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Activity-dependent neuroprotective protein (ADNP) has been initially discovered through
its eight amino acid sequence NAPVSIPQ, which shares SIP motif with SALLRSIPA –
a peptide derived from activity-dependent neurotrophic factor (ADNF). Mechanistically,
both NAPVSIPQ and SALLRSIPA contain a SIP motif that is identified as a variation
of SxIP domain, providing direct interaction with microtubule end-binding proteins
(EBs). The peptide SKIP was shown before to provide neuroprotection in vitro and
protect against Adnp-related axonal transport deficits in vivo. Here we show, for the
first time that SKIP enhanced microtubule dynamics, and prevented Tau-microtubule
dissociation and microtubule disassembly induced by the Alzheimer’s related zinc
intoxication. Furthermore, we introduced, CH3CO-SKIP-NH2 (Ac-SKIP), providing
efficacious neuroprotection. Since microtubule – Tau organization and dynamics is
central in axonal microtubule cytoskeleton and transport, tightly related to aging
processes and Alzheimer’s disease, our current study provides a compelling molecular
explanation to the in vivo activity of SKIP, placing SKIP motif as a central focus for
MT-based neuroprotection in tauopathies with axonal transport implications.
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INTRODUCTION

Activity-dependent neuroprotective protein (ADNP) has been initially discovered through its
eight amino acid sequence NAPVSIPQ (Bassan et al., 1999), which shares SIP motif with
SALLRSIPA – a peptide derived from activity-dependent neurotrophic factor (ADNF) (Brenneman
and Gozes, 1996; Zamostiano et al., 1999). ADNF, and then ADNP, have been originally found
to mediate neuroprotective and neurotrophic activities of the vasoactive intestinal peptide (VIP)
(Brenneman and Gozes, 1996; Brenneman et al., 1998). Subsequent studies have shown that ADNP
is dysregulated in schizophrenia (Dresner et al., 2011; Merenlender-Wagner et al., 2015) and
Alzheimer’s disease (AD) (Yang et al., 2012; Malishkevich et al., 2016), and mutated in autism
spectrum disorder (ASD) with 0.17% prevalence (together, these ASD cases are now identified
as the ADNP syndrome) (Helsmoortel et al., 2014; Gozes et al., 2015). Importantly, it has been
shown that ADNP is the only down-regulated protein in the serum of AD patients (Yang et al.,
2012) and expression levels of ADNP in plasma/serum and lymphocyte is correlated with AD
clinical progression, disease pathology and premorbid intelligence (Malishkevich et al., 2016).
Animal studies with mice expressing Adnp from only one allele (Adnp±) have shown that Adnp
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deficiency is associated with age-dependent neurodegeneration
and cognitive impairment, coupled with tauopathy-like
features such as an increase formation of tangle-like structures,
defective axonal transport, and Tau hyperphosphorylation
(Vulih-Shultzman et al., 2007).

Both peptides NAPVSIPQ (ADNP-derived) and SALLRSIPA
(ADNF-derived) have shown neuroprotective activities against
cognitive decline and peripheral neuropathy in various animal
models (Shiryaev et al., 2011; Gozes et al., 2016). NAP
biochemical activity has been broadly examined and found to
be inextricably linked with microtubules (MTs) and MT-related
cellular events: NAP increases MT elongation and dynamics
(Ivashko-Pachima et al., 2017), augments axonal transport, in the
face of MT deficiencies (Jouroukhin et al., 2013), and protects
Tau-MT association under various insults (Oz et al., 2012;
Ivashko-Pachima et al., 2017). Mechanistically, both NAPVSIPQ
and SALLRSIPA contain a SIP motif that is identified as a
variation of SxIP domain, providing direct interaction with
MT end-binding proteins (EBs) (Honnappa et al., 2009). Our
initial studies have shown a direct interaction of SIP- and SKIP-
containing peptides with EB1 and EB3 proteins (Oz et al., 2014).
We have further shown that four amino acid peptide SKIP docks
to the EB3 binding site in silico, and stimulates axonal transport
in vivo, which is reduced as a consequence of Adnp deficiency in
Adnp± mice (Amram et al., 2016).

Here, we aimed to test the activity of SKIP and modified
SKIP – CH3CO-SKIP-NH2 (Ac-SKIP) on MT dynamics and
integrity, mediated by MT-associated proteins EB1 and Tau.
EB proteins can directly influence MT dynamics (Komarova
et al., 2009) and also enroll other MT-affecting proteins to the
growing MT plus-ends (Honnappa et al., 2009). Tau is a broadly
known MT-associated protein which stimulates MT assembly
and Tau physiological and biochemical impairments are well-
studied in a variety of neurodegenerative diseases, referred to
tauopathies (Kneynsberg et al., 2017). Furthermore, it has been
found that Tau directly associates with EB1 and EB3 proteins and
modulates their location on the MTs (Sayas et al., 2015). Here,
we tested different concentrations of SKIP and Ac-SKIP and
found that at 10−9 M SKIP and Ac-SKIP exhibited consistent and
significant activity: (1) increased elongation of freshly growing
MT plus-ends; and prevented, (2) Tau-MT dissociation, and
(3) MT disassembly, induced by extracellular zinc. Thus, our
current study provided a molecular explanation to the previously
observed effect of SKIP on MT-related functions: stimulation
of axonal transport and normalization of social memory in
Adnp ± mice. Furthermore, our results showed that Ac-SKIP
provided surprisingly more efficacious neuroprotection and
suggested that SKIP might be the shortest motif essential for
MT-based neuroprotection, mediated by EB proteins and Tau.

MATERIALS AND METHODS

Cell Culture and Treatments
Mouse neuroblastoma N1E-115 cells (ATCC, Bethesda, MD,
United States) were maintained in Dulbecco’s modified
Eagle’s medium (DMEM), 10% fetal bovine serum (FBS),

2 mM glutamine and 100 U/ml penicillin, 100 mg/ml
streptomycin (Biological Industries, Beit Haemek, Israel).
Human neuroblastoma SH-SYS5 cells (ECACC, Public Health
England, Porton Down, Salisbury, United Kingdom; passage
numbers from 14 to 16) were maintained in Ham’s F12:
minimum essential media (MEM) Eagle (1:1), 2 mM Glutamine,
1% non-essential amino acids, 15% FBS and 100 U/ml penicillin,
100 mg/ml streptomycin (Biological Industries, Beit Haemek,
Israel). Cells were incubated in 95% air/5% CO2 in a humidified
incubator at 37◦C. Cells were differentiated with reduced FBS
(2%) and DMSO (1.25%) containing medium (N1E-115 cells) or
with retinoic acid at a concentration of 10 µM (SH-SY5Y cells)
during 7 days before each experiment. Differentiated N1E-115
cells were treated for 2 or 4 h with SKIP/Ac-SKIP in final
concentrations of 10−12 – 10−6 M, in the absence or presence of
zinc (400 µM of ZnCl2, stock solution – 0.1 M ZnCl2 in water,
Sigma, Rehovot, Israel).

Cell Viability Assay
A week before the experiment, N1E-115 cells were plated onto
96-well plates at a concentration of 5000 cells/well in 100 µl
of the growth medium, which was replaced by differentiation
medium a day after cell seeding. On an experimental day,
cells were treated during 4 h with 400 µM of ZnCl2 in the
absence or presence of NAP (10−12 – 10−9 M). Cell survival
was measured using XTT-based cell proliferation kit (Biological
Industries, Beit Haemek, Israel), which was performed according
to the manufacturer’s instructions. The absorbance of the samples
was measured with a spectrophotometer (ELISA reader) at
wavelengths of 490/630 nm.

Time-Lapse Imaging of EB1 Comet-Like
Structures
N1E-115 cells were plated on 35 mm dishes (81156, µ-Dish, Ibidi,
Martinsried, Germany) at a concentration of 25000 cells/dish
and then differentiated with reduced FBS, DMSO-containing
medium during seven days. 48 h before live imaging,
differentiated N1E-115 cells were transfected with 1 µg of
EB1-RFP expressing plasmid. On an experimental day, N1E-115
cells were incubated at 37◦C with a 5% CO2/95% air mixture
in a thermostatic chamber placed on the stage of a Leica
TCS SP5 confocal microscope (objective ×100 (PL Apo) oil
immersion, NA 1.4). Time-lapse images were automatically
captured every 3 s during 2 min, using the Leica LAS AF
software (Leica Microsystems, Wetzlar, Germany). Data were
collected and analyzed by Imaris software (Bitplane, Concord,
MA, United States).

Fluorescence Recovery After
Photobleaching
Forty-eight hours before a fluorescence recovery after
photobleaching (FRAP) experiment, differentiated N1E-115
cells were transfected with a 1 µg pmCherry-C1-Tau3R plasmid
(Ivashko-Pachima et al., 2019). FRAP was performed using
a Leica TCS SP5 confocal microscope [objective 100× (PL
Apo) oil immersion, NA 1.4]. ROIs (regions of interest) for
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photobleaching were drawn in the proximal cell branches.
mCherry-Tau molecules were bleached with argon laser during
15 s, and data about fluorescence recovery after bleaching
were automatically collected (80 images every 0.74 s) by the
Leica LAS AF software. Fluorescence intensities were measured
by ImageJ Fiji (Schindelin et al., 2012), obtained data were
normalized with easyFRAP software (Rapsomaniki et al., 2012).
FRAP recovery results were fitted by a one-phase exponential
association function and recovery curves were built using
GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, CA).
Samples with R2 < 0.9 were excluded.

Polymerized vs. Soluble Tubulin
Quantification Assay
Quantification of tubulin polymerization was performed as
previously (Oz et al., 2012; Ivashko-Pachima et al., 2017;
Ivashko-Pachima and Gozes, 2018). Briefly, in order to extract
soluble tubulin (S) differentiated N1E-115 cells were lysed with
TritonX-100-containing MT-buffer (80 mM PIPES pH6.8, 1 mM
MgCl2, 2 mM EGTA, 5% Glycerol, with or without 0.5%
TritonX-100) at room temperature for 5 min while centrifuging
at 800 rcf; in order to collect the polymerized tubulin (P)
pelleted cells were rinsed once again with equal volume of
modified RIPA buffer (50 mM Tris–HCl pH7.4, 150 mM
NaCl, 2 mM EGTA, 1% TritonX-100, 0.1% SDS, 0.1% sodium
Deoxycholate, protease and phosphatase inhibitors: 1 mM
phenylmethylsulphonyl-fluoride (PMSF), leupeptin 25 µg/ml,
pepstatin 25 µg/ml, Na3VO4 1 mM, NaF 20 mM) on ice.
The soluble and polymerized tubulin fractions were each
mixed with the same amount of sample buffer (10 mM Tris–
HCl, pH6.8, 1.5% SDS, 0.6% DTT and 6% (v/v) glycerol)
and heated at 95◦C for 5 min. An equal volume of each
fraction was analyzed by immunoblotting with appropriate
antibodies, and the results following ECL development (by
a chemiluminescence kit, Pierce, Rockford, IL, United States)
were quantified by densitometry (using GelQuant.NET software
provided by biochemlabsolutions.com).

Co-immunoprecipitation Assay
Proteins were extracted from differentiated human
neuroblastoma SH-SY5Y cells and Co-IP assay was
performed as previously reported (Merenlender-Wagner
et al., 2015; Ivashko-Pachima et al., 2017) using Co-IP kit
according to the manufacture protocol (Pierce, Rockford, IL,
United States). Briefly, 10 µg of antibodies of interest (EB1,
ab53358, Abcam, Cambridge, United Kingdom; and total
Tau antibody, AT-5004, MBL, Billerica, MA, United States)
were cross-linked to the 30 µl of A/G PLUS-agarose beads
(provided by the Co-IP kit). 2 µg of SKIP or Ac-SKIP,
diluted into lysis buffer were added per sample (1 mg of
cell lysate) for 2 h at room temperature. Flow-through,
wash and elution fractions were then collected and analyzed
by immunoblotting with appropriate antibodies, and the
results following ECL (Pierce) development were quantified
by densitometry (GelQuant.NET software provided by
biochemlabsolutions.com).

Antibody List
Tubulin – monoclonal α-tubulin antibody (mouse IgG1 isotype,
T6199, Sigma, Rehovot, Israel). Actin – mouse monoclonal actin
antibody (Sigma, Rehovot, Israel). The secondary antibodies were
peroxidase-conjugated AffiniPure goat anti-mouse IgG (Jackson
ImmunoResearch, United States).

Statistical Analysis
Data are presented as the mean ± SEM from at least 3
independent experiments performed in triplicates. Statistical
analysis of the data was performed by using one-way ANOVA
test (followed by the Turkey or LSD post hoc test) by IBM SPSS
Statistics software version 23 (IBM, Armonk, NY, United States).
∗ P < 0.05, ∗∗ P < 0.01, ∗∗∗ P < 0.001. Detailed statistical data are
summarized in the Supplementary File.

RESULTS

The Protective Effect of SKIP and
Ac-SKIP Against Cell Death Induced by
Zinc Toxicity
A colorimetric method for cell viability (based on the tetrazolium
salt – XTT) was used to assess the protective activity of SKIP and
Ac-SKIP at different concentrations (10−12 – 10−9M) against the
cytotoxic effect of zinc in order to choose potent concentration
for the further experiments. Differentiated neuroblastoma N1E-
115 cells were treated with zinc alone or together with Ac-
SKIP or SKIP for 4 h, and XTT-produced soluble dye was
then measured by ELISA reader. Previously published data have
shown a consistent and significant effect of zinc cytotoxicity
at 400 µM (Sanchez-Martin et al., 2010; Oz et al., 2012;
Ivashko-Pachima et al., 2017). Hence, here, we worked with
400 µM of zinc. Treatment with zinc caused a reduction of
∼50% in cell viability, and peptide treatments showed significant
protection against cell death, except for Ac-SKIP at 10−12 M.
SKIP treatment at every examined concentration exhibited nearly
equal ∼20% protection that was found statistically significant.
Ac-SKIP protective potency was found to be positively dependent
on the peptide concentration: non-significant slight protection
at 10−12 M; significant, a moderate effect at 10−11 M; and
a ∼100% protective effect at 10−10 M and 10−9 M. Ac-SKIP
and SKIP exhibited the same protective potency at 10−11 M
and significantly different magnitude of protective activity at
10−12 M (with a greater effect of SKIP), 10−10 M and 10−9 M
(with a significantly greater effect of Ac-SKIP). For further
experiments, we chose to work with 10−12 M and 10−9 M of
Ac-SKIP/SKIP (Figure 1).

Ac-SKIP and SKIP Affect MT Dynamics
The direct interaction between SKIP and EB1/3 has been
previously predicted by Pymol (Schrödinger, 2015), and peptides
containing SxIP motif have displayed the association with EB1/3
in sulfolink columns. Here, we aimed to evaluate the effect
of SKIP and Ac-SKIP on MT dynamics, mediated by direct
interaction of these peptides with the EB1 protein. Differentiated
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FIGURE 1 | SKIP and Ac-SKIP exhibit protective activity against zinc
cytotoxicity in differentiated neuroblastoma N1E-115 cells. Results of
mitochondrial activity were obtained by XTT colorimetric assay. “Cont” – cells
without any treatment (n = 60); “Zn” – cells, exposed to 400 µM of zinc
(n = 58); “Zn + peptide” – cells treated with zinc (400 µM) and different
concentrations of Ac-SKIP or SKIP: 10−12 M Ac-SKIP (n = 22)/SKIP (n = 14),
10−11 M Ac-SKIP (n = 22)/SKIP (n = 14), 10−10 M Ac-SKIP (n = 22)/SKIP
(n = 14), 10−9 M Ac-SKIP (n = 22)/SKIP (n = 14). Statistical analysis was
performed by One-way ANOVA: ∗∗∗p < 0.001, post hoc comparisons made
in reference to “Cont” group; #p < 0.05, ##p < 0.01, ###p < 0.001, post hoc
comparisons made in reference to “Zn” group. Statistical analysis within the
concentration group of peptides was done by the Student’s t-test and
P-values are displayed on the graph above concentration scale of peptides.

neuroblastoma cells were subjected to transient transfection
with expression plasmid encoding to EB1 protein, tagged to
RFP (Figure 2A and Supplementary Figure S1). Single-cell
time-lapse imaging allowed the evaluation of the effect of the
peptides on MT dynamics by tracking RFP-EB1 comet-like
structures decorating newly polymerized MT plus-ends. Time-
lapse imaging followed by the 4 h peptide treatment with Ac-SKIP
or SKIP showed that both Ac-SKIP and SKIP at 10−9 M (but not
at 10−12 M) significantly augmented the track length (Figure 2B)
and velocity (Figure 2C) of the EB1 comets, reflecting the lengths
of the MT growing events and the speed of MT assembly,
respectively. Thus, both peptides had an impact on MT dynamics.

Protective Effect of Ac-SKIP and SKIP on
Tau-MT Association, Disrupted by Zinc
In order to evaluate the protective activity of Ac-SKIP and
SKIP against Tau-MT discharge we performed FRAP assay
using zinc as Tau-MT dissociation agent (Craddock et al., 2012;
Huang et al., 2014). Differentiated N1E-115 cells were transfected
with a plasmid expressing mCherry-tagged Tau protein, and
FRAP imaging (Figure 3A and Supplementary Figure S2)
was performed after an hour of cell exposure to zinc alone
or together with Ac-SKIP or SKIP (10−12 M, 10−9 M). MT
regions decorated by mCherry-Tau were bleached (Figure 3A,
marked squares, 0 s after bleaching) and recovery of mCherry
fluorescence (Figure 3A, marked squares, 88 s after bleaching)
resulted from interchange between MT-bound Tau (carrying
bleached mCherry molecules) and previously unbound Tau

proteins (carrying unbleached mCherry molecules). Thus, an
unrecovered fraction of the initial mCherry fluorescence within
a given bleached area indicated the immobile fraction mCherry-
Tau proteins, reflecting Tau interaction with MTs. Subsequent
analysis of the data obtained with a one-phase exponential
association (Figures 3B,C) showed that zinc significantly abated
Tau immobile fraction in comparison to the non-treated
control (Figures 3B,C). Ac-SKIP and SKIP at both examined
concentrations (10−12 M and 10−9 M) prevented excessive Tau
release from MTs, induced by zinc, which was found statistically
significant in comparison to zinc treatment alone (Figures 3B,C).

Ac-SKIP and SKIP Prevent MT
Disassembly, Induced by Zinc
Intoxication
Further, we aimed to determine the protective effect of Ac-SKIP
and SKIP against MT disassembly induced by zinc as an MT
disruptor. We examined the relative levels of polymerized and
soluble tubulin pools in differentiated N1E-115 cells, exposed
to extracellular zinc (400 µM) alone or together with Ac-SKIP
or SKIP (10−12 M and 10−9 M). After treatment cells were
lysed (as described in section “Materials and Methods” section)
and the tubulin levels of polymerized and soluble fractions
were evaluated by western blotting (Figure 4A, Tubulin panel,
and Supplementary Figure S3A) followed by densitometric
quantification (Figure 4B). Non-treated control cells exhibited
a nearly equal distribution of tubulin between soluble (S) and
polymerized (P) fractions, while zinc treatment significantly
increased the ratio of soluble to polymerized tubulin content
(Figure 4A, Tubulin panel; Figure 4B). Ac-SKIP or SKIP added
together with zinc exhibited reduced the tubulin content in the
soluble fraction compared to “zinc” group, which was found
statistically significant for all peptide treatments, except for Ac-
SKIP at 10−12 M (Figure 4A, Tubulin panel; Figure 4B).

There was no observed effect on the actin-microfilament
pool following neither zinc nor Ac-SKIP/SKIP treatment
(Figure 4A, Actin panel, and Supplementary Figures S3B, S4),
suggesting that zinc/Ac-SKIP/SKIP had selective effects on the
MT cytoskeleton.

SKIP/Ac-SKIP Enhance Tau-EB1 and
Tau-Tubulin Interactions
To study the effect of SKIP and Ac-SKIP on the crosstalk between
EB1-Tau and -tubulin, we performed co-immunoprecipitation
(Co-IP) assays in differentiated human neuroblastoma SH-
SY5Y cells as previously reported (Merenlender-Wagner et al.,
2015; Ivashko-Pachima et al., 2017). We examined the effect
of SKIP and Ac-SKIP on EB1-Tau interaction by protein
complex immunoprecipitation (Co-IP) assays, using EB1 and
Tau antibodies linked to agarose beads (Figure 4C, IP: EB1;
Figure 4D, IP: Tau). The elution fractions, obtained from
immunoprecipitations (IPs) performed with either anti-EB1 or
anti-Tau, were analyzed by immunoblotting (IB) with EB1
and Tau antibodies (Figure 4C, IP: EB1 IB: Tau; Figure 4D,
IP: Tau IB: EB1). Results showed that both SKIP and Ac-
SKIP increased Tau-EB1 association, compared to the samples
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FIGURE 2 | SKIP and Ac-SKIP affect MT dynamics. (A) Live imaging of N1E-115 cells expressing EB1-RFP was performed after 4 h of treatment with Ac-SKIP or
SKIP at 10−12 M and 10−9 M. Transfected cells without peptide treatment were used as a control group (“Control”). Time-lapse images were automatically captured
every 3 s. during a 1 min using the Leica LAS AF software. Tracks of EB1 comet like structures presented as colored lines and were obtained by the Imaris software.
Graphs represent quantification of the average track length (B) and comet speed (C). Data were collected in unbiased fashion by the Imaris software, and statistical
analysis of the data was performed by One-way ANOVA. Statistical significance is represented by ∗∗∗P < 0.001. Comet length: Control, n = 46; Ac-SKIP 10−12 M,
n = 29; SKIP 10−12 M, n = 20; Ac-SKIP 10−9 M, n = 62; SKIP 10−9 M, n = 43. Comet speed: Control, n = 47; Ac-SKIP 10−12 M, n = 30; SKIP 10−12 M, n = 20;
Ac-SKIP 10−9 M, n = 65; SKIP 10−9 M, n = 43.
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FIGURE 3 | Ac-SKIP and SKIP protective effect on Tau interaction with MTs, assessed by FRAP analysis. FRAP was performed on differentiated neuroblastoma
N1E-115 cells after 2 h of treatment with extracellular zinc (400 µM) alone or together with Ac-SKIP or SKIP (10−12 M and 10−9 M). (A) Representative images of
FRAP and fluorescence recovery of mCherry molecules conjugated to Tau. Marked squares represent the regions of bleaching immediately after photo-bleaching
(0’–0 s after bleaching) and subsequent fluorescent recovery (88’–88 s after bleaching). (B) Obtained data of fluorescent recovery were normalized and recovery
curves were built according to one-phase exponential association (see section “Materials and Methods”). (C) The graph represents the fitted data (by one-phase
exponential association, see section “Materials and Methods”) of immobile fractions (collected on 88 s after photobleaching). Statistical analysis was performed by
One-way ANOVA with Tukey HSD. Statistical significance is presented by ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. Control, n = 82; Zn, n = 43; Zn + Ac-SKIP 10−12 M,
n = 44; Zn + SKIP 10−12 M, n = 79; Zn + Ac-SKIP 10−9 M, n = 76; Zn + SKIP 10−9 M, n = 81.

incubated without these peptides (Figure 4C, IP: EB1 Cont –
control, IB: Tau; Figure 4D, IP: Tau Cont IB: EB1). IP: EB1 IB:
EB1 showed a significant increase in EB1-EB1 interaction (EB1
homodimer formation) following SKIP treatment and moderate
non-significant increase following Ac-SKIP, compared to the

control (Figure 4C, IP: EB1 Cont IB: EB1). IP: Tau IB: Tau did
not show significant differences in Tau-Tau association following
incubation with either SKIP or Ac-SKIP (Figure 4D). Further
immunoblotting analysis with tubulin antibodies suggested
increased Tau-tubulin, interaction following treatments with
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FIGURE 4 | Continued
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FIGURE 4 | Ac-SKIP and SKIP effect on the polymerized vs. the soluble tubulin pool and the crosstalk between EB-Tau-tubulin. (A) Immunoblotting of polymerized
(P) and soluble (S) protein fractions (obtained by polymerized vs. soluble tubulin assay, see section “Materials and Methods”) with tubulin antibodies. Cells were
treated with zinc (400 µM, 4 h) with or without Ac-SKIP or SKIP (10−12 M and 10−9 M, 4 h), non-treated cells served as controls. (B) The graph represents the
densitometric quantification of soluble tubulin ratios. The intensity of each band was quantified by densitometry and the soluble protein ratio was calculated by
dividing the densitometric value of soluble proteins by the total protein content (S/[S + P]). Statistical analysis was performed by One Way ANOVA with Tukey HSD.
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001; Control, n = 15; Zn, n = 18; Zn + Ac-SKIP 10−12 M, n = 15; Zn + SKIP 10−12 M, n = 9; Zn + Ac-SKIP 10−9 M, n = 18;
Zn + SKIP 10−9 M, n = 11. (C,D) A Co-IP assay was performed with EB1 or Tau antibodies, linked to agarose beads. SKIP (2 µg/sample) or Ac-SKIP (2 µg/sample),
diluted into Pierce lysis buffer (see section “Materials and Methods”) or the equal volume of lysis buffer w/o peptides (IP: EB1 Cont; IP: Tau Cont) were added to cell
lysate of differentiated SH-SY5Y cells, 15 min before EB1 or Tau column application (IP: EB1; IP: Tau). Sequential IP elution fractions (E1, E2) were further analyzed
by immunoblotting with EB1, Tau, and Tubulin antibodies (IB: EB1; IB: Tau; IB: Tubulin). In addition, columns with free agarose beads were used as negative controls
(IP: Neg cont). The intensity of each band was quantified by densitometry. The bar graph shows the ratio of band intensities (densitometric value ± SEM) obtained
upon SKIP and Ac-SKIP treatments as compared with non-treated cells (Cont). Statistical analysis was performed by One Way ANOVA with LSD HSD. Experiments
were independently repeated three times. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. (E) Cell lysates without column exposure were used as positive controls (Input). IP –
immunoprecipitation, IB – immunoblot.

SKIP and Ac-SKIP (Figure 4D, IP: Tau IB: tubulin), while
EB1-tubulin association remained without significant changes
(Figure 4C, IP: EB1 IB: tubulin). Cell lysates without column
exposure were used as positive controls (Input, Figure 4E)
and flow-through and washing fractions were also collected
and analyzed by immunoblotting with EB1 and Tau antibodies
(Supplementary Figure S5A, IP: EB1 IB: EB1; Supplementary
Figure S5B, IP: Tau IB: Tau).

DISCUSSION

Maintenance of axonal structure and transport underlies
neuronal signal transduction and connectivity, and provide
a proper brain function (Rasband, 2010). It has been well-
established that axonal degeneration (axonopathy) is a central
pathogenic feature common to numerous human tauopathies,
including AD (Kneynsberg et al., 2017). Atrophy of axon-
reach white matter is significant in patients with mild
cognitive impairment and extends widely in advanced AD
cases, while the degree of atrophy is associated with loss of
cognitive functioning (Huang and Auchus, 2007). Furthermore,
immunohistochemical analyses of AD brains have revealed that
formation of neuropil threads (Tau inclusions within dystrophic
neurites) are a prominent AD neuropathological feature that
appears before neurofibrillary tangles (NFTs) (Kowall and Kosik,
1987). Mechanistically, a clear correlation between Tau lesions
and axonopathy has been demonstrated by multiple models,
linking aberrant phosphoregulation of Tau to alterations in
axonal transport, and deficits in axonal transport to dying-back
degeneration of neurons (Kanaan et al., 2011, 2012, 2013).

The functional repertoire of Tau includes, among other
characteristics, regulation of EB protein localization on MTs
(Sayas et al., 2015). EBs are MT plus-end tracking proteins that
decorate growing MT ends and recruit a variety of other proteins
that connect MTs to various cellular structures (Jiang et al., 2012)
and control MT dynamics (Komarova et al., 2009). EB-binding
proteins directly interact with EBs through a core SxIP motif
(Honnappa et al., 2009).

We have previously shown that EB1/3-targeting SKIP
ameliorates impaired axonal transport and social memory deficits
in the face of Adnp deficiency (Adnp± mice) (Amram et al.,
2016). Our current study focused on the molecular activity of

SKIP and Ac-SKIP on the cellular compartment, relevant to the
axonal transport – MTs, and MT-associated proteins Tau and
EB1. We showed that SKIP and Ac-SKIP significantly increased
the elongation and growth rate of MT plus-ends, mediated by
EB1 proteins. Furthermore, the protective activity of SKIP and
Ac-SKIP on Tau-MT interaction and MT integrity was assessed
in the face of zinc intoxication. The well-established hypothesis of
zinc dyshomeostasis in AD suggests aberrant zinc accumulation
by Aβ-amyloid plaques, resulting in too low, or excessively
high intracellular zinc concentrations (up to 1 mM) in zinc-
enriched brain regions implicated in the cognitive functions and
vulnerable to AD pathology (Deibel et al., 1996; Craddock et al.,
2012; DeGrado et al., 2016). It has been suggested that high
intracellular zinc concentrations (more than 100 µM) present
adverse effects on nerve fibers during stimulation (Minami et al.,
2006) and may lead to pathological implications and neuronal
cell death (Frederickson et al., 2005; Sensi et al., 2009, 2011;
Shuttleworth and Weiss, 2011). In addition, it has been shown
that abnormally high concentrations (up to 250 µM) of zinc
induce GSK-3β activation and Tau release from MTs (Boom et al.,
2009). Neuronal loss has been observed when zinc levels reached
10–100 nM in the neuronal soma in vitro (Aizenman et al., 2000;
Jiang et al., 2001; Bossy-Wetzel et al., 2004) and zinc influx of
300 µM causes ischemic neurodegeneration in rat brains and
cortical cultures (Koh et al., 1996). It has also been found that
NFTs and amyloid-beta (Aβ) plaques contain abnormally high
levels of zinc (Bush et al., 1994a; Lee et al., 2018). Furthermore,
it has been demonstrated that Aβ 1–40 (a major component of
AD cerebral amyloid) specifically and in a saturable fashion binds
zinc (Bush et al., 1994b) that could accelerate the Aβ plaques
formation at 200 µM of zinc (Lee et al., 2018).

Here, we demonstrated an effect of SKIP and Ac-SKIP on
the crosstalk between Tau, EB1, and MTs. In this respect, it
has been previously shown that Tau directly interacts with
EB proteins, modulating MT dynamics (Sayas et al., 2015).
Based on the observed results, we suggest that the effect
of SKIP and Ac-SKIP on MTs integrity and dynamics is
mediated by increasing interaction between EB1 and Tau
that is accompanied by the increased association of Tau
with tubulin. In addition, SKIP and Ac-SKIP (the last with
more moderate effect) enhance EB1 homodimer formation. EB
proteins form homo- and heterodimers and play a master role
in organizing dynamic protein networks in mammalian cells

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 October 2019 | Volume 13 | Article 435

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00435 May 24, 2021 Time: 15:2 # 9

Ivashko-Pachima and Gozes A Novel Microtubule-Tau Association Enhancer

(Akhmanova and Steinmetz, 2015). EB1 homodimers have a
higher affinity to the p150glued – N-terminal CAP-Gly domain
of the dynactin (Honnappa et al., 2006; Bjelic et al., 2012),
which in turn acts as a co-factor for the MT motor protein
dynein. EB1-dependent ordered recruitment of dynactin to the
MT plus-end is required for efficient initiation of retrograde
axonal transport (Moughamian et al., 2013). Furthermore,
actin-MT linkers – spectraplakins promote axonal growth in
an EB1-dependent manner and stabilize MTs in the face of
pharmacologically induced depolymerization (Alves-Silva et al.,
2012). Thus, increased EB1 homodimer formation by SKIP/Ac-
SKIP may have a direct effect on axonal retrograde transport,
axonal growth, and neuroprotection.

The differential potency and efficacy of SKIP and Ac-SKIP
might be attributed to potential steric hindrance of the modified
SKIP at low concentration, and differential residence time at
higher concentrations affecting cellular survival. Regardless,
since MT organization and dynamics is central in axonal
MT cytoskeleton and transport our current study provided
a compelling molecular explanation to the in vivo activity
of SKIP, placing SKIP motif as a central focus for MT-
based neuroprotection in tauopathies with axonal transport
implication. As MT reduction in AD and aging is independent of
Tau filament formation (Cash et al., 2003), our studies implicate
a paucity/dysregulation of EB-interacting endogenous proteins,
like ADNP (Oz et al., 2014; Malishkevich et al., 2016) as a
contributing mechanism and further provides hope with SKIP-
containing drug candidates in future in vivo studies.
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