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Shank3, an abundant excitatory postsynaptic scaffolding protein, has been associated
with multiple brain disorders, including autism spectrum disorders (ASD) and Phelan-
McDermid syndrome (PMS). However, how cell type-specific Shank3 deletion affects
disease-related neuronal and brain functions remains largely unclear. Here, we
investigated the impacts of Shank3 deletion in glutamatergic neurons on synaptic
and behavioral phenotypes in mice and compared results with those previously
obtained from mice with global Shank3 mutation and GABAergic neuron-specific
Shank3 mutation. Neuronal excitability was abnormally increased in layer 2/3 pyramidal
neurons in the medial prefrontal cortex (mPFC) in mice with a glutamatergic Shank3
deletion, similar to results obtained in mice with a global Shank3 deletion. In addition,
excitatory synaptic transmission was abnormally increased in layer 2/3 neurons in mice
with a global, but not a glutamatergic, Shank3 deletion, suggesting that Shank3 in
glutamatergic neurons are important for the increased neuronal excitability, but not for
the increased excitatory synaptic transmission. Neither excitatory nor inhibitory synaptic
transmission was altered in the dorsal striatum of Shank3-deficient glutamatergic
neurons, a finding that contrasts with the decreased excitatory synaptic transmission in
global and Shank3-deficient GABAergic neurons. Behaviorally, glutamatergic Shank3-
deficient mice displayed abnormally increased direct social interaction and repetitive
self-grooming, similar to global and GABAergic Shank3-deficient mice. These results
suggest that glutamatergic and GABAergic Shank3 deletions lead to distinct synaptic
and neuronal changes in cortical layer 2/3 and dorsal striatal neurons, but cause similar
social and repetitive behavioral abnormalities likely through distinct mechanisms.

Keywords: autism, Phelan-McDermid syndrome, Shank3, medial prefrontal cortex, striatum, social interaction,
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INTRODUCTION

Shank3 is an abundant scaffolding protein mainly present in
the postsynaptic side of excitatory synapses and contributes
to excitatory synapse development and function (Boeckers
et al., 2002; Sheng and Hoogenraad, 2007; Sala et al., 2015).
Mutations in the SHANK3 gene have been associated with various
brain disorders, including autism spectrum disorders (ASD),
Phelan-McDermid Syndrome (PMS), schizophrenia, intellectual
disability, and mania (Wilson et al., 2003; Gauthier et al., 2010;
Bonaglia et al., 2011; Hamdan et al., 2011; Phelan and McDermid,
2012; Boccuto et al., 2013; Han et al., 2013; Guilmatre et al., 2014;
Leblond et al., 2014; Cochoy et al., 2015). Mechanisms underlying
the development of Shank3-related brain dysfunctions have been
suggested through studies of a large number of Shank3-mutant
mice (Bozdagi et al., 2010; Peca et al., 2011; Wang X. et al., 2011;
Yang et al., 2012; Han et al., 2013; Jiang and Ehlers, 2013; Kouser
et al., 2013; Duffney et al., 2015; Lee et al., 2015; Sala et al., 2015;
Speed et al., 2015; Jaramillo et al., 2016, 2017; Mei et al., 2016;
Wang et al., 2016, 2019a,b; Zhou et al., 2016; Monteiro and Feng,
2017; Vicidomini et al., 2017; Bey et al., 2018; Drapeau et al., 2018;
Qin et al., 2018; Yoo et al., 2018).

More recently, Shank3 deletions restricted to specific brain
regions and cell types in mice have been attempted (Bey et al.,
2018; Yoo et al., 2018). For instance, Shank3 (exons 4–22)
deletions in glutamatergic and striatal D1 and D2 GABAergic
neurons have been generated using cell type-specific Cre mouse
lines, including NEX (dorsal telencephalic glutamatergic neurons
mainly found in the cortex and hippocampus), Dlx5/6 (striatal
GABAergic neurons), and Drd1/2 (dopaminergic D1 or D2
neurons) (Bey et al., 2018). In addition, a Shank3 (exons 14–
16) deletion restricted to GABAergic neurons has also been
developed (Yoo et al., 2018). These different Shank3 deletions
result in shared as well as distinct phenotypes, including striatal
synaptic dysfunctions and ASD-related behavioral deficits (Bey
et al., 2018; Yoo et al., 2018).

We previously reported a GABAergic Shank3 (exons 14–16)
deletion and described its impacts on synaptic and behavioral
phenotypes in mice (Yoo et al., 2018); however, Shank3
is expressed in both glutamatergic and GABAergic neurons
(Han et al., 2013; Yoo et al., 2018). In addition, although a
glutamatergic Shank3 (exons 4–22) deletion has previously been
generated using the NEX-Cre driver line (Bey et al., 2018), in our
conditional knockout (cKO)-ready Shank3-mutant mice, exons
14–16 rather than exons 4–22 were targeted, affecting different
Shank3 splice variants and leading to different phenotypes, based
on the complex alternative splicing patterns in the Shank3 gene
(Lim et al., 2001; Durand et al., 2007; Wang X. et al., 2011; Jiang
and Ehlers, 2013; Wang et al., 2014a,b; Monteiro and Feng, 2017).
We thus attempted to use Emx1-Cre that drives gene expression
mainly in the cortex and hippocampus derived from the dorsal
telencephalon (Gorski et al., 2002).

The striatum has been strongly associated with ASD
(Haznedar et al., 2006; Di Martino et al., 2011; Langen et al.,
2013; Kohls et al., 2014; Rothwell et al., 2014; Barak and Feng,
2016; Fuccillo, 2016; Schuetze et al., 2016; Rapanelli et al., 2017).
In addition, many previous studies have identified dysfunctions

in the corticostriatal pathway involving the dorsal striatum in
Shank3-mutant mice (Peca et al., 2011; Filice et al., 2016; Fuccillo,
2016; Jaramillo et al., 2016, 2017; Mei et al., 2016; Peixoto et al.,
2016; Wang et al., 2016, 2017; Zhou et al., 2016; Lee Y. et al.,
2017; Reim et al., 2017; Vicidomini et al., 2017; Bey et al., 2018;
Fourie et al., 2018; Yoo et al., 2018). The medial prefrontal cortex
(mPFC) has also been strongly implicated in ASD (Ernst et al.,
1997; Mundy, 2003; Pierce et al., 2004; Carper and Courchesne,
2005; Amodio and Frith, 2006; Gilbert et al., 2008; Rinaldi et al.,
2008; Shalom, 2009; Courchesne et al., 2011; Yizhar et al., 2011;
Testa-Silva et al., 2012; Liang et al., 2015; Barak and Feng, 2016;
Ko, 2017; Wang et al., 2019c). However, how the striatum and
prefrontal cortex differentially contribute to core ASD-related
behaviors remains unclear.

Different cortical layers such as layer 2/3 and layer 5 have
been suggested to contribute to ASD. Some previous studies
have characterized layer 5 cortical pyramidal neurons in the
mPFC or somatosensory cortex in Shank3-mutant mice (Peixoto
et al., 2016; Qin et al., 2019; Wang et al., 2019d). Layer 2/3
pyramidal neurons also receive diverse inputs from intracortical
and subcortical afferents and provide excitatory inputs onto
other cortical layers, including layer 5 (Gabbott et al., 2005;
Hoover and Vertes, 2007; Xu and Sudhof, 2013; Lee et al.,
2014; Virtanen et al., 2018), and have been implicated in cortical
neuronal integration, cognitive functions, and brain disorders
such as ASD, schizophrenia, and depression (Parikshak et al.,
2013; Shrestha et al., 2015; Li et al., 2016; Page et al., 2018).
Indeed, previous studies have highlighted the importance of
layer 2/3 cortical neurons in ASD, reporting that superficial
cortical layers in the human brain are enriched for genes that
are coexpressed in ASD (Parikshak et al., 2013), that inhibitory
synaptic transmission in layer 2/3 mPFC cortical neurons is
reduced in neuroligin-2–mutant mice with cognitive and social
dysfunctions (Liang et al., 2015), and that enhanced synapse
remodeling in layer 2/3 pyramidal neurons may be a common
pathology in two independent mouse models of ASD (Isshiki
et al., 2014). A more recent study reported age-dependent
changes in excitatory synaptic transmission and spine density in
layer 2/3 mPFC pyramidal neurons (Zhou et al., 2016). However,
the role of layer 2/3 pyramidal neurons in ASD-related brain
dysfunctions remains incompletely studied.

In the present study, we generated a Shank3 (exons 14–
16) deletion in mice restricted to glutamatergic neurons
and investigated its impact on mPFC layer 2/3 and dorsal
striatal neurons and ASD-related behaviors, and compared
the results with those obtained in mice with global or
GABAergic Shank3 deletions. Our findings indicate that
layer 2/3 pyramidal neurons from Emx1-Cre;Shank3fl/fl

(Emx1-Cre;Shank3114−16) mice showed increased neuronal
excitability, similar to results in global Shank3-deficient (global
Shank3114−16) layer 2/3 neurons. In contrast to the decreased
excitatory synaptic transmission in global Shank3114−16

and GABAergic Shank3-deficient (Viaat-Cre;Shank3114−16)
neurons, Emx1-Cre;Shank3114−16 dorsolateral striatal neurons
showed normal synaptic transmission. Behaviorally, Emx1-
Cre;Shank3114−16 mice showed abnormal social interaction
and self-grooming, similar to global Shank3114−16 and
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Viaat-Cre;Shank3114−16 mice. These results suggest that both
glutamatergic and GABAergic Shank3 deletions contribute to
the social and repetitive behavioral deficits observed in global
Shank3114−16 mice, but lead to distinct synaptic and neuronal
alterations in layer 2/3 pyramidal neurons and dorsal striatal
GABAergic neurons.

MATERIALS AND METHODS

Animals
Mice carrying a deletion of exons 14–16 of the Shank3 gene
flanked by LoxP sites have been described (Yoo et al., 2018).
Homozygous Shank3114−16 cKO mice with a gene deletion
restricted to dorsal telencephalic excitatory neurons (Emx1-
Cre;Shank3fl/fl mice) were produced by crossing homozygous
Shank3fl/fl female mice with double-heterozygous Emx1-
Cre;Shank3fl/+ mice. Cre-negative Shank3fl/fl littermates,
referred to as wild-type (WT) throughout the manuscript, were
used as controls for Emx1-Cre;Shank3fl/fl mice. The Emx1-Cre
mouse line, purchased from the Jackson Laboratory (Jackson;
#005628) and maintained in a C57BL/6J genetic background
for more than five generations, was used for comparisons
with all global and cKO mouse lines in the same pure C57BL/6J
background. Mice were bred and maintained at the mouse facility
of Korea Advanced Institute of Science and Technology (KAIST)
according to Animal Research Requirements of KAIST, and all
procedures were approved by the Committee of Animal Research
at KAIST (KA2016-30). Animals were fed ad libitum and housed
under a 12-h light/dark cycle (light phase from 1:00 am to 1:00
pm). Genotypes of Emx1-Cre;Shank3fl/fl mice were determined
by polymerase chain reaction (PCR) using the following primer
pairs: floxed (478 bp) or WT allele (276 bp), 5′-GGG TTC CTA
TGA CAG CCT CA-3′ (forward) and 5′-TTC TGC AGG ATA
GCC ACC TT-3′ (reverse); Emx1-Cre (272 bp), 5′-GTG TTG
CCG CGC CAT CTG C-3′ (forward) and 5′-CAC CAT TGC CC
TGT TTC ACT ATC-3′ (reverse). Only male mice were used for
behavioral and electrophysiological experiments, whereas both
male and female were used for biochemical experiments.

Brain Lysates
Brains from Emx1-Cre; Shank3fl/fl mice and their Shank3fl/fl

littermates (12 weeks; females for Shank3 protein levels,
13 weeks; males for Shank1 and Shank2 protein levels) were
extracted and dissected on ice into cortex, thalamus, striatum,
and hippocampus, followed by homogenization with ice-cold
homogenization buffer (0.32 M sucrose, 10 mM HEPES, pH 7.4,
2 mM EDTA, pH 8.0, 2 mM EGTA, pH 8.0, protease inhibitors,
phosphatase inhibitors). Total lysates were prepared by boiling
with β-mercaptoethanol directly after homogenization.

Western Blot
Total brain lysates separated in electrophoresis and transferred
to a nitrocellulose membrane were incubated with primary
antibodies to Shank1 (#2100, guinea pig) (Ha et al., 2016), Shank2
(Synaptic Systems 162 202), Shank3 (#2036 guinea pig polyclonal
antibodies raised against aa 1289–1318 of the mouse Shank3

protein) (Lee et al., 2015) and α-tubulin (Sigma T5168) at 4◦C
overnight. Fluorescent secondary antibody signals were detected
using Odyssey R©Fc Dual Mode Imaging System.

Behavioral Assays
Male mice (2–8-mo-old) were used for all behavioral assays.
Before behavioral experiments, mice were handled for 10 min per
day for 3 days. All behavioral assays were initiated after a 30-min
habituation in a dark booth. The behavioral tests for Emx1-
Cre;Shank3114−16 mice and Emx1-Cre mice were performed in
the order indicated in Supplementary Table S1. The order of
behavioral tests was designed to minimize stress to the animals.

Three-Chamber Test
Social approach and social novelty recognition were measured
using the three-chambered social interaction test (Crawley, 2004;
Nadler et al., 2004; Moy et al., 2009; Silverman et al., 2010)
under illuminated (70–80 lux) conditions. The 3-chamber test
apparatus is a white acrylic box (60 × 40 × 20 cm) divided into
three chambers. Both left and right side chambers contained a
cage in the upper or lower corner for an object or a stranger
mouse. Experimental mice were isolated in a single cage for 3 days
prior to the test, whereas unfamiliar stranger mice (129S1/SvlmJ
strain) were group-housed (5–7 mice/cage). All stranger mice
were age-matched males and were habituated to a corner cage
during the previous day (30 min). The test consisted of three
phases: empty-empty (habituation), stranger 1-object (S1-O), and
stranger 1-stranger 2 (S1-S2). In the first phase (habituation), a
test mouse was placed in the center area of the three-chambered
apparatus, and allowed to freely explore the whole apparatus for
10 min. The mouse was then gently guided to the center chamber
while an inanimate blue cylindrical object (O) and a WT stranger
mouse (S1) were placed in the two corner cages. The positions
of object (O) and stranger 1 (S1) were alternated between tests
to prevent side preference. In the S1-O phase, the test mouse
was allowed to explore the stranger mouse or the object freely
for 10 min. Before the third phase (S1-S2), the subject mouse
was again gently guided to the center chamber while the object
was replaced with a new WT stranger mouse (S2). The subject
mouse again was allowed to freely explore all three chambers
and interact with both stranger mice for 10 min. The duration
of sniffing, defined as positioning of the nose of the test mouse
within 2.5 cm of a cage, was measured using EthoVision XT10
(Noldus) software.

Direct Social Interaction Test
Direct social interaction tests were performed as described
previously (Chung et al., 2015). All mice were isolated for
3 days prior to the day of the experiment. Each individual
mouse was habituated to a gray box (30 × 30 × 30 cm; ∼25–
30 lux) for two consecutive days (10 min/d). On day 3, pairs
of mice of the same genotype (originally housed separately)
were placed in the test box for 10 min. Time spent in nose-to-
nose interaction, following, and total interaction were measured
manually in a blinded manner. Nose-to-nose interaction was
defined as sniffing the head part of the other mouse. Following
included regular following as well as nose-to-tail sniffing. Total
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interaction included nose-to-nose interaction, following, body
contact, allo-grooming, and mounting.

Tube Test
The tube test assay was performed as described previously (Wang
F. et al., 2011). Mice were group-housed (4 in a cage) for 2 weeks
before behavioral experiments. We used transparent acryl tubes
with 30-cm length and 3-cm inner diameter. During two-day
training sessions, each mouse was trained to pass through
the tube in either direction for eight times under illuminated
(∼30 lux) conditions. As the mice hesitated to move, they were
gently pushed by a plastic bar. After this, 3 days of test sessions
were proceeded. Animals went through three more training trials
before the test. For the test, two different mice were placed into
the opposite ends of the test tube and carefully released to meet
in the middle of the tube. The mouse that first retreated from the
tube was marked as a “loser.” Among six possible pairs between
four cage-mates, two pairs were tested per day. Each mouse was
ordered by its rank from 1 to 4.

Courtship Ultrasonic Vocalization
Adult subject male mice were isolated in their home cage for
3 days before the test, whereas age-matched intruder female mice
were group-housed (6–7 mice/cage). We did not measure female
cycles on the assumption that group housing might synchronize
cycles. Basal ultrasonic vocalizations (USVs) of an isolated male
mouse in its home cage under light conditions of ∼60 lux in a
soundproof chamber were recorded for 5 min in the absence of
a female intruder. Next, a randomly chosen stranger C57BL/6J
female mouse was introduced into the cage, and female-induced
courtship USVs were recorded for 5 min during free interaction
between the male and female. Avisoft SASLab Pro software was
used to automatically analyze the number of USV calls, latency
to first call, and total duration of calls from recorded USV files.
Signals were filtered from 1 to 100 kHz and digitized with a
sampling frequency of 250 kHz, 16 bits per sample (Avisoft
UltraSoundGate 116H). Spectrograms were generated using the
following parameters: FFT length, 256; frame size, 100; window,
FlatTop; overlap, 75%. These parameters yielded a frequency
resolution of 977 Hz and a temporal resolution of 0.256 ms.
Frequencies lower than 25 kHz were filtered out to reduce white
background noise.

Repetitive Behavior and Self-Grooming
Test
Each mouse was placed in a lighted (∼60–70 lux), fresh home
cage with bedding and recorded for 20 min. Time spent in
self-grooming and digging behavior, measured manually, was
determined by analyzing the last 10 min. Self-grooming behavior
was defined as stroking or scratching of the body or face, or
licking body parts. Digging was defined as scattering bedding
using the head and forelimbs. Self-grooming behavior was further
analyzed by placing mice in an empty home cage without bedding
and recording them for 20 min. Time spent in self-grooming
behavior was counted manually in a blinded manner during
the last 10 min.

Laboras Test
Each mouse was placed in a single cage and recorded for
96 consecutive hours from the start of the night cycle. The
illumination condition during light-on periods was ∼60 lux.
Basal activities (locomotion, climbing, rearing, grooming, eating,
and drinking) were recorded and automatically analyzed using
the Laboratory Animal Behavior Observation Registration and
Analysis System (LABORAS, Metris). Laboras results were not
validated by our own manual analyses, given the availability
of previous validation results (Van de Weerd et al., 2001;
Quinn et al., 2003, 2006; Dere et al., 2015). Mouse movements
during the entire 4-day period were used for quantification of
behaviors, except for repetitive behavior, for which analyses were
restricted to movements during light-off periods, which yielded
clearer results.

Open-Field Test
Mice were placed in the center of an illuminated (90–100 lux)
white acrylic box (40 × 40 × 40 cm), and their locomotion was
recorded with a video camera for 1 h. The recorded video was
analyzed using EthoVision XT10 software (Noldus). The center
zone was defined as a 4× 4-square area at the center of the entire
6× 6-square region.

Elevated Plus-Maze
The maze consists of two open arms (30 × 6 cm, ∼180 lux) and
two closed arms (30 × 6 cm, ∼20 lux) elevated 75 cm from the
floor. Mice were introduced into the center of the apparatus with
their head oriented toward the open arms and were allowed to
freely explore the environment for 8 min. Amounts of time spent
in open or closed arms and number of transitions were measured
using EthoVision XT10 software (Noldus).

Light-Dark Test
The light-dark (LD) apparatus was divided into light (700 lux;
21× 29× 20 cm) and dark (∼5 lux; 21× 13× 20 cm) chambers
separated by an entrance in the middle wall (5 × 8 cm). Mice
were introduced into the light chamber with their head oriented
toward the opposite side of the dark chamber and were allowed to
freely explore the apparatus for 10 min. Amounts of time spent in
light and dark chambers and number of transitions were analyzed
using EthoVision XT10 software (Noldus).

Electrophysiology
Male mice at P18–26 (for mPFC measurements) and at P29–
41 (for dorsolateral striatum measurements) were anesthetized
with isoflurane. Mouse brain sections (300 µm) were sectioned
in ice-cold dissection buffer containing (in mM) 212 sucrose,
25 NaHCO3, 10 D-glucose, 2 Na-pyruvate, 1.25 ascorbic acid,
1.25 NaH2PO4, 5 KCl, 3.5 MgSO4, and 0.5 CaCl2 bubbled with
95% O2 and 5% CO2 gases using Leica VT 1200 vibratome.
The slices were recovered for 30 min and maintained in
artificial cerebrospinal fluid (ACSF) at 32◦C (in mM: 124 NaCl,
25 NaHCO3, 10 Glucose, 2.5 KCl, 1 NaH2PO4, 2.5 CaCl2,
1.3 MgSO4 oxygenated with 95% O2 and 5% CO2 gases).
All recordings were performed after recovery for additional
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30 min at room temperature. During all recordings, brain
slices were maintained in a submerge-type recording chamber
perfused with 27.5–28.5◦C ACSF (2 ml min−1). Recording glass
pipettes from borosilicate glass capillaries (Harvard Apparatus)
were pulled using an electrode puller (Narishige). All electric
responses were amplified and filtered at 2 kHz (Multiclamp
700B, Molecular Devices) and then digitized at 10 kHz (Digidata
1550, Molecular Devices). For whole-cell patch recordings in
the mPFC layer 2/3 and dorsolateral striatum, a recording
pipette (2.5–3.5 M�) was filled with the internal solution
(in mM: 100 CsMeSO4, 10 TEA-Cl, 8 NaCl, 10 HEPES, 5
QX-314-Cl, 2 Mg-ATP, 0.3 Na-GTP and 10 EGTA with pH
7.25, 295 mOsm for mEPSCs and sEPSCs; 115 CsCl, 10
EGTA, 8 NaCl, 10 TEACl, 10 HEPES, 4 Mg-ATP, 0.3 Na-
GTP, 5 QX-314 with pH 7.35, 295 mOsm for mIPSCs and
sIPSC; 137 K-gluconate, 5 KCl, 10 HEPES, 0.2 EGTA, 10
Na2-phosphocreatine, 4 Mg-ATP, 0.5 Na-GTP with pH 7.2,
280 mOsm for excitability). To measure mEPSCs, mIPSCs,
sEPSCs, and sIPSCs, mPFC layer2/3 pyramidal neurons and
dorsolateral MSN neurons were voltage-clamped at −70 mV.
For mEPSCs and mIPSCs, picrotoxin (60 µM) and NBQX
(10 µM)+APV (50 µM) were added to ACSF with TTX (1 µM),
respectively. For sEPSCs and sIPSCS, picrotoxin (60 µM) and
NBQX (10 µM) + APV (50 µM) without TTX were added,
respectively. mE/IPSC and sE/IPSC events were selected based
on the properties of the detected currents (rise time < 1 ms,
10 pA < amplitude < 500 pA, and decay half-width > 2 ms).
Responses were recorded for 2 min after maintaining stable
baseline for 5 min. For neuronal excitability measurement,
ACSF contained picrotoxin (60 µM), NBQX (10 µM), and AP5
(50 µM). First minimal currents were introduced to hold the
membrane potential around −80 mV in a current clamp mode.
To evoke depolarizing voltage sag responses, increasing amounts
of depolarizing step currents (by 10 pA, −150–10 pA) were
injected. Then, to elicit action potentials, increasing amounts of
depolarizing currents (0–330 pA) were injected in a stepwise
manner. Input resistance was calculated as the linear slope
of current-voltage plots generated from a series of increasing
current injection steps.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
5 software. Details of statistical analyses are presented in
Supplementary Table S2. The normality of data distributions
was determined using the D’Agostino and Pearson omnibus
normality test, followed by Student’s t-test (in the case of a
normal distribution) and Mann–Whitney U test (in the case
of a non-normal distribution). If samples were dependent on
each other, a paired t-test (in the case of a normal distribution)
or Wilcoxon signed rank test (in the case of a non-normal
distribution) was used. Repeated-measures, two-way analysis of
variance (ANOVA) with post hoc Bonferroni test (in the case of
significant interactions) was used for time-varying analyses of
open-field tests and Laboras tests. In cases where a Grubb’s test
showed that a single significant outlier (∗P < 0.05) caused data
to be non-normally distributed, the outlier value was removed
prior to analysis. A one-sample t-test was used for the analysis of

Western blot data. P-values < 0.05 were considered statistically
significant; individual P-values are indicated in figures as follows:
∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; and ns, not significant.

RESULTS

Generation and Basic Characterization
of Emx1-Cre;Shank3114−16 Mice
To analyze the effects of a Shank3 deletion restricted to
glutamatergic neurons, we crossed Shank3fl/fl mice (exons 14–16)
with an Emx1-Cre mouse line, known to drive gene expression in
glutamatergic neurons and glia with a dorsal telencephalic origin
(Gorski et al., 2002).

The resulting Emx1-Cre;Shank3114−16 mice, genotyped by
PCR (Figure 1A), exhibited strong reductions in the levels of
Shank3a and Shank3c/d variants in the hippocampus and cortex
(Figures 1B,C), a finding in agreement with previous results
on alternative splicing in Shank3 (Lim et al., 1999; Maunakea
et al., 2010; Waga et al., 2014; Wang et al., 2014b). In contrast,
Shank3 expression was largely unaffected in the thalamus, a
brain region that is minimally affected by the Emx1 driver,
and the striatum, which is mainly populated by GABAergic
inhibitory neurons.

Levels of other members of the Shank family of proteins,
namely Shank1 (Shank1a variant reported previously) (Lim
et al., 1999; Naisbitt et al., 1999) and Shank2 (Shank2a and
Shank2b reported previously) (Schmeisser et al., 2012; Won
et al., 2012), were unaffected by Shank3 deletion in the
tested brain regions (Figures 1D,E), indicative of the lack of
compensatory changes.

Increased Excitability in Global
Shank3114−16 and
Emx1-Cre;Shank3114−16 mPFC Layer 2/3
Pyramidal Neurons
Previous studies have associated Shank3 deletion with altered
neuronal excitability in human and rodent neurons (Peixoto
et al., 2016; Yi et al., 2016), suggesting the possibility of altered
neuronal excitability in Shank3-deficient cortical neurons. To
determine whether Shank3 deletion affects intrinsic excitability
in layer 2/3 cortical pyramidal neurons in the mPFC, a brain
region implicated in ASD, and whether glutamatergic neurons
are involved, we measured and compared neuronal excitability
in global Shank3114−16 and Emx1-Cre;Shank3114−16 pyramidal
neurons in the prelimbic region of the mPFC.

Global Shank3114−16 mice exhibited increased neuronal
excitability in layer 2/3 pyramidal neurons, as shown by the
current-spike curve and input resistance, two electrophysiolgical
parameters that contribute to neuronal excitability in
depolarizing and hyperpolarizing ranges of membrane potentials
(Figures 2A–C). Emx1-Cre;Shank3114−16 mice also showed
similarly increased neuronal excitability in mPFC neurons
(Figures 2D–F). These results suggest that glutamatergic
neurons contribute to the increased neuronal excitability
observed in global Shank3114−16 mice.
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FIGURE 1 | Generation and characterization of Emx1-Cre;Shank3114–16 mice. (A) PCR genotyping of Emx1-Cre;Shank3114–16 mice. Note that the primer set
targeting exons 13 and 14 generates a PCR band for the floxed allele (478 bp), and the primer set targeting general Cre generates a PCR band (272 bp) in
Emx1-Cre;Shank3114–16 mice, but not in WT mice. (B,C) Reduced levels of Shank3 protein variants in different brain regions of Emx1-Cre;Shank3114–16 mice
(12–13 weeks, male and female). Total brain lysates were analyzed by immunoblotting using a Shank3-specific antibody (#2036) (B). Neither the Shank3e isoform in
the thalamus nor the Shank3c/d isoform in the striatum was quantified because of their low levels of expression in these regions. Th, thalamus; Str, striatum; Hpc,
hippocampus; Ctx, cortex. cKO band signals normalized to α-tubulin are expressed relative to those from WT mice (C). Data are shown as mean ± SEM. n = 5 pairs
(WT, cKO), ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, nd, not detectable, ns, not significant, and one sample t-test. (D,E) Normal levels of Shank1 and Shank2 protein
variants in different brain regions of Emx1-Cre;Shank3114-16 mice (12–13 weeks, male and female). Total brain lysates were analyzed by immunoblotting using a
Shank1-specific antibody (#2100) and Shank2-specific antibody (162 202, SYSY) (D). cKO band signals normalized to α-tubulin are expressed relative to those from
WT mice (E). Data are shown as mean ± SEM. n = 5 pairs (WT, cKO), ns, not significant, and one sample t-test.

Altered Excitatory and Inhibitory
Spontaneous Synaptic Transmissions in
Global Shank3114−16, but Not
Emx1-Cre;Shank3114−16, mPFC Layer
2/3 Pyramidal Neurons
Given that neuronal excitability acts together with excitatory
and inhibitory synaptic inputs to determine neuronal output
function, we next measured excitatory and inhibitory synaptic
transmission in Shank3-mutant mPFC neurons.

The frequency, but not amplitude, of miniature excitatory
postsynaptic currents (mEPSCs) was increased in the prelimbic
region of the mPFC of global Shank3114−16 layer 2/3 neurons
compared with WT mice (Figure 3A). In contrast to mEPSCs,
miniature inhibitory postsynaptic currents (mIPSCs) were not
changed in global Shank3114−16 mice (Figure 3B).

In Emx1-Cre;Shank3114−16 layer 2/3 mPFC neurons,
both mEPSCs and mIPSCs were normal (Figures 3C,D).
This suggests that excitatory neurons are less likely to
contribute to the increased mEPSC frequency observed in
global Shank3114−16 mPFC neurons.

We also measured excitatory and inhibitory synaptic
transmission in the presence of network activity by excluding

tetrodotoxin (a blocker of action potential firing) during slice
recordings. The frequency and amplitude of spontaneous
EPSCs (sEPSCs) were normal in global Shank3114−16 layer
2/3 pyramidal neurons in the prelimbic region of the mPFC
compared with those in WT neurons (Figure 3E).

Notably, the frequency, but not amplitude, of spontaneous
IPSCs (sIPSCs) was increased in global Shank3114−16 layer
2/3 pyramidal neurons (Figure 3F). In addition, both sEPSCs
and sIPSCs were normal in Emx1-Cre;Shank3114−16 mice
(Figures 3G,H). These results collectively suggest that global
Shank3 deletion leads to increases in mEPSC frequency and
sIPSC frequency, whereas glutamatergic Shank3 deletion has no
effects on any forms of spontaneous synaptic transmission in
layer 2/3 mPFC pyramidal neurons.

Normal Spontaneous Excitatory and
Inhibitory Synaptic Transmission in
Emx1-Cre;Shank3114−16 Dorsolateral
Striatal Neurons
Dysfunctions in striatal regions, where Shank3 is strongly
expressed (Peca et al., 2011), have been associated with abnormal
behaviors in Shank3-mutant mice (Monteiro and Feng, 2017).
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FIGURE 2 | Increased excitability in global Shank3114–16 and Emx1-Cre;Shank3114–16 mPFC layer 2/3 pyramidal neurons. (A–C) Enhanced excitability in layer 2/3
pyramidal neurons in the prelimbic region of the mPFC in global Shank3114–16 mice (gKO; P20–25), as shown by current-firing curve (A), current-voltage relationship
(B) and input resistance (C). Data are shown as mean ± SEM. n = 15 neurons from 3 mice (WT), 14, 3 (KO), ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, repeated
measures two-way ANOVA (for current-firing and current-membrane potential curves), and Student’s t-test (for input resistance). (D–F) Enhanced excitability of layer
2/3 pyramidal neurons in the prelimbic region of the mPFC in Emx1-Cre;Shank3114–16 mice (P20–24), as shown by current-firing curve, current-voltage relationship
and input resistance. n = 18 neurons from 4 mice (WT), 17, 4 (cKO), ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, repeated measures two-way ANOVA (for current-firing
and current-membrane potential curves), and Student’s t-test (for input resistance).

Because our previous results revealed decreased excitatory
synaptic transmission in dorsolateral striatal neurons in
both global Shank3114−16 and Viaat-Cre;Shank3114−16

mice (Yoo et al., 2018), we next measured spontaneous
excitatory and inhibitory synaptic transmission in dorsolateral
striatal neurons.

However, there were no changes in the frequency or
amplitude of mEPSCs in Emx1-Cre;Shank3114−16 dorsolateral
striatal neurons compared with WT neurons (Figure 4A). In
addition, neither the frequency nor amplitude of mIPSCs was
altered in Emx1-Cre;Shank3114−16 dorsolateral striatal neurons
(Figure 4B). These results contrast with the strongly decreased
mEPSC frequency and amplitude in dorsolateral striatal neurons
in global Shank3114−16 and Viaat-Cre;Shank3114−16 mice
(Yoo et al., 2018).

Enhanced Direct Social Interaction, but
Normal Social Approach and Social
Communication, in
Emx1-Cre;Shank3114−16 Mice
Given the well-known association between SHANK3 and
various neurodevelopmental disorders, including ASD,
PMS and schizophrenia (Phelan and McDermid, 2012;

Monteiro and Feng, 2017), we first subjected Emx1-Cre;
Shank3114−16 mice to behavioral tests in the social domain.

In the three-chambered social interaction test, designed
to measure social approach and social novelty recognition
(Crawley, 2004; Moy et al., 2004; Silverman et al., 2010), Emx1-
Cre;Shank3114−16 mice showed social approach behaviors that
are comparable to those of WT mice, as shown by time spent
sniffing social and object targets (Figure 5A). In addition,
Emx1-Cre;Shank3114−16 mice displayed normal social novelty
recognition, as shown by time spent sniffing familiar and
novel stranger mice.

Intriguingly, in experiments using genotype- and age-matched
mouse pairs, Emx1-Cre;Shank3114−16 mice showed enhanced
social interaction in the direct social interaction test, as
shown by time spent in nose-to-nose sniffing and total social
interaction (Figure 5B). These results indicate that Emx1-
Cre;Shank3114−16 mice display normal social approach and
social novelty recognition, but abnormally enhanced direct
social interaction, similar to the social behaviors of global
Shank3114−16 and Viaat-Cre;Shank3114−16 mice in these tests
(Yoo et al., 2018). These changes do not seem to involve
altered social dominance, as supported by the lack of genotype
difference in the Tube test (Figure 5C). These results suggest
that both glutamatergic and GABAergic neurons contribute
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FIGURE 3 | Altered excitatory and inhibitory spontaneous synaptic
transmissions in global Shank3114–16, but not Emx1-Cre;Shank3114–16,
mPFC layer 2/3 pyramidal neurons. (A,B) Global Shank3114–16 mice (P21–26)
show increased frequency, but normal amplitude, of mEPSCs and normal
mIPSCs in layer 2/3 pyramidal neurons in the prelimbic region of the mPFC.
Data are shown as mean ± SEM. n = 17 neurons from 5 mice (WT), 17, 7
(KO) for mEPSCs, 15, 5 (WT), 16, 6 (KO) for mIPSCs, ∗∗P < 0.01, ns, not
significant, Student’s t-test. (C,D) Emx1-Cre;Shank3114–16 mice (P18–22)
show normal mEPSCs and mIPSCs in layer 2/3 pyramidal neurons in the
prelimbic region of the mPFC. n = 19, 4 (WT), 16, 4 (cKO) for mEPSCs, 14, 4
(WT), 17, 4 (cKO) for mIPSCs, Student’s t-test (amplitude of mEPSC and
frequency of mIPSC), and Mann–Whitney U test (frequency of mEPSC and
amplitude of mIPSC). (E,F) Global Shank3114–16 mice (P21–24) show normal
sEPSCs and increased frequency, but normal amplitude, of sIPSCs in layer
2/3 pyramidal neurons in the prelimbic region of the mPFC. Data are shown

(Continued)

FIGURE 3 | Continued
as mean ± SEM. n = 17 neurons from 3 mice (WT), 17, 3 (KO) for sEPSCs,
15, 3 (WT), 18, 3 (KO) for sIPSCs, ∗∗P < 0.01, ns, not significant, Student’s
t-test. (G,H) Emx1-Cre;Shank3114–16 mice (P20–25) show normal sEPSCs
and sIPSCs in layer 2/3 pyramidal neurons in the prelimbic region of the
mPFC. n = 15, 3 (WT), 16, 3 (cKO) for sEPSCs,19, 3 (WT), 19, 3 (cKO) for
sIPSCs, ns, not significant, Student’s t-test (frequency and amplitude of
sEPSC and frequency of sIPSC), and Mann–Whitney U test
(amplitude of sIPSC).

to the abnormally enhanced direct social interaction in global
Shank3114−16 mice.

We next evaluated USVs, which are strongly associated
with rodent behaviors and emotional states, including social
communication (Knutson et al., 1998, 2002; Portfors, 2007;
Scattoni et al., 2009). Adult male Emx1-Cre;Shank3114−16 mice
encountering a novel female mouse emitted normal numbers
of USVs compared with WT mice (Figure 5D). Notably, this
result differs from the suppressed courtship USVs observed in
global Shank3114−16 and Viaat-Cre;Shank3114−16 mice (Yoo
et al., 2018), suggesting that GABAergic, but not glutamatergic,
neurons strongly contribute to the USV deficits in global
Shank3114−16 mice.

Modestly Enhanced Repetitive
Self-Grooming, but Normal Digging, in
Emx1-Cre;Shank3114−16 Mice
We next evaluated repetitive behaviors, a core component of
ASD-related behavior, in Emx1-Cre;Shank3114−16 mice. Emx1-
Cre;Shank3114−16 mice displayed enhanced self-grooming in a
new home cage with bedding but normal self-grooming in a new
home cage without bedding (Figures 5E,F), suggesting that the
presence of bedding is required for repetitive behavior in addition
to a new cage or environment. This result shows similarities
to the strong self-grooming behaviors in global Shank3114−16

mice observed in all three environments (new home cage with
bedding, new home cage without bedding, and Laboras cages),
but is more comparable to the mildly enhanced self-grooming
in Viaat-Cre;Shank3114−16 mice, observed only in a new home
cage with bedding (Yoo et al., 2018). Measurements of digging,
another method for quantifying repetitive behavior, showed no
changes in Emx1-Cre;Shank3114−16 mice compared with WT
mice, even in the presence of bedding. This contrasts with the
decreased digging observed in both global Shank3114−16 and
Viaat-Cre;Shank3114−16 mice (Yoo et al., 2018).

Emx1-Cre;Shank3114−16 mice subjected to the Laboras test,
designed to measure mouse behaviors for a long period of time
(i.e., four consecutive days) in a light/dark-cycling environment
with bedding (Quinn et al., 2003, 2006), showed normal levels
of self-grooming (Figures 5G,H). The results of these tests,
in which mice were fully habituated, especially on days 2–4,
suggest that Emx1-Cre;Shank3114−16 mice show enhanced self-
grooming only in a particular environment (i.e., novel home
cage with bedding). Other behaviors of Emx1-Cre;Shank3114−16

mice, including climbing, rearing, drinking and eating, were
unchanged in Laboras cages (Figure 5H).
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FIGURE 4 | Normal spontaneous excitatory and inhibitory synaptic
transmission in Emx1-Cre;Shank3114–16 dorsolateral striatal neurons. (A)
Emx1-Cre;Shank3114–16 mice (P29–35) show normal frequency and
amplitude of mEPSCs in dorsolateral striatal neurons. Data are shown as
mean ± SEM. n = 14 neurons from 3 mice (WT), 17, 3 (cKO), ns, not
significant, Student’s t-test. (B) Emx1-Cre;Shank3114–16 mice (P34–41) show
normal frequency and amplitude of mIPSCs in dorsolateral striatal neurons.
n = 15, 3 (WT), 15, 3 (cKO), ns, not significant, Student’s t-test.

Normal Locomotor Activity and
Enhanced Anxiolytic-Like Behavior in
Emx1-Cre;Shank3114−16 Mice
Because hyperactivity and anxiety are observed in ASD, PMS and
schizophrenia, we also evaluated locomotor activities of Emx1-
Cre;Shank3114−16 mice. In the open-field test, representing
a novel environment, Emx1-Cre;Shank3114−16 mice showed
normal levels of locomotor activity, as shown by distance moved
during 60 min (Figure 6A). In Laboras cages, representing
a familiar environment, Emx1-Cre;Shank3114−16 mice showed
normal levels of locomotor activities during the last 72 h
(Figure 6B). Locomotion in Laboras cages was also unchanged
during the first 6 h, similar to the results of the open-field test.
These results suggest that glutamatergic Shank3 deletion does not
affect locomotor activity, in contrast to the reported hypoactivity
of both global Shank3114−16 and Viaat-Cre;Shank3114−16 mice
(Yoo et al., 2018).

In anxiety-related behavioral tests, Emx1-Cre;Shank3114−16

mice spent a normal amount of time in the center region
of the open-field arena (Figure 6A), but spent an increased
amount of time in the open arm of the elevated plus-maze
(EPM) (Figure 6C), and a normal amount of time in the
light chamber of the LD apparatus (Figure 6D). The normal
open-field center time and increased EPM open-arm time
in Emx1-Cre;Shank3114−16 mice are similar to behaviors
observed in global Shank3114−16 mice, but differ from the
decreased open-field center time and normal EPM open-
arm time observed in Viaat-Cre;Shank3114−16 mice (Yoo
et al., 2018). In addition, the normal light-chamber time in
the LD test in Emx1-Cre;Shank3114−16 mice differs from
the reduced light-chamber time (anxiety-like behavior) in
global Shank3114−16 and Viaat-Cre;Shank3114−16 mice
(Yoo et al., 2018) (summarized in Table 1). Therefore,
the two contrasting anxiety-like behaviors in global
Shank3114−16 mice—anxiolytic-like behavior in the EPM

and anxiety-like behavior in the LD apparatus—seem
to more strongly involve glutamatergic and GABAergic
neurons, respectively.

Control Emx1-Cre Mice Show Normal
Locomotor Activity, Anxiety-Like
Behavior, Direct Social Interaction, and
Repetitive Behavior
It is conceivable that control mice harboring Emx1-Cre alone
might show behavioral abnormalities. To test this, we analyzed
the behaviors of Emx1-Cre mice. These mice showed normal
behaviors in Laboras cages, including locomotion, climbing,
and rearing (Supplementary Figure S1A). In addition, Emx1-
Cre mice showed normal levels of locomotor activity in the
open-field test and time spent in the center region of the
open-field arena (Supplementary Figure S1B). These mice also
showed normal levels of time spent in the open arm of the
EPM (Supplementary Figure S1C), direct social interaction
(Supplementary Figure S1D), and self-grooming and digging
in home cages with bedding (Supplementary Figure S1E).
These results suggest that control Emx1-Cre mice show normal
locomotion, repetitive behavior, and anxiety-related behaviors.

DISCUSSION

In this study, we investigated the impacts of glutamatergic
Shank3 (exons 14–16) deletion and compared them with those
observed in global Shank3114−16 and Viaat-Cre;Shank3114−16

mice. Our data indicate that the synaptic/neuronal phenotypes
of Emx1-Cre;Shank3114−16 mice were similar in part to
those observed in global Shank3114−16 mice (summarized in
Table 1). Moreover, social and repetitive behavioral deficits
were similar between Emx1-Cre;Shank3114−16 and Viaat-
Cre;Shank3114−16 mice, suggesting that these behaviors involve
shared contributions of glutamatergic and GABAergic neurons.
However, electrophysiological and behavioral phenotypes of
Emx1-Cre;Shank3114−16 and Viaat-Cre;Shank3114−16 mice
were largely distinct (Table 1).

Electrophysiologically, Emx1-Cre;Shank3114−16 layer 2/3
pyramidal neurons in the prelimbic region of the mPFC
showed increased neuronal excitability (Figures 2D–F).
The fact that neuronal excitability was similarly increased
in global Shank3114−16 layer 2/3 neurons (Figures 2A–C)
suggests that glutamatergic neurons strongly contribute to the
increased excitability in global Shank3114−16 layer 2/3 neurons.
Importantly, a previous study reported that neuronal excitability
is increased in human neurons harboring a SHANK3 (exon
13) deletion, in association with increased input resistance and
decreased hyperpolarization-activated cation currents (Ih). This
latter effect is mediated by hyperpolarization-activated cyclic
nucleotide-gated (HCN) channels, which directly interact with
Shank3 (Yi et al., 2016). In addition, cultured hippocampal
neurons from Shank3-deficient mice (exons 13–16) (Peca et al.,
2011) display similar increases in neuronal excitability (Yi
et al., 2016). These results, together with our demonstration
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FIGURE 5 | Enhanced direct social interaction and repetitive self-grooming in Emx1-Cre;Shank3114–16 mice. (A–D) Emx1-Cre;Shank3114–16 mice (A, 13–20 weeks;
B, 15–21 weeks; C, 16–32 weeks; D, 15–21 weeks) show normal social approach in the three-chamber test (A), enhanced direct social interaction (B), normal social
dominance in the tube test (C), and normal courtship USVs (D; P = 0.088). Data are shown as mean ± SEM. n = 23 (WT), 20 (cKO) for three-chamber, 10 (WT), 9
(cKO) for direct social interaction, 11 (WT), 9 (cKO) for tube test, and 20 (WT), 20 (cKO) for USV, ∗∗P < 0.01, ∗∗∗P < 0.001, paired t-test (WT S1-O, WT S1-S2, and
cKO S1-S2), Wilcoxon signed rank test (cKO S1-O), and Student’s t-test (for the direct social interaction test, and adult USV test). (E–H) Emx1-Cre;Shank3114–16

mice (E, 12–17 weeks; F, 12–18 weeks; G,H, 10–17 weeks) show enhanced self-grooming and normal digging in home cages with bedding (F), but normal
self-grooming in a novel home cage without bedding (E) and in Laboras cages (G,H). Data are shown as means ± SEM; data values in panel H represent those from
light-off periods (shaded durations). n = 24 (WT), 21 (cKO) for w/o bedding, 16 (WT), 14 (cKO) for w/bedding, and 13 (WT), 14 (cKO) for Laboras, ∗P < 0.05,
repeated measures two-way ANOVA (for Laboras, left panel; genotype p-value = 0.3944), Student’s t-test [for digging time of repetitive behavior and Laboras
(climbing, rearing, grooming, and eating)], and Mann–Whitney U test [for self-grooming test, self-grooming time of repetitive behavior, and Laboras (drinking)].

of increased neuronal excitability in global Shank3114−16 and
Emx1-Cre;Shank3114−16 mPFC layer 2/3 neurons, collectively
suggest that increased neuronal excitability represents a
conserved mechanism underlying Shank3 deletion-induced
behavioral abnormalities.

In terms of synaptic transmission, neither mEPSCs or mIPSCs
in the mPFC were changed in Emx1-Cre;Shank3114−16 layer
2/3 pyramidal neurons (Figures 3C,D). This contrasts with
the increased frequency, but not amplitude, of mEPSCs
in global Shank3114−16 layer 2/3 pyramidal neurons
(Figures 3A,B). Therefore, the increased mEPSC frequency

in global Shank3114−16 layer 2/3 pyramidal neurons may
not involve changes in glutamatergic neurons, thus implying
non-cell-autonomous mechanisms. Indeed, this possibility
of non-cell-autonomous mechanisms is in agreement with
the known roles of Shank3 as a key component of excitatory
postsynaptic compartments (Sheng and Kim, 2000, 2011; Sheng
and Sala, 2001; Boeckers et al., 2002; Sheng and Hoogenraad,
2007; Grabrucker et al., 2011; Jiang and Ehlers, 2013; Sala et al.,
2015; Monteiro and Feng, 2017; Mossa et al., 2017).

Then how might a Shank3 deletion lead to an increase in
mEPSC frequency in global Shank3114−16 layer 2/3 pyramidal
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FIGURE 6 | Normal locomotor activity in open-field and Laboras cages, and enhanced anxiety-like behavior in elevated plus-maze (EPM) in Emx1-Cre;Shank3114–16

mice. (A,B) Emx1-Cre;Shank3114–16 mice (A, 11–17 weeks; B, 10–17 weeks) show normal levels of locomotor activity in the open-field test (A) and in Laboras
cages (B). Note that these mice spend a normal amount of time in the center region of the open-field arena, indicative of normal anxiety-like behavior in this test.
Data are shown as means ± SEM; data values in the bar graph in panel B represent those from light-off periods (shaded durations). n = 23 (WT), 21 (cKO) for
open-field and 13 (WT), 14 (cKO) for Laboras, repeated measures of two-way ANOVA (for the left panels in open-field and Laboras; genotype p-values = 0.6889 and
0.3025, respectively), Student’s t-test (for the right panels in open-field and first 6 h of the right panels in Laboras), and Mann–Whitney U test (for the last 72 h of the
right panels in Laboras). (C) Emx1-Cre;Shank3114–16 mice (14–19 weeks) spend an increased amount of time in the open arm of the elevated plus-maze (EPM).
n = 23 (WT), 20 (cKO), ∗P < 0.05, ∗∗∗P < 0.001, Student’s t-test (right panels of elevated plus maze test) and paired t-test (for left panels of elevated plus maze
test). (D) Emx1-Cre;Shank3114–16 mice (14–19 weeks) spend a normal amount of time in the light chamber of the light-dark (LD) apparatus. n = 23 (WT), 21 (cKO),
ns, not significant, Student’s t-test.

neurons? Increased mEPSC frequency may involve increased
excitatory synapse number or increased excitatory synaptic
transmission through mechanisms, including increased neuronal
excitability of presynaptic neurons and increased efficiency
of presynaptic release. Therefore, one possibility is that the
increased neuronal excitability in global Shank3114−16 mPFC
neurons increases the output function of these neurons and
activates the intra-cortical network between layer 2/3 neurons,
promoting the development of excitatory synapses in target layer
2/3 cortical neurons. Intriguingly, a previous study has shown
that Shank3 could be detected in axonal compartments and

nerve terminals and negative regulates presynaptic NMDARs
(Halbedl et al., 2016), suggesting that the loss of presynaptic
Shank3 might contribute to the increased mEPSC frequency.
Alternatively, the increased neuronal excitability induced by
loss of the interaction between Shank3 and HCN channels (Yi
et al., 2016) may promote excitatory synaptic transmission and
excitatory synapse development in a cell-autonomous manner;
however, this is an unlikely possibility, as noted above.

Our measurements of sEPSCs and sIPSCs provide additional
insight into the role of network activity in the context of a Shank3
deletion. Specifically, global Shank3114−16 layer 2/3 pyramidal

Frontiers in Cellular Neuroscience | www.frontiersin.org 11 October 2019 | Volume 13 | Article 458

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00458 October 8, 2019 Time: 11:30 # 12

Yoo et al. Effects of Glutamatergic Neurons-Specific Shank3 Deletion

TABLE 1 | Comparison of electrophysiological and behavioral phenotypes of global Shank3114−16, Emx1-Cre;Shank3114−16, and Viaat-Cre;Shank3114−16 mice.

Behavioral domain Behavioral Global Shank3 Emx1 Shank3 Viaat Shank3

test exons 14–16 KO exons 14–16 cKO exons 14–16 cKO

(Yoo et al., 2018) (Yoo et al., 2018)

Social interaction 3-chamber NS NS NS

Direct interaction Total interaction ↑, Nose-to-nose ↑,
Following ↑

Total interaction ↑, Nose-to-nose ↑ Total interaction ↑

Social dominance Tube test NM NS NM

Social communication Adult USV (courtship) ↓ NS ↓

Repetitive behavior LABORAS Self-grooming ↑, Climbing ↓ NS Climbing ↓, Rearing ↑

Grooming (w/o bedding) ↑ NS NS

Repetitive behavior (with bedding) Self-grooming↑, Digging↓ Self-grooming↑ Self-grooming↑, Digging↓

Locomotor activity LABORAS Activity ↓(first 6 h) NS Activity ↓(first 6 h)

Open field Activity ↓ NS Activity ↓

Anxiety Open field NS NS Center time ↓

Elevated plus maze Time in open arms ↑ Time in open arms ↑ NS

Light/Dark box Time in light chamber ↓ NS Time in light chamber ↓

Brain region Measurement Frequency Amplitude Frequency Amplitude Frequency Amplitude

Dorsolateral striatum mEPSC ↓(∗∗∗) ↓(∗∗) NS NS ↓(∗∗) ↓(∗)

mIPSC NS NS NS NS NS NS

mPFC (layer2/3) mEPSC ↑(∗∗) NS NS NS NM NM

mIPSC NS NS NS NS NM NM

sEPSC NS NS NS NS NM NM

sIPSC ↑(∗∗) NS NS NS NM NM

Excitability Neuronal excitability ↑ Neuronal excitability ↑ NM

Table summarizes increases or decreases in various electrophysiological and behavioral phenotypes in a given mouse line relative to WT/control mice, but is not intended
to compare phenotypic severities across different mouse lines. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001; NS, no significant change; NM, not measured; up and down
arrows, increases and decreases, respectively. Areas shaded in orange represent similar phenotypes.

neurons showed normalized sEPSC frequency and increased
sIPSC frequency (Figures 3E,F), findings that contrast with the
increased mEPSC frequency and normal mIPSC frequency in the
same neurons (Figures 3A,B). These sEPSC/sIPSC phenotypes
likely represent compensatory changes that serve to suppress the
increased mEPSC frequency as well as the increased neuronal
excitability in these neurons and thus normalize the neuronal
output. Indeed, the fact that sEPSCs in global Shank3114−16

layer 2/3 pyramidal neurons are normalized suggests that
these compensatory changes could actually normalize the
neuronal output, at least in the slice preparation, which likely
represents baseline conditions. However, the consequence of
these compensatory effects seems to be abnormally increased
inhibitory synaptic transmission onto pyramidal neurons that
still maintain their increased neuronal excitability, as measured
in the presence of network activity. Therefore, although neuronal
output was apparently normalized in layer 2/3 neurons, the
balance between excitatory and inhibitory synaptic transmission,
and neuronal activity, might be disrupted. In keeping with this,
an imbalance in excitation/inhibition ratio has been implicated
in ASD (Rubenstein and Merzenich, 2003; Yizhar et al., 2011;
Lee et al., 2015; Nelson and Valakh, 2015; Lee E. et al., 2017;
Selimbeyoglu et al., 2017). A disruption in excitation/inhibition
balance may also alter network properties such as brain rhythms.

Indeed, altered EEG rhythms, including an increase in gamma
power, have been observed in Shank3-mutant mice (Han et al.,
2013; Wang et al., 2016; Dhamne et al., 2017; Ingiosi et al., 2019;
Yoo et al., 2019) as well as in SHANK3-related ASD and PMS
(Soorya et al., 2013; Holder and Quach, 2016).

Behaviorally, glutamatergic and GABAergic Shank3 deletions
seem to differentially contribute to the abnormal behaviors
observed in global Shank3114−16 mice. For instance, increased
direct social interaction and normal social approach were
observed in all three mouse lines (global, Emx1, and Viaat)
(Figures 5A,B). Enhanced self-grooming was also observed
in the three mouse lines (Figures 5E–H), although it was
stronger in global Shank3114−16 mice. These results suggest
that both glutamatergic and GABAergic neurons contribute
to the social and repetitive behavioral abnormalities in Emx1-
Cre;Shank3114−16 mice. One behavior that deviated from
this shared contribution of glutamatergic and GABAergic
neurons was courtship USVs, which were normal in Emx1-
Cre;Shank3114−16 mice, but suppressed in global Shank3114−16

and Viaat-Cre;Shank3114−16 mice (Figure 5D). In addition,
anxiolytic-like (EPM open-arm time) and anxiety-like (LD
light-chamber time) behaviors in global Shank3114−16 mice
were observed selectively in Emx1-Cre;Shank3114−16 and Viaat-
Cre;Shank3114−16 mice, respectively (Figures 6C,D).
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Identifying the brain regions and circuit mechanisms
underlying this differential recapitulation of behavioral
phenotypes of global Shank3114−16 mice in Emx1-
Cre;Shank3114−16 and Viaat-Cre;Shank3114−16 mice could
be a highly speculative undertaking. However, one brain region
that is strongly associated with Shank3-dependent social and
repetitive behavioral deficits is the striatum (Peca et al., 2011;
Filice et al., 2016; Fuccillo, 2016; Jaramillo et al., 2016, 2017; Mei
et al., 2016; Peixoto et al., 2016; Wang et al., 2016, 2017; Zhou
et al., 2016; Lee Y. et al., 2017; Reim et al., 2017; Vicidomini
et al., 2017; Bey et al., 2018; Fourie et al., 2018; Yoo et al.,
2018). More recently, the ventral striatum and its upstream
regions (ventral tegmental area and dorsal raphe nucleus) have
been implicated in the social deficits in Shank3-mutant mice
(Bariselli et al., 2016, 2018; Bariselli and Bellone, 2017; Luo
et al., 2017). Intriguingly, however, our electrophysiological
results indicated that Emx1-Cre;Shank3114−16 mice do not
display altered excitatory or inhibitory synaptic transmission in
dorsolateral striatal neurons (Figure 4), a finding that strongly
contrasts with the reduced excitatory synaptic transmission in
dorsolateral striatal neurons in global Shank3114−16 and Viaat-
Cre;Shank3114−16 mice (Yoo et al., 2018). Therefore, potential
alterations in excitatory synapses in prefrontal cortical neurons
in Emx1-Cre;Shank3114−16 mice do not seem to affect excitatory
afferents to dorsal striatal neurons. We thus hypothesize that
glutamatergic and GABAergic neurons contribute to the social or
repetitive behavioral deficits through distinct synapses, circuits
and mechanisms, at least in the dorsal striatum.

Notably, a recent study on Shank314−22 mice carrying
deletions in exons 4–22 (not exons 14–16, as in the current
study) reported behavioral phenotypes that are surprisingly
similar to those observed in our global Shank3114−16 mice (Yoo
et al., 2018), including normal social approach, enhanced direct
social interaction, suppressed courtship USVs, enhanced self-
grooming, open-field hypoactivity, and anxiolytic-like behavior
(EPM) (Wang et al., 2016). In addition, a more recent related
study investigated the impacts of a Shank3 (exons 4–22)
deletion restricted to Nex-positive glutamatergic neurons in
the cortex, hippocampus, and amygdala (Nex-Cre;Shank314−22

mice) (Bey et al., 2018). Intriguingly, Nex-Cre;Shank314−22

mice recapitulated many behavioral phenotypes of global
Shank314−22 mice, including normal social approach and
enhanced self-grooming, similar to the results from global
Shank3114−16 and Emx1-Cre;Shank3114−16 mice reported
here. In addition, these Nex-Cre;Shank314−22 mice did not
recapitulate the suppressed courtship USV or hypoactivity
phenotypes of global Shank314−22 mice. Again, this is similar to
the results from our mice (global and Emx1), which together with
our demonstration that Viaat-Cre;Shank3114−16 mice display
suppressed courtship USVs suggests (Yoo et al., 2018) that
GABAergic neurons may be important for the courtship USV
phenotype in Shank3-deficient mice.

However, Nex-Cre;Shank314−22 mice not only failed to
recapitulate the hypoactivity of global Shank314−22 mice, they
actually showed increased locomotor activity in open-field tests
(Bey et al., 2018), results in contrast with the normal locomotor
activity behavior in our Emx1-Cre;Shank3114−16 mice. Whether

these differences involve differentially altered striatal synaptic
transmission remains unclear because the previous study on Nex-
Cre;Shank314−22 mice analyzed synaptic transmission only in
the hippocampus (Bey et al., 2018). However, these discrepancies
could be attributable to differences in the specific exons of Shank3
deleted or specific characteristics of Nex-Cre versus Emx1-Cre
mice (Guo et al., 2000; Gorski et al., 2002; Goebbels et al., 2006).

In conclusion, our results suggest that glutamatergic Shank3
(exons 14–16) deletion increases neuronal excitability in layer
2/3 mPFC cortical neurons, but has no effect on synaptic
transmission in dorsal striatal neurons. It also induces social and
repetitive behavioral deficits, similar to the effects of global and
GABAergic Shank3 deletions.
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FIGURE S1 | Normal locomotor activity, anxiety-like behavior, direct social
interaction, and repetitive behavior in control Emx1-Cre mice. (A) Emx1-Cre mice
(11–12 weeks) show normal behaviors in Laboras cages. Data are shown as
mean ± SEM. n = 19 (WT), 15 (Emx1-Cre), repeated measures two-way ANOVA
(for the left panel; genotype p-values = 0.3600), Student’s t-test (distance moved
of last 72 h, climbing, rearing, drinking, and eating), Mann–Whitney U test
(distance moved of first 6 h and grooming). (B) Emx1-Cre mice (10–12 weeks)
show normal locomotor activity and time spent in the center region in the
open-field test. n = 19 mice (WT), 16 (Emx1-Cre), repeated measures two-way
ANOVA (for the left panel; genotype p-values = 0.9795), Student’s t-test. (C)
Emx1-Cre mice (11–12 weeks) show normal anxiety-like behavior in the elevated
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plus-maze (EPM). n = 18 (WT), 16 (Emx1-Cre), ∗∗∗P < 0.001, paired t-test (for the
left panels), and Student’s t-test (for the right panel). (D) Emx1-Cre mice
(21–30 weeks) show normal levels of direct social interaction compared with sex-
and age-matched conspecific mice. n = 7 (WT), 5 (Emx1-Cre), Mann–Whitney U
test. (E) Emx1-Cre mice (11–16 weeks) show normal self-grooming and digging in

home cages with bedding. n = 19 (WT), 16 (Emx1-Cre), Student’s t-test (duration
of self-grooming), and Mann–Whitney U test (duration of digging).

TABLE S1 | The order of behavior experiments.

TABLE S2 | Statistics table.
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