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The target for the “rapid” (<24 h) antidepressant effects of S-ketamine is unknown,
vitiating programs to rationally develop more effective rapid antidepressants. To describe
a drug’s target, one must first understand the compartments entered by the drug,
at all levels—the organ, the cell, and the organelle. We have, therefore, developed
molecular tools to measure the subcellular, organellar pharmacokinetics of S-ketamine.
The tools are genetically encoded intensity-based S-ketamine-sensing fluorescent
reporters, iSKetSnFR1 and iSKetSnFR2. In solution, these biosensors respond to
S-ketamine with a sensitivity, S-slope = delta(F/F0)/(delta[S-ketamine]) of 0.23 and
1.9/µM, respectively. The iSKetSnFR2 construct allows measurements at <0.3 µM
S-ketamine. The iSKetSnFR1 and iSKetSnFR2 biosensors display >100-fold selectivity
over other ligands tested, including R-ketamine. We targeted each of the sensors to
either the plasma membrane (PM) or the endoplasmic reticulum (ER). Measurements
on these biosensors expressed in Neuro2a cells and in human dopaminergic neurons
differentiated from induced pluripotent stem cells (iPSCs) show that S-ketamine enters
the ER within a few seconds after appearing in the external solution near the PM,
then leaves as rapidly after S-ketamine is removed from the extracellular solution. In
cells, S-slopes for the ER and PM-targeted sensors differ by <2-fold, indicating that
the ER [S-ketamine] is less than 2-fold different from the extracellular [S-ketamine].
Organelles represent potential compartments for the engagement of S-ketamine with its
antidepressant target, and potential S-ketamine targets include organellar ion channels,
receptors, and transporters.

Keywords: antidepressants, organelles, green fluorescent protein, protein engineering and design, periplasmic
binding proteins (PBPs), inside-out pharmacology, iSketSnFR1, iSketSnFR2
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INTRODUCTION

Despite half a century of research and improvement,
antidepressant drugs do not work optimally. Although selective
serotonin reuptake inhibitor antidepressants help appreciable
numbers of patients, their benefits appear too slowly (2–6 weeks)
after treatment has begun. In contrast, administration of a
single, relatively small (subanesthetic) dose of racemic ketamine
for ∼1 h partially relieves depression in <1 day; this relief
continues for several days post-administration (Berman et al.,
2000). In some preclinical studies, R-ketamine has more potent
and lasting antidepressant action than S-ketamine (Hashimoto,
2019). Recently, the US FDA approved inhaled S-ketamine for
treatment-resistant depression.

However, because higher doses of S-ketamine have adverse
effects, developing antidepressants that act similarly to
S-ketamine may be a better strategy than using S-ketamine
itself. To enable developing better rapidly acting antidepressants,
one must first understand the mechanism of S-ketamine action,
including the molecular target.

Most investigators emphasize the hypothesis that S-ketamine
exerts its antidepressant effects by binding to an N-Methyl-
D-aspartate (NMDA) receptor subtype (MacDonald et al.,
1991; Blanpied et al., 1997; Preskorn et al., 2008; Autry
et al., 2011; Emnett et al., 2013; Gideons et al., 2014; Miller
et al., 2014; Johnson et al., 2015). Other articles suggest
the following receptor, channel, or transporter targets for
ketamine: α3β2 nicotinic receptors (nAChRs; Lee et al., 2012),
α4β2 nAChRs (Buisson and Bertrand, 1998), α7 nAChRs
(Coates and Flood, 2001; Moaddel et al., 2013), dopamine D2
receptors (Kapur and Seeman, 2001, 2002; Seeman and Kapur,
2003), HCN1 channels (Chen et al., 2009), 5-HT2 receptors
(Frohlich and Van Horn, 2014), or 5-HT3 receptors (Yamakura
et al., 2000). Most contemporary psychiatric drugs have well-
established receptor, channel, or transporter targets. In contrast,
the ‘‘target’’ for the antidepressant actions of S-ketamine is
poorly understood.

We comment similarly that downstream signaling pathways
are poorly understood. Suggested pathways include mechanistic
target of rapamycin (mTOR; Zoncu et al., 2011; Moaddel et al.,
2013; Miller et al., 2014), eukaryotic elongation factor 2 (EEF2)
kinase (Autry et al., 2011; Gideons et al., 2014; Adaikkan
et al., 2018), serine/threonine kinase glycogen synthase kinase-3
(GSK-3; Beurel et al., 2011; Liu et al., 2013), calcium/calmodulin-
dependent protein kinase II (CaMKII; Adaikkan et al., 2018),
brain-derived neurotrophic factor (BDNF; Lepack et al., 2014),
Kir4.1-containing transport vesicles (Stenovec et al., 2019), and
G-protein translocation to/from lipid rafts (Wray et al., 2018).
These molecules are thought to participate in enhancements of
glutamatergic (Zanos et al., 2018), cholinergic, or GABAergic
(Widman and McMahon, 2018) transmission (Ren et al.,
2016). Finally, we comment similarly about brain regions
and nuclei. Most studies focus on hippocampus and cortex;
but ketamine also blocks bursting in the lateral habenula
(Yang et al., 2018).

If one does not know the target for a drug, then an appropriate
step is to seek that target in all compartments that contain

the drug, and to measure how long the drug remains in each
compartment. A previous report shows that a ketamine analog
enters cells (Emnett et al., 2016). This report presents the first
quantitative, dynamically resolved measurements of S-ketamine
in an organelle: the endoplasmic reticulum (ER).

To conduct these experiments, we executed a research
strategy resembling our previous report for nicotine (Shivange
et al., 2019). We developed a genetically encoded fluorescent
biosensor for S-ketamine. We targeted the biosensor to
either the plasma membrane (PM) or the ER. We then
performed fluorescence measurements to dynamically report the
S-ketamine concentration in each compartment.

MATERIALS AND METHODS

Directed Evolution of iSKetSnFR Proteins
Using Bacterial-Expressed Protein Assays
Starting with the iNicSnFR biosensor constructs (Shivange et al.,
2019), we constructed and measured∼3,000 mutants, in iterative
rounds of site-saturated mutagenesis (SSM). We utilized the
Quikchange mutagenesis protocol (Agilent), including a mixture
of three primers, creating 22 unique codons encoding the
20 canonical amino acids (Kille et al., 2013). The 22-codon
procedure yields an estimated >96% residue coverage for a
collection of 96 randomly chosen clones.

A Tecan Spark M10 96-well fluorescence plate reader
(equipped with appropriate filters) was used to measure resting
and S-ketamine-induced fluorescence (F0 and ∆F, respectively).
Bacterial lysates were tested with excitation at 485 nm and
emission at 535 nm. Promising clones were amplified and
sequenced. The most sensitive construct in each round of SSM
was used as a template for the next round of SSM.

Measurements on Purified iSketSnFR
Constructs
Biosensors selected for further study were purified with the His6
sequence included in the bacterial expression vector (Shivange
et al., 2019). Proteins were purified by immobilization in
phosphate-buffered saline (PBS), pH 7.4, and elution in an
imidazole gradient (10–200 mM). Proteins were concentrated
by centrifugation through a 30 kDa cut off column, and
by dialysis against PBS. The dialyzed protein was quantified
using a nanodrop spectrofluorometer, and 50 or (preferably)
100 nM was used in dose-response studies to characterize
responses to various ligands. Dose-response relations for ligands
were conducted with the plate reader. The pH-dependent
dose-response studies with purified iSketSnFR constructs were
performed using 3× PBS buffers.

Expression in Mammalian Cells
We constructed two variants of the iSKetSnFR1 and iSketSnFR2
biosensors for expression in mammalian cells. The plasma
membrane (_PM) and endoplasmic reticulum (_ER) variants
were constructed by a circular polymerase extension cloning
procedure. For iSketSnFR1_PM and iSKetSnFR2_PM, we
cloned the bacterial constructs into pCMV(MinDis), a variant
of pDisplay (Invitrogen, Carlsbad, CA, USA) lacking the
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hemagglutinin tag (Marvin et al., 2013). We modified the
previous transmembrane domain (Shivange et al., 2019) as
follows. We replaced the terminal KKPR of the PDGF receptor
(a putative ER retention motif) with KYLQKRRERRRQ (a p14
Golgi export motif) and ENANSFCYENEVAL (a putative
Kir2.X ER export motif). To generate iSketSnFR1_ER and
iSketSnFR2_ER, we replaced the 14 C-terminal amino acids
(QVDEQKLISEEDLN, including the Myc tag) with an ER
retention motif, QTAEKDEL (Shivange et al., 2019).

We conducted cDNA transfection experiments on
iSketSnFR1_PM, iSKetSnFR2_PM, iSketSnFR1_ER, and
iSketSnFR2_ER in Neuro2a cells. Neuro2a cells were purchased
from ATCC1 and cultured according to ATCC protocols. For
chemical transfection, we utilized either Lipofectamine 2000 or
Lipofectamine 3000, following the manufacturer’s recommended
protocol. Cells were incubated in the transfection medium for 24
h and then in growth media for∼24 h before imaging.

Expression in Dopaminergic Neurons
Differentiated From Human Induced
Pluripotent Stem Cells (iPSCs)
Fujifilm CDI2 (formerly named Cellular Dynamics International,
Madison WI, USA), furnished iCell DopaNeurons. These are
human dopaminergic neurons differentiated from induced
pluripotent stem cells (iPSCs). The supplier has measured
that 89% of the cells are positive for tyrosine hydroxylase by
fluorescence-activated cell sorting. The iCell DopaNeurons were
maintained in 95% BrainPhys Neuronal medium (STEMCELL
Technologies3), 2% iCell Neural Supplement B (CDI), 1% iCell
Nervous System Supplement (CDI), 0.1% of 1 mg/ml laminin
(Sigma), 1% N-2 Supplement 100× (Thermo Fisher Scientific,
Waltham, MA, USA) and supplemented with penicillin and
streptomycin. iCell DopaNeurons were maintained on dishes for
17–24 days before imaging. Glass bottoms of the 35-mm imaging
dishes (MatTek4) were coated with ∼0.07% poly(ethyleneimine)
solution and incubated at 37◦C for 1 h. Dishes were rinsed
with PBS, then rinsed with water and air-dried overnight. Glass
bottoms were then coated with 80 µg/ml laminin solution for 30
min at 37◦C before cells were plated. We confirmed that ≥40%
of the cells stained for TH by immunocytochemistry using a
previously described assay (Srinivasan et al., 2016).

Cultured iCell DopaNeurons were transfected after either
13 or 21 days in culture using the Viafect kit (Promega, Cat.
#E4981) at 4:1 transfection reagent (µl): DNA (µg) ratio. The
transfection mixture was prepared in 100 µl OptiMEM (Thermo
Fisher Scientific, Waltham, MA, USA) containing 4 µl of
Viafect transfection reagent and 1 µg of cDNA. The mixture
was incubated for 10–15 min, then added directly to fresh
maintenance medium in the culture dish. Transfection medium
was removed after 24 h and cells incubated for 48–72 h further
before imaging.

1www.attc.org
2fujifilmcdi.com
3www.stemcell.com
4www.mattek.com

Time-Resolved Fluorescence
Measurements in Live Mammalian Cells
We find that signals with the iSKetSnFR constructs have
brightness similar to those of the previous iNicSnFR cpGFP-
based biosensors for nicotine (Shivange et al., 2019), but the
dynamic range is somewhat lower for the iKetSnFRs. Datasets
were taken on an Olympus IX-81 microscope, in widefield
epifluorescence mode. Images were acquired at 3–4 frames/s
with a back-illuminated EMCCD camera (iXon DU-897, Andor
Technology USA, South Windsor, CT, USA; Pantoja et al.,
2009), controlled by Andor IQ2 or IQ3 software. Fluorescence
measurements at λex = 470 nm have been described (Shivange
et al., 2019). We also installed a second LED for excitation
at 405 nm. The epifluorescence cube was previously described
(Srinivasan et al., 2011). The 40× lens proved most convenient
for imaging several adjacent cells and was relatively insensitive
to modest drift of the focus. PM-directed constructs were
measured with a region of interest (ROI) that included only the
cell periphery.

Solutions were delivered from elevated reservoirs by gravity
flow, through solenoid valves (Automate Scientific, Berkeley,
CA, USA), then through tubing fed into a manifold, at a
rate of 1–2 ml/min. Experiments were performed with HBSS
buffer, except that iPSC-derived neurons were studied in PBS
plus D-glucose (5.56 mM), MgCl2 (0.49 mM), MgSO4 (0.4
mM), KCl (5.33 mM), and CaCl2 (1.26 mM). Other details
have been described (Shivange et al., 2019). As usual in
fluorescence imaging experiments, we excluded data from the
brightest cells, because these may have fluorescent impurities
or aggregates that produce a rapidly bleaching baseline. Data
analysis procedures included subtraction of blank (extracellular)
areas and corrections for baseline drifts.

Confocal Fluorescence Imaging
For laser scanning confocal fluorescence imaging, Neuro2a
cells were transfected with iSKetSnFR1_PM, iSKetSnFR2_PM,
iSketSnFR1_ER, or iSketSnFR2_ER (0.5 µg) with the aid
of either Lipofectamine 2000 or Lipofectamine 3000, using
the manufacturer’s recommended protocol. The images were
acquired with a Zeiss LSM 710 laser-scanning confocal
microscope, equipped with a 63× NA 1.4 objective lens. HBSS
was used to wash and replace the growth medium in the dishes
before imaging. GFP illumination was at 488 nm, observed
through a 495–550 nm band-pass filter.

The S-Slope
We introduce a convenient metric to summarize progress
in evolving increasingly sensitive fluorescent biosensors for
drugs. The metric, the S-slope, is especially appropriate for low
drug concentrations because it corresponds to the relationship
between [drug] and ∆F at the beginning of the dose-response
relation. We define the S-slope for use with intensity-based
drug biosensors:

S-slope = 1
(
F
F0

)/(
1
[
drug

])
.

We state the S-slope in units of µM−1.
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This article uses the S-slope for measurements on S-ketamine
biosensors in bacterial lysates, with purified proteins, and
expressed in cells. For measurements with bacterial lysates and
with purified proteins, it is usually possible to construct a
complete dose-response relation with a Hill coefficient close to 1.
In this case, we calculated (as in Figure 2A below),

S-slope =
1Fmax

F0
/EC50

Reagents
All solvents purchased were of analytical grade and used without
further purification. S-ketamine HCl was purchased from Sigma-
Aldrich (St. Louis, MO, USA; Cat. #K1884, CAS #33643-47-9.
We purchased R-ketamine HCl from Cayman Chemicals (Ann
Arbor, MI, USA; Cat. #16519, CAS#33795-24-3).

Data Analysis
Image movie files, spectral data, and dose-response data were
analyzed further and presented with general-purpose software.
These programs include ImageJ2 (Rueden et al., 2017), Excel
(Microsoft), and Origin (OriginLab). All the sequencing analyses
used Benchling.

RESULTS

Development of iSKetSnFR1 and
iKetSnFR2
We tested S-ketamine and R-ketamine (Figure 1) against
iNicSnFR1, iNicSnFR2, and iNicSnFR3a, as well as against 12
other biosensors in the series that led to the iNicSnFRs (Shivange
et al., 2019). We found no detectable fluorescence increase
activated by S-ketamine, at concentrations<100 µM.

For further insights, we computationally docked S-ketamine
into the structure of iNicSnFR1 (PDB file 6EFR), and several
computationally mutated variants (Supplementary Figure S1).
In the highest-ranked results, the predicted distances between
the S-ketamine N atom and the aromatic groups are too great
to form a cation-π interaction of the type suggested by docking,
structural, and mutational studies for the iNicSnFR series with
nicotine, acetylcholine, and varenicline (Shivange et al., 2019).

FIGURE 1 | Structures of S-ketamine and R-ketamine.

These observations, while heuristic and not definitive, suggested
that we mutate the aromatic residues.

When we applied SSM to the Tyr357 position, we found
S-ketamine responses, but only for a Gly residue at position
357 (∆F/F0 ∼0.12 at 1 µM). While insufficiently sensitive for
systematic measurements, this construct (AK1) provided an
entry for further SSM experiments.

After we identified AK1, further rounds of SSM (retaining
the Gly357 codon) led to improvements by mutations at and
near the ligand site, including positions 10, 436, and 457. The
iSketSnFR1 construct has an S-slope of 0.32 µM−1, nearly equal
to that of nicotine for iNicSnFR3a and iNicSnFR3b (Shivange
et al., 2019). Thus, in vitro, one expects a response to 1 µM
S-ketamine of ∆F/F0 = 0.32. The actual recorded data in cells
were in this range (see below). The development series has
culminated in iSketSnFR2, which has an S-slope of 1.87 µM−1

(Figure 2).
We note the presence of the Phe436Trp mutation (referred

to the original OpuBC periplasmic binding protein). One
conformer of the Trp side chain can fit into the vacancy left by
the absence of a side chain at Gly357. This combination may
re-establish a cation-π interaction with the nitrogen of ketamine;
further structural analysis would test this hypothesis.

We also note the substantial increased sensitivity for the
Met10 codon (from AK7 to iSketSnFR2). We have no explicit
structural explanation for the effectiveness of this mutation.

pH Dependence of iKetSnFRs
Studies of the pH dependence on the GCaMP family provide a
mechanistic background for other biosensors that use cpGFP.
In the inactive conformation of cpGFP, the fluorophore has
a pKa of 8–9, and a second at a higher, only approximately
characterized pH. At neutral pH, the fluorophore is almost fully
protonated, decreasing the absorption in the band centered at
λex ∼485 nm (Barnett et al., 2017). In the active form, the
pKa is ∼7, so that some of the fluorophore molecules are
deprotonated. This allows absorption and fluorescence (Barnett
et al., 2017). Possibly both the pH dependence of the biosensor
and that of the ligand affect measurements with iSketSnFR1
and iSketSnFR2.

Therefore, in the pH range from 6 to 8.5, we determined the
∆F dose-response relations of iSketSnFR1 and iSketSnFR2 using
excitation at λex = 485 nm (Figure 2C). The greatest S-slope
occurs at pH 7.0–8.5, resulting from maximal ∆Fmax/F0 at pH
6.5–7 and an EC50 that decreases monotonically with pH. Both
those trends resemble results with the iNicSnFR family (Shivange
et al., 2019). For measurements at λex = 400 nm, see Figure 7
below and Supplementary Figure S2.

The permanently charged nicotine analog,
N’-methylnicotinium, previously provided additional insights
for the iNicSnFR family (Shivange et al., 2019). The analogous
S-ketamine derivative, N,N-dimethyl-S-ketamine, did not
produce robust activation of the iSketSnFR constructs,
vitiating experiments to study the possible role of charge
at the nitrogen atom. This is consistent with but does not
prove a reduced role for cation-π interactions between
S-ketamine and the biosensor. Regardless of the underlying
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FIGURE 2 | Sequences, dose-response relations, and pH dependence of iSketSnFR1, iSketSnFR2 and related proteins. (A) Sequences of eight iKetSnFRs studied.
The names iSketSnFR1 and iSketSnFR2 correspond to AK2 and AK8. Functional regions of the biosensor protein are shown as stippled cells above the sequences.
Regions highlighted include those surrounding the ligand (“binding site”), the interface between the PBP and the cpGFP moiety, the two linker sequences leading
from the PBP to the cpGFP, and vice versa, and the PBP hinge. The N- and C-terminal amino acids are also shown. The numbering corresponds to PDB entry 6EFR
(Shivange et al., 2019). The cpGFP moiety, not shown, runs from codon 80 to 320. Greek letters denote aromatic groups that were candidates for cation-π
interactions with the N-atom of the ligand (Shivange et al., 2019), and red borders denote those with the strongest evidence. The residues shown were mutated in
this study or in a previous study that generated iNicSnFR biosensors. The background colors for amino acids, similar to those in JMOL, have no chemical meaning
but are chosen to provide a wide, distinguishing range of colors. There is no correspondence between the background color of the stippled entries and the
background color for the codons. (B1) Dose-response relations for purified iSketSnFR1, studied for various ligands at pH 7.0, 3× phosphate-buffered saline (PBS;
Shivange et al., 2019). The data for S-ketamine have been fitted to the Hill equation, ∆Fmax/F0 = 3.4 ± 0.1 and EC50 10.7 ± 1.5 µM, Hill coefficient (nH) =
0.91 ± 0.09.

(Continued)
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FIGURE 2 | Continued
The other seven ligands tested yielded responses that were too small for
systematic study. (B2) Dose-response relations for purified iSketSnFR2,
studied for various ligands at pH 7.0, 3× PBS (Shivange et al., 2019). The
data for S-ketamine have been fitted to the Hill equation, ∆Fmax/F0 = 3.0 ±

0.3 and EC50 1.16 ± 0.6 µM, Hill coefficient (nH) = 1.18 ± 0.07. The other 12
ligands tested yielded responses that were too small for systematic study.
(C) Dose-response parameters at varying pH values between 6.0 and 8.5, for
S-ketamine at purified iSketSnFR1 and iSketSnFR2. Data are included for
curve fits that gave nH values between 0.75 and 1.2 and EC50 values <
50 µM. The plots show that iSketSnFR2 has the most favorable S-slope at all
pH values studied, because of both its lower EC50 and its higher ∆Fmax/F0.

mechanism, the data suggest that the pH dependence of
iSketSnFR1 and of iSketSnFR2 is dominated by that of the
cpGFP moiety rather than by that of the weakly basic ligand,
S-ketamine.

The _PM and _ER Constructs Reach the
Intended Organelles
We examined the subcellular localization of the iSKetSnFR2_PM
and iSketSnFR2_ER constructs, using confocal microscopy
(Figure 3). The iSKetSnFR2_PM construct shows the
expected localization at the cell periphery (Figure 3A). The
iSketSnFR2_ER construct shows the expected intracellular
localization, including the nuclear lamina (Figure 3B). Neuro2a
cells are not ideal for distinguishing among organelles, and
it is possible that some fluorescence arises from localization
in both the ER and Golgi. For both the iSKetSnFR2_PM
and iSketSnFR2_ER constructs, we noted clear increases
in fluorescence when we added 1.5 µM S-ketamine. We
described this increase systematically in the specialized, time-
resolved, albeit lower-resolution imaging experiments presented
below. Similar images were obtained for iSketSnFR1_PM and
iSketSnFR1_ER.

Time-Resolved Responses to S-Ketamine
in Live Cells
The S-slope of iSketSnFR1 for S-ketamine roughly equals that of
nicotine for iNicSnFR3a and iNicSnFR3b. As expected from this
similarity, iSketSnFR1 provided meaningful time-resolved dose-
response relations for S-ketamine, at concentrations >1 µM
(Figure 4). Transfected Neuro2a cells readily displayed ∆F
within a few seconds after the external solution was switched
to one containing S-ketamine; and the fluorescence decreased
to baseline within a few seconds after the external solution
was switched to a ketamine-free solution. The half-maximal
concentration of S-ketamine is ∼10 µM, near the concentration
measured with purified protein.

The rapid antidepressant effects of S-ketamine occur after
peak blood plasma concentrations of 0.2–1 µM, and free brain
concentration of S-ketamine may be similar (Lester et al.,
2012; Janssen Research and Development, 2019). Although
the Hill coefficient near unity implies that measurement at
[S-ketamine] >1 µM can be linearly extrapolated to provide
meaningful insights for lower [S-ketamine], we sought direct
measurements at the pharmacologically relevant [S-ketamine].
Our most powerful and sensitive tool for such a study is

FIGURE 3 | Confocal imaging. (A) Typical plasma membrane (PM)
fluorescence pattern of a representative Neuro2a cell transfected with
iSketSnFR2_PM. Panel (B) Typical intracellular fluorescence pattern of a
representative Neuro2a cell transfected with iSketSnFR2_ER.

iSketSnFR2, with its S-slope of 1.9 µM−1 at purified protein.
Transfected Neuro2a cells readily displayed measurable ∆F
within a few seconds after the external solution was switched
to an S-ketamine solution; and the fluorescence decreased
to baseline within a few seconds after the external solution
was switched to a ketamine-free solution (Figure 5). We
plotted data for [S-ketamine] ≤1 µM, which is less than
the EC50 measured with purified iSketSnFR2 protein. This
ensures that our measurements remain on the linear part
of a conventional dose-response relation. Summarizing our
experiments on cells expressing targeted iSketSnFR2 constructs
for [S-ketamine] <1 µM, iSketSnFR2_PM displayed an S-
slope = 0.42 ± 0.14 µM−1 (mean ± SD, 25 total cells from
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FIGURE 4 | Fluorescence waveforms in Neuro2a cells transfected with
iSketSnFR1 constructs. Neuro2a cells transfected with iSketSnFR1_PM or
iSketSnFR1_ER were exposed to 20 s pulses of S-ketamine at varying
concentrations, at intervals of 40 s. A descending concentration series was
followed by an ascending series. (A) iSKetSnFR2_PM, average of 10 cells ±

SEM. (B) iSketSnFR2_ER, average of 10 cells ± SEM.

two independent transfections) and iSketSnFR_ER displayed
an S-slope = 0.29 ± 0.04 µM−1 (mean ± SD, 25 total cells
from two independent transfections). These S-slopes do not
differ significantly.

Time-Resolved Responses to S-Ketamine
in iPSC-Derived Dopaminergic Neurons
We also studied iPSCs differentiated to become dopaminergic
neurons (Shivange et al., 2019) and transfected with either
iSketSnFR1_PM or iSketSnFR1_ER. In these cells, responses to
S-ketamine appeared and decreased within just a few seconds
after jumps in the extracellular S-ketamine concentration
(Figure 6), resembling the results in Neuro2a cells. Responses
increased linearly with concentration when we applied S-
ketamine at concentrations < the EC50 (Figure 6). The
experimentally determined S-slope for iSketSnFR1_PM was
0.1 µM−1, or ∼4-fold lower than the value measured for
iSKetSnFR2_PM in Neuro2a cells. Importantly, iSketSnFR1_ER
constructs in iPSCs displayed an S-slope only slightly greater than
that of the iSketSnFR1_PM construct.

FIGURE 5 | Fluorescence waveforms in Neuro2a cells transfected with
iSketSnFR2 constructs and exposed to sub-µM S-ketamine. Transfected
Neuro2a Cells were exposed to an ascending concentration series of 10 s
pulses of S-ketamine at intervals of 20 s. (A) iSKetSnFR2_PM, average of 10
cells ± SEM. (B) iSketSnFR2_ER, average of 10 cells ± SEM. (C) S-slope
calculations from linear fits to the ∆F/F0 data for the final 5 s of each
application.

S-slopes measured for PM and ER constructs in cells
are several fold lower than for purified iSketSnFR proteins,
as also observed for iNicSnFR constructs (Shivange et al.,
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FIGURE 6 | Fluorescence waveforms in induced pluripotent stem cells (iPSCs) transfected with iKetSnFR1 constructs. Dopaminergic neurons differentiated from
iPSCs were transfected with (A) iSketSnFR1_PM or (B) iSketSnFR1_ER. S-ketamine was perfused at varying concentrations for 20 s, at 38 s intervals. Average of
five cells, ± SEM. (C) S-slope calculations. (D) Averaged waveforms for (B) on an expanded time axis.

2019). Furthermore, S-slopes measured in cells for iSketSnFR2
constructs are ∼2- to 4-fold higher than for iSketSnFR1, rather
than 5.8-fold higher as measured for the purified biosensor
proteins. Both these differences presumably arise because cellular
experiments have appreciable contributions to F0 from other
fluorescent molecules. Further experiments with various optical
arrangements and with various cell types are required. The
major conclusion is that, for two cell types and for two
iSketSnFR biosensor proteins, the ER S-ketamine concentration
follows the extracellular concentration, within a few seconds and
within 2-fold.

Excitation at 400 nm vs. 485 nm
Previous studies indicate that cpGFP-based sensors can also
provide information when excited at 400 nm (Barnett et al.,
2017). In tests at pH 7, we found that the EC50 is not markedly
different at 400 and 485 nm, as though measurements are
detecting a common binding and conformational change event
(Figure 7A). The S-slope at pH 7 is −0.23, some 7-fold lower
than at 485 nm (and opposite in sign). With iSketSnFR1_ER,

we tested whether one can monitor S-ketamine entry into the
ER at λex = 400 nm, even though the lower S-slope produces
a lower signal-to-noise ratio. As shown in Figure 7B, this is
possible, but only at [S-ketamine] in the higher range of the
dose-response relation.

In measurements on purified iSketSnFR2, we compared the
pH sensitivity for measurements at λex = 400 nm and at λex
= 485 nm. We confirmed that the EC50 for S-ketamine does
remain approximately equal when tested at λex = 400 nm
vs. 485 nm, increasing at lower pH (compare Figure 2C vs.
Supplementary Figure S2). A similar trend was previously noted
for iNicSnFR3a. This trend is opposite to the expectation for
a response limited only by the fraction of protonated ligand
in the solution (Shivange et al., 2019). Therefore, we restate
the previous suggestion that the pH dependence of S-ketamine
measurements with iSketSnFR sensors is dominated by the pH
sensitivity of the biosensor protein, not of the S-ketamine ligand.
Because of this sensitivity, the [S-slope] for λex = 400 nm becomes
quite small at pH < 7, never exceeding 0.3 even for iSketSnFR2
(Supplementary Figure S2).
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FIGURE 7 | 485 vs. 400 nM excitation. (A) Dose-response relations in
solution for iSketSnFR2, excited at 400 vs. 485 nm. (B) Live-cell imaging for
iSketSnFR1, with either 485 nm or 400 nm excitation. Pulses of varying
S-ketamine concentration lasting 20 s, at 40 s intervals.

DISCUSSION

S-Ketamine in Organelles
As pointed out in the ‘‘Introduction’’ section, in the absence of
well-established information about a drug’s target, one needs
to know which compartments a drug enters, how quickly, and
at what concentrations. The present study establishes that S-
ketamine enters the ER within a few seconds after appearing
near cells, then leaves within a few seconds after S-ketamine
is removed from the extracellular space. The S-ketamine
concentration in the ER is less than 2-fold different from that
in the extracellular solution. These conclusions arise from data
on two biosensor constructs (iSketSnFR1, iSketSnFR2) and on
two cell types (Neuro2a and human dopaminergic neurons
differentiated from iPSCs).

A previous report shows that ketamine enters cells (Emnett
et al., 2016). The pharmacological role of entry into organelles
may differ between nicotine and S-ketamine; the former was
studied in a previous article on ER permeation (Shivange et al.,

2019). For nicotine, the ER is a major compartment relevant
for pharmacological chaperoning and upregulation—the early
stages of nicotine dependence (Henderson and Lester, 2015). For
S-ketamine, if target engagement occurs in an organelle rather
than on the PM, that organelle is still unknown. The sigma-1
receptor, a binding site for both R-ketamine and S-ketamine,
occurs in the ER (Su, 2019).

Other organelles should also be considered as possible
compartments for target engagement by S-ketamine. In 1974,
it was first pointed out that weak bases accumulate, perhaps
by factors of 100, in lysosomes and other acidic compartments
(de Duve et al., 1974). In one suggestion, the relevant
compartment(s) for S-ketamine are acidic vesicles (Lester et al.,
2015; Stenovec et al., 2019). Uncertainties about the relevant
acidic vesicles imply that the relevant pH is between 4.5
(lysosomes) and 5.5 (synaptic vesicles). Further uncertainties
about ketamine permeability in the charged state allow for a
wide range of intraluminal [S-ketamine] (Trapp et al., 2008).
Therefore, it will be important to study intraluminal S-ketamine
concentration directly.

The pharmacokinetic literature points out that lysosomes
(pH ∼4.5), representing just ∼1% of a cell’s volume, would
accumulate as much weakly basic drug as the entire cytoplasm
(Smith et al., 2012). Antipsychotic drugs, which are also weak
bases, accumulate in synaptic vesicles (pH ∼5.5), and their
release by pre-synaptic action potentials has both pre- and post-
synaptic consequences (Trapp et al., 2008; Tischbirek et al., 2012;
Tucker et al., 2015; Walters and Levitan, 2019). The present
data provide the foundation for modifications of iSKetSnFR1 and
iSKetSnFR2 that also function in acidic vesicles.

Other Candidate Ketamine Analogs and
Metabolites
Candidate rapidly acting antidepressants include R-ketamine, as
well as metabolites such as (2R, 6R)-hydroxynorketamine (HNK)
and (2S, 6S)-HNK. Scopolamine also has rapid antidepressant
actions (Wohleb et al., 2016). Biosensors tested in our
experiments do respond, though quite weakly, to several of
these compounds (Supplementary Figure S3). In previous
experiments, the iNicSnFR series was ‘‘evolved’’ from initial
biosensors characterized by an S-slope of∼10−5 (Shivange et al.,
2019). The strategy we describe could conceivably be extended to
these ligands.

Technical Considerations for Drug
Biosensors
We comment on developing ‘‘iDrugSnFRs,’’ biosensors
for synthetic and endogenous drugs. To some extent,
the considerations differ from biosensors for endogenous
neurotransmitters. For comparisons among intensity-based
biosensors such as PBP-based or G protein-coupled receptor
(GPCR)-based constructs, this article emphasizes the S-slope,
a single metric that summarizes the beginning of the dose-
response relation. The S-slope is simply ∆Fmax/F0 divided by the
EC50. The S-slope has dimensions, µM−1. Use of the S-slope has
the following advantages.
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(1) In our experience with isolated cells and in vivo systems,
two factors usually render it desirable to follow the time course
of relatively low drug concentrations. First, the pharmacological
half-maximal dose is often less than the EC50 that characterizes
the fluorescence. The S-slope describes sensitivity in the
appropriate concentration range. Second, a full dose-response
relation, in organelles of live cells, can be complicated if higher
drug concentrations inhibit transporters, short-circuit proton
gradients, or saturate buffers.

(2) An increased S-slope [pedantically, an increased (S-slope)]
denotes an increased sensitivity. Interference by other drugs
or neurotransmitters (again, at rather low concentrations) can
be simply stated as the ratio of the S-slopes. This is an useful
comparison if either EC50, or ∆Fmax/F0, or both vary among
ligands. In the case of iSketSnFR1 and iSketSnFR2, all other
ligands we measured have ∆F responses so low that an S-slope
can be approximately determined only by extrapolation at
higher concentrations (Supplementary Figure S3). R-ketamine,
another ligand of interest which gives detectable responses at
concentrations >100 µM, has an S-slope at least 100-fold lower
than S-ketamine at iSketSnFR2.

This article shows that S-slope comparisons between data
on purified proteins have some predictive value. However, the
S-slopes in cells, between iSketSnFR1 and iSketSnFR2, differed
by smaller factors than those measured with purified protein,
presumably because in cells, endogenous fluorescent molecules
increase the F0 values.

(3) Use of a single parameter allows one to estimate the
lowest analyte concentration observable, especially if one has
characterized the fluorescence measurements in one’s imaging
instruments. In isolated cells, which have favorable fluorescence
properties, we find that our instruments allow ∆F/F0 values of
0.1 to be resolved readily. Therefore, an S-slope of 0.3, 1, 3, or 10
(Shivange et al., 2019) allows measurements as low as ∼ 0.3 µM,
∼0.1 µM, 10 nM, or 3 nM, respectively.

(4) Use of the S-slope is more general than the previous
metric, ∆F/F0 at 1 µM ligand (Shivange et al., 2019). As noted
above, this generality allows ready extensions to experiments that
use only sub-micromolar concentrations of drugs. The S-slope
can also be applied to decreases in fluorescence, for instance
at 400 nm excitation (Figure 7). Because fluorescence cannot
become less than zero, ∆F/F0 can never become more negative
than−1. However, EC50 can become so small that S-slope values
become more negative than−1 µM−1.

Use of the S-slope does require simplifications that occur
with both PBP-based and GPCR-based fluorescent biosensors.
These simplifications may not occur with less direct sensors
such as those that measure Ca fluxes (Ding et al., 2019) or gene
activation (Bick et al., 2017). One simplification appropriate to
both PBP-based and GPCR-based biosensors: the Hill slope is
near unity, so that responses < the EC50 remain linear with
the [drug].

Straightforward choices based solely on the S-slope are
possible because here, as in Shivange et al. (2019), the binding and
conformational changes are rapid enough to eliminate concerns
caused by the response of the sensor itself. However, very low
Kd would depart from this experience. In the simplest view, the

equilibrium EC50 (Kd) is a ratio of two (possibly composite)
kinetic steps, characterized phenomenologically as Kd = koff/kon.
In our experience, kon values for OpuBC-based biosensors are
∼107/M/s (Shivange et al., 2019). Therefore, Kd values < 10−7

M (100 nM) are accompanied by koff <1/s. Such values would
produce a ‘‘lag’’ of >1 s between the drug concentration and the
fluorescence response.

An important final assumption is that in vitro and in
vivo measurements occur at the same pH. The S-slope does
vary with pH, because both its numerator and denominator
vary with pH (Figure 2C, Supplementary Figure S2; Barnett
et al., 2017; Shivange et al., 2019). We would like to extend
the iDrugSnFR measurements to acidic organelles. With PBP-
GFP-based iDrugSnFRs, this is not yet possible: the S-slope
approaches zero.

Prospects for Developing Improved
Rapidly Acting Antidepressants
Knowing that S-ketamine enters organelles will not in itself
develop a new ∼24 h antidepressant drug. Nonetheless, such
data can help test whether novel mechanisms, such as action
on intra-organellar targets and subcellular pharmacokinetics,
must be considered in developing such drugs. Researchers
may wish to test the subcellular pharmacokinetics, targets,
compartment of target engagement, and downstream
signaling events of other candidate drugs as rapidly
acting antidepressants.
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