not permanently integrated into the organism (Kidd
et al., 2009; Joyce et al., 2010; Fink et al., 2015; Deng et al., 2016;
Pollock et al., 2016). Mesenchymal stem cell transplantations
have shown improvements in behavioral deficits in a murine
model of HD, have also slowed the neurodegenerative processes

by a diminished atrophy and an increased neurogenesis (Dey
et al., 2010; Benraiss et al., 2013; Pollock et al., 2016).

An alternative possibility to the use of exercise as a ‘natural’
and non-invasive way of increasing BDNF signaling in neuronal
networks, is the administration of drugs already available
for clinical use (Stranahan et al., 2009). Many medications
are capable of impacting on BDNF levels. Memantine and
donepezil are a pharmaceutical compound used to alleviate the
symptoms of AD that markedly increases BDNF levels in a dose-
dependent manner (Marvanova et al., 2001; Leyhe et al., 2008;
Meisner et al., 2008).

Ampakines are good candidates because they can
increase excitatory transmission affecting BDNF levels. In
rat hippocampal slice cultures, a very brief clinically tested
ampakine treatment produced elevated BDNF protein levels that
lasted several days after the exposure (Lauterborn et al., 2003).
Another therapeutic possibility that has emerged recently is
the use of transcranial magnetic stimulation (TMS) to increase
BDNF levels. TMS restored the levels of BDNF and TrkB that
were normally reduced in aged mice and improved spatial
memory (Zhang et al., 2015).

In conclusion, several environmental and lifestyle
interventions that reduce age-dependent cognitive decline
and pathological degeneration can also increase BDNF
production, suggesting that BDNF is neuroprotective (Figure 1).
Given that cognitive training is a focused approach that
selectively acts on sets of memory domains and that drugs are
invasive, exercise is still a ‘favorite’ when thinking of potential
therapeutic approaches.

CONCLUSION

Although BDNF is a key player in synaptic plasticity and
memory process, its role in the etiology of cognitive symptoms
in pathological conditions remains unclear. BDNF-mediated
plastic changes have been proposed as one of the underlying
neurobiological substrates of memory consolidation, and changes
in BDNF were shown to directly affect memory performance in
animal models of neurodegenerative/neuropsychiatric diseases
and in normal conditions. In human post-mortem brain tissue,
BDNF expression is higher in memory related structures, such
as the hippocampus and the amygdala. However, in humans,
the relationship between memory and BDNF still remains
correlational, mainly because the available techniques do not
allow the control of BDNF expression in humans. Despite
this difficulty, numerous studies attempted to establish causal
relationships between these two factors by analyzing memory
performance under conditions that up-regulate or down-regulate
BDNF expression. Since brain BDNF expression correlates with
sBDNF concentration, this association has been extensively used
to study the implication of BDNF in mnemonic functions in
humans under normal and pathological conditions. In fact, the
concentration of this blood-measurable protein is correlated with
the memory impairment in different disorders. Additionally,
changes in the trafficking and release of BDNF due to Val66Met
polymorphism have also been used to correlate BDNF levels

Frontiers in Cellular Neuroscience | www.frontiersin.org 13 August 2019 | Volume 13 | Article 363

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00363 August 6, 2019 Time: 17:18 # 14

Miranda et al. BDNF and Memory in the Healthy and Pathological Brain

with mnemonic performance and structural changes in memory-
related regions in healthy and diseased individuals. It has been
shown that interventions such as exercise, chronic administration
of fluoxetine, and cognitive training can enhance the sBDNF
concentration and correlates with a better performance in
memory tasks. The initial idea of using BDNF as a biomarker
for neurodegenerative/neuropsychiatric diseases was discarded
because changes in BDNF levels are common to many
pathological conditions, which underscores its discriminative
value and potency. However, considering the data reviewed here,
we suggest that BDNF can be thought of as a marker that
specifically relates to the occurrence and/or progression of the
mnemonic symptoms that are common to many pathological
conditions that share deficits in this cognitive domain. Moreover,
BDNF was shown to be a shared factor in which converge
most of the therapies that have been able to fight these
mnemonic symptoms.
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