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Objective: Brain atrophy is an established biomarker for dementia, yet spinal cord
involvement has not been investigated to date. As the spinal cord is relaying
sensorimotor control signals from the cortex to the peripheral nervous system and
vice-versa, it is indeed a very interesting question to assess whether it is affected by
atrophy due to a disease that is known for its involvement of cognitive domains first and
foremost, with motor symptoms being clinically assessed too. We, therefore, hypothesize
that in Alzheimer’s disease (AD), severe atrophy can affect the spinal cord too and that
spinal cord atrophy is indeed an important in vivo imaging biomarker contributing to
understanding neurodegeneration associated with dementia.

Methods: 3DT1 images of 31 AD and 35 healthy control (HC) subjects were processed
to calculate volume of brain structures and cross-sectional area (CSA) and volume (CSV)
of the cervical cord [per vertebra as well as the C2-C3 pair (CSA23 and CSV23)].
Correlated features (ρ > 0.7) were removed, and the best subset identified for patients’
classification with the Random Forest algorithm. General linear model regression was
used to find significant differences between groups (p ≤ 0.05). Linear regression was
implemented to assess the explained variance of the Mini-Mental State Examination
(MMSE) score as a dependent variable with the best features as predictors.

Results: Spinal cord features were significantly reduced in AD, independently of brain
volumes. Patients classification reached 76% accuracy when including CSA23 together
with volumes of hippocampi, left amygdala, white and gray matter, with 74% sensitivity
and 78% specificity. CSA23 alone explained 13% of MMSE variance.

Discussion: Our findings reveal that C2-C3 spinal cord atrophy contributes to
discriminate AD from HC, together with more established features. The results show that
CSA23, calculated from the same 3DT1 scan as all other brain volumes (including right
and left hippocampi), has a considerable weight in classification tasks warranting further
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investigations. Together with recent studies revealing that AD atrophy is spread beyond
the temporal lobes, our result adds the spinal cord to a number of unsuspected regions
involved in the disease. Interestingly, spinal cord atrophy explains also cognitive scores,
which could significantly impact how we model sensorimotor control in degenerative
diseases with a primary cognitive domain involvement. Prospective studies should be
purposely designed to understand the mechanisms of atrophy and the role of the spinal
cord in AD.

Keywords: dementia—Alzheimer’s disease, cross-sectional area (CSA), brain atrophy, spinal cord atrophy, spinal
cord toolbox, Alzheimer’s diagnosis, dementia biomarker, sensorymotor function impairment

INTRODUCTION

Dementia is one of the most debilitating cognitive
neurodegenerative disorders affecting the central nervous
system in elderly people and having a significant impact on
daily life activities. With an aging population, the incidence of
dementia is growing and the consequences on society are huge.
Clinically, several forms of dementia-like diseases that differently
impair multiple cognitive and behavioral domains are defined.
Alzheimer’s disease (AD) is the most common cause of dementia
and it is responsible for 60–80% of cases worldwide (Kumar
and Singh, 2015). What is the effect of neurodegeneration on
sensorimotor control is an interesting question because it is
believed to be highly relevant also for understanding cognitive
functions. As the spinal cord is relaying sensorimotor control
signals from the cortex to the peripheral nervous system and
vice versa, it is indeed important to assess whether it is affected
by atrophy in a disease that is known for its involvement of
cognitive domains. Recent indications suggest that there is
definitely a sensorimotor network rewiring and that the motor
system may even be affected before cognitive functions in
AD (Agosta et al., 2010; Salustri et al., 2013; Castellazzi et al.,
2014; Albers et al., 2015; Fu et al., 2018). Clinical symptoms
of early AD include, amongst others, fine motor impairment,
with for example worsening of writing abilities. Post-mortem
histopathology has indicated that phosphorylated tau tangles are
present in high proportion in the cervical spinal cord of AD cases
compared to healthy subjects (Dugger et al., 2013). This is also
supported by studies in different animal models of AD where
pathological changes are demonstrated in the spinal cord as well
as the brain (Yuan et al., 2013; Chu et al., 2017). Therefore, it
is important to understand first of all whether the spinal cord
plays a part in this disease and to understand how significant its
involvement is.

AD is associated with an extracellular deposit of β-amyloid
plaques in the brain and cerebral vessels, but also to the presence
of intracellular neurofibrillary tangles, which appear like paired
helical filaments with hyperphosphorylated tau proteins. Tau
tangles have been identified as the cause of cortical neurons’
degeneration while amyloid-β (Aβ) oligomers have an important
role in synaptic impairment, hence Aβ plaques deposition is
suggested to raise later during the AD progression (Song et al.,
2014; Šimić et al., 2016). This neuronal degeneration explained
by pathophysiology leads to macroscopic atrophy of specific

brain structures, such as the hippocampi and the medial temporal
lobes (Scher et al., 2011), which can be detected using Magnetic
Resonance Imaging (MRI) techniques. Indeed, several MRI
studies have demonstrated significant atrophy of white matter
(WM), gray matter (GM) and specific brain structures such
as the hippocampi, thalami, and amygdalae in AD patients
suggesting that these structures are informative in identifying
dementia disorders (Stonnington et al., 2010; Pini et al., 2016).
The hippocampi have been proposed as in vivo non-invasive
imaging biomarkers of AD while other structures may be
useful in distinguishing between different subtypes of dementia
(Palesi et al., 2018). Only far and few old studies have looked
at the spinal cord in AD, from a postmortem histochemical
analysis and with reference to the autonomic system, but
results were never reproduced or follow through as they
focused on tau pathology, which was only sporadically reported
(Engelhardt and Laks, 2016).

Recently, numerous MRI investigations have tried to identify
new in vivo biomarkers for dementia to understand mechanisms
of AD, to have better tools for assessing new therapies and
predicting the clinical evolution of prodromic stages of dementia.
Optical Coherence Tomography studies, for example, have been
used to demonstrate that retinal ganglion cell degeneration can
be associated with early stages of AD. Also, structures like
the cerebellum, not classically associated with AD, have been
found to be altered in imaging studies of dementia (Castellazzi
et al., 2014), with atrophy of the anterior cerebellum—known
for its motor control—being present even in the prodromic
stages of mild cognitive impairment (MCI; Toniolo et al.,
2018). Recent work has also looked at graph theory metrics
to distinguish patterns of AD, identifying potentially different
subtypes (Ferreira et al., 2019), although focusing on cortical
and deep gray matter areas, without including the cerebellum
and the spinal cord. Studies of other diseases associated with
neurodegeneration, such as multiple sclerosis (Liu et al., 2015),
amyotrophic lateral sclerosis (Antonescu et al., 2018), and spinal
cord injury (Grussu et al., 2017), have revealed that atrophy
of the spinal cord is indicative of widespread alterations of the
central nervous system and might be considered as a relevant
imaging biomarker in a wider range of neurodegenerative
diseases. Nevertheless, this kind of alteration has never been
investigated and reported in dementia patients in vivo and MRI
offers such a possibility with existing datasets covering brain
and spine. Hence, the main aim of the present retrospective
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work was in the first instance to assess whether spinal cord
volume is reduced in AD patients compared to healthy controls
(HC), hypothesizing that the neurodegeneration typical of AD
spreads to all components of the central nervous system; we
achieved this by comparing a number of spinal cord features
from an existing structural dataset between AD and HC. This
information is very important for our understanding of how
a neurodegenerative disease like AD has implications beyond
the known brain atrophy: this could also have a significant
impact on future modeling of brain networks. Furthermore,
in case of a positive outcome, it is important to quantify
the role of spinal cord features in distinguishing between AD
and HC to drive the design of future studies; for this we
implemented a machine learning approach for features selection,
that is increasingly applied to improve diagnostic accuracy by
quantitative imaging (Dauwan et al., 2016; Mirzaei et al., 2016).
Finally, we quantified the contribution of spinal cord atrophy
to explain the variance of clinical scores for determining its
clinical relevance.

MATERIALS AND METHODS

Subjects
A total of 66 subjects including 31 AD patients (age
(73 ± 7) years, 12 females (F), Mini-Mental State Examination
(MMSE) = 16 ± 6) and 35 HC (age (69 ± 10) years, 17 F,
MMSE = 28 ± 1), as a reference group, were analyzed. Seven
subjects (three HC and three AD) were excluded from the study
due to post-processing issues, hence the final dataset comprised
32 HC and 28 AD.

Inclusion criteria for patients were: clinical diagnosis of
dementia on the basis of the Diagnostic and Statistical Manual
of Mental Disorders (DSM-5) criteria (American Psychiatric
Association, 2013), MMSE score (Folstein et al., 1975) below
24 and age above 60 years. Exclusion criteria comprised
the presence of at least one of the following: epilepsy or
isolated seizures, major psychiatric disorders over the previous
12 months, pharmacologically treated delirium or hallucinations,
ongoing alcoholic abuse, acute ischemic or hemorrhagic stroke,
known intracranial lesions, and systemic causes of subacute
cognitive impairment (Geschwind et al., 2009). Diagnosis of AD
was made according to the criteria of the National Institute of
Neurological and Communicative Disorders and Stroke and AD
and Related Disorders Association (NIA-AA 1011) workgroup
(McKhann et al., 2011). HC was enrolled on a voluntary basis
among subjects with MMSE score above 27 and attending a
local third age university (University of Pavia, Information
Technology course) or included in a program on healthy aging
(Fondazione Golgi, Abbiategrasso, Italy).

The study was accomplished in accordance with the
Declaration of Helsinki and with the approbation of the local
ethics committee of the IRCCS Mondino Foundation, upon
signature of the written informed consent by the subjects.

MRI Acquisition
High-resolution 3D T1-weighted (3DT1-w) MR images were
acquired using a Siemens MAGNETOM Skyra3T (Siemens AG,

Erlangen, Germany) with software version NUMARIS/4 (syngo
MR D13C version) and a receiving head-coil with 32 channels.

Scan parameters were (Palesi et al., 2018): TR = 2300 ms,
TE = 2.95 ms, TI = 900 ms, flip angle = 9◦, field of view
(FOV) = 269 × 252 mm2, acquisition matrix = 256 × 240,
in-plane resolution = 1.05 × 1.05 mm2, slice thickness = 1.2 mm,
and 176 sagittal slices. The FOV, in feet-to-head direction, was set
to cover the entire brain and cervical cord up to the C5 vertebra
in all subjects.

Spinal Cord Analysis
For each subject, the 3DT1-w volume (the same used
normally for brain atrophy measurements—see below) was
resized removing the brain and centered on the spine.
Once a single volume of interest (VOI) comprising the
same spinal cord regions for each 3DT1-w was defined
(matrix = 176 × 240 × 96 voxels), the process was automatized
for the whole dataset. The resized 3DT1-w volumes were
analyzed with the Spinal Cord Toolbox1, an open-source
software specifically developed to elaborate spinal cord images,
to extract features of the C1-C5 vertebrae.

The spinal cord was segmented with the propseg algorithm
(Yiannakas et al., 2016), which is fully automated, and, after
manual initialization, was automatically labeled (Ullmann et al.,
2014) to identify all vertebrae separately (Dupont et al., 2017;
Figure 1).

Mean cross-sectional area (CSA) and volume (CSV) were
calculated for each vertebra and for the C2-C3 pair (CSA23 and
CSV23), given the better sensitivity of this combined level to
disease severity (Coulon et al., 2002; Liu et al., 2015; Prados
et al., 2016; De Leener et al., 2017b). CSA is computed by
counting pixels in each slice and then geometrically adjusting it
multiplying by the angle (in degrees) between the spinal cord
centerline and the inferior-superior direction. CSV, indeed, is
computed by counting pixels and multiplying by slice thickness.

Brain Atrophy Analysis
The 3DT1-w images were also segmented into WM, GM and
cerebrospinal fluid (CSF) using SPM122 (Penny et al., 2007),
while left (L) and right (R) hippocampi (LHip and RHip), thalami
(LThal and RThal) and amygdalae (LAmy and RAmy) were
segmented using FIRST (FSL; Patenaude et al., 2011; Figure 2)3.

WM, GM, and all other brain structures volumes were
calculated in mm3. Total intracranial volume, as the sum of
WM, GM and CSF, was also calculated to account for different
brain sizes.

Classification of AD and Feature Selection
Analysis
Classification between AD and HC was performed using a
machine learning approach implemented in Orange4.

A total of 22 features were extracted from the above MRI
morphometric analysis. Given the large number of parameters

1https://github.com/neuropoly/spinalcordtoolbox
2https://www.fil.ion.ucl.ac.uk/spm/software/spm12
3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST
4https://orange.biolab.si/
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FIGURE 1 | Labeled vertebrae in two randomly chosen subjects: an healthy
control (HC) subject on the left and an Alzheimer’s disease (AD) patient on the
right (slice n = 96, sagittal plane). Each color represents a different vertebra
from C1 (yellow) to C5 (fuchsia).

extracted compared to the sample size of our AD and HC
groups, a feature reduction approach was adopted in order
to control for overfitting issues. The Spearman correlation
coefficient (Spearman, 1904) was obtained in Matlab between
pairs of all calculated metrics. When pairs of metrics had a
correlation coefficient greater than 0.7, one metric was kept while
the other was eliminated.

Ranking was implemented with the ReliefF algorithm
(Urbanowicz et al., 2018) on the uncorrelated features to identify
the best subset able to classify AD from HC, and particularly
to investigate the contribution of spinal cord metrics to the
task. In order to identify a unique subset of features, 30% of
instances were employed for ranking. Data were normalized by
span to avoid polarization of the results due to the different
scales of features, as for WM compared to CSA. The remaining
70% of instances was further divided into 70% for the Random
Forest algorithm application and 30% to test its classification
accuracy [CA = (True Positive + True Negative)/(True Positive
+ True Negative + False Positive + False Negative)], sensitivity
[Sens = True Positive/(True Positive + False negative)] and
specificity [Spec = True Negative/(True Negative + False
Positive)], using the previously-identified best features.

Among several machine learning algorithms, RF was selected
for its robustness against a reduced number of input features
and the capacity to weight features runtime, providing features
relevant in a classification task (Breiman, 2001; Goel and
Abhilasha, 2017). The Receiving Operating Characteristics
(ROC) curve was then obtained to visually discriminate between
AD and HC and the Area Under the Curve was also
calculated to quantify the overall ability of RF to discriminate
between AD and HC.

Statistical Analysis
Statistical tests were performed using the Statistical Package
for Social Sciences (SPSS) software, version 21 (IBM, Armonk,
New York, NY, USA). All continuous data were tested for
normality using a Shapiro–Wilk test (Shapiro and Wilk, 1965).

FIGURE 2 | Cerebral tissue segmentation in two randomly chosen subjects:
HC subject on the left and AD patient on the right. Top row: white matter
(WM; yellow) and gray matter (GM; blue) segmentation (slice n = 126,
transverse plane). Middle row: hippocampi (yellow) and amygdalae (light blue)
segmentation (slice n = 123, transverse plane). Bottom row: thalami (green)
segmentation (slice n = 132, transverse plane).

Age and MMSE were compared between AD and HC using
a two-tailed Kruskal–Wallis test (Kruskal and Wallis, 1952)
while gender was compared using a chi-squared test (Pearson,
1900). A multivariate regression model with gender, age and
total intracranial volume as covariates was used to compare
all morphometric metrics between AD and HC. Two-sided
p < 0.05 was considered statistically significant.

Furthermore, to assess the power of the best features in
explaining the variance of the MMSE, a linear regression model
was implemented using the MMSE score as the dependent
variable and the best features as predictors. These independent
features were used in two ways: (i) each predictor was used
alone to determine its specific contribution to MMSE; (ii)
all features were used in a backward approach to identify
which of them explained the greatest percentage of MMSE
variance. A threshold of p < 0.01 (two-tailed) was considered
statistically significant.
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RESULTS

Subjects
Population demographics and neuropsychological scores are
reported in Table 1. Significant differences were found in MMSE
between HC and AD patients.

Morphometric Changes in AD Patients
All results are reported in Tables 2, 3. AD patients compared to
HC showed atrophy in all brain structures. Moreover, all patients
for all investigated spinal cord segments showed reduced CSA at
all vertebral levels, while CSV was significantly reduced only in
correspondence of vertebrae C1 and C2.

AD Classification Based on Morphometric
Data
The results of the correlation analysis are reported in Figure 3
and show that brain volumes are not significantly correlated with
spinal cord metrics.

Features that were considered independent from each other
and that were entered in the feature selection analysis are
reported in Table 4. The best features selected by the RF
algorithm for the AD vs. HC classification task are reported
in Table 5 and include: RHip, WM, LAmy, LHip, CSA23,
GM. Interestingly, CSA23 was identified as one of the most
informative features to distinguish AD patients from HC.
RF outcomes are reported in Table 6 and showed that the
classification accuracy of AD patients is 76%, sensitivity 74%,
and specificity 78%. The Area Under Curve (AUC) percentage
reached 86%, showing a remarkable classification performance of
the RF algorithm to distinguish AD from HC subjects. Moreover,

TABLE 1 | Subjects’ demographic and neuropsychological data.

HC (n = 32) AD (n = 28) p-value
mean (SD) mean (SD)

Age (years) 69.4 (9.6) 73.0 (6.4) 0.138
Gender [Male (%)] 51.4 56.2 0.800
MMSE 28.5 (0.2) 16.0 (1.1) <0.001∗

Gender is expressed in Male % and compared with a Chi-square test. Age and MMSE
are expressed as mean (SD) and compared with a Kruskal–Wallis test. Significance was
set to p = 0.05. ∗Refers to statistically significant comparisons.

TABLE 2 | Brain morphometric changes in AD patients.

HC (n = 32) AD (n = 28) p-value
mean (SD) mean (SD)

Brain structures (mm3)
ICV 1,573,086 (144439) 1,511,611 (139,532) 0.04∗

WM 612,335 (11230) 540,237 (12,064) <0.001∗

GM 427,508 (6,492) 399,274 (6,975) 0.006∗

RHip 3,602 (106) 2,932 (114) <0.001∗

LHip 3,591 (99) 2,822 (107) <0.001∗

LThal 7,013 (109) 6,433 (118) 0.001∗

RThal 6,808 (109) 6,371 (117) 0.011∗

LAmy 1,256 (41) 1,054 (44) 0.002∗

RAmy 1,323 (63) 1,120 (66) 0.035∗

Volumes of different brain structures expressed in mm3. Values are expressed as mean
(SD). Significance was set at p = 0.05. ∗Refers to statistically significant values.

TABLE 3 | Spinal cord morphometric changes in AD patients.

Vertebra HC (n = 32) AD (n = 28) p-value
mean (SD) mean (SD)

Area (mm2)
C1 69.8 (1.6) 63.1 (1.8) 0.009∗

C2 65.7 (1.3) 60.2 (1.4) 0.008∗

C3 62.5(1.4) 56.9 (1.6) 0.013∗

C4 62.5 (1.6) 57.2 (1.7) 0.031∗

C5 58.9 (1.6) 52.8 (1.7) 0.019∗

C2-C3 65.1 (1.6) 58.3 (1.7) 0.007∗

Volume (mm3)
C1 883.4 (27.3) 800.4 (29.3) 0.050∗

C2 979.8 (28.4) 857.1 (30.6) 0.006∗

C3 932.3 (29) 886.9 (31.2) 0.308
C4 882.3 (35.1) 807.9 (37.7) 0.168
C5 667 (34.5) 609.1 (37.1) 0.275
C2-C3 1,860.5 (66.8) 1,729.9 (71.7) 0.204

Cross-sectional area (in mm2) and volumes (in mm3) of spinal cord levels. Values are
expressed as mean (SD). Significance was set at p = 0.05. ∗Refers to statistically
significant values.

FIGURE 3 | Correlation matrix between pair of variables tested with the
Spearman’s correlation coefficient. All correlations for p < 0.5 are set to
white, correlations for p > 0.5 are red to yellow, with yellow (p = 1) being the
strongest correlation. No spinal cord metrics are correlating with brain metrics
with p > 0.7, which is the threshold we used for extracting the set of
uncorrelated features (Table 1).

it is noticeable that the hippocampi have dominant weight,
but that there is a relevant contribution to the classification
from CSA23.

MMSE and Morphometric Data
Relationship
The combination of the six best features, including WM,
RHip, LHip, LAmy, CSA23, and GM, explained 44% of
the overall variance of the MMSE. The function equation
describing the linear model obtained by the regression
analysis included the following terms with their weights:
0.329∗LHip-0.145∗RHip+0.145∗LAmy+0.064∗CSA23-0.227∗GM
+0.557∗WM. The MMSE explained variance was progressively
reduced by simplifying the model, i.e., removing one or
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TABLE 4 | Cerebral and spinal cord morphometric metrics.

Set of all calculated metrics Set of uncorrelated metrics

Brain Spine Personal Brain Spine Personal

WM CSA1 CSV1 Age WM - - Age
GM CSA2 CSV2 Gender GM - - Gender
RHip CSA3 CSV3 LHip - CSV3
LHip CSA4 CSV4 RHip - -
RThal CSA5 CSV5 - - CSV5
LThal CSA23 CSV23 - CSA23 -
RAmy -
LAmy LAmy

Left column: the initial dataset of morphometric metrics. Right column: a subset of uncorrelated morphometric metrics. WM, white matter; GM, gray matter; RHip, right hippocampus;
LHip, left hippocampus; RThal, right thalamus; LThal, left thalamus; RAmy, right amygdala; LAmy, left amygdala; CSA, cross sectional area; CSV, cross sectional volume.

TABLE 5 | Features ranking.

Features Weight

RHip 0.1125
WM 0.0630
LAmy 0.0629
LHip 0.0615
CSA23 0.0317
GM −0.0041

Nine HC and nine AD patients were used in the ranking procedure. Ranking Algorithm:
ReliefF applied on a dedicated subset (30% of instances, number of neighbors = 10).

TABLE 6 | Random forest classification.

Performance

Accuracy 76%
Sensitivity 74%
Specificity 78%
Area under curve 86%
Feature RF weight
LHip 9.039
RHip 2.734
LAmy 2.263
CSA23 1.828
WM 0.323
GM 0.060

Twenty-three HC and 19 AD were used to test classifier performance. A leave-one-out
procedure was used to test the performance of Random Forest (RF) with the best feature
subset reported in Table 5. RF features weight are also reported.

more predictors, as shown in Table 7. Each separate feature
significantly (p < 0.005) explained a percentage of MMSE
variance ranging between 13% and 36%. The feature that most
explains MMSE variance was the WM volume (36%), with CSA
explaining 13%.

DISCUSSION

The present work is pioneering the investigation of spinal cord
alterations in patients with dementia, and in particular with
AD, a major neurodegenerative disease known for its profound
effects on cognitive functions. The motor/sensorimotor system
has already been shown to be affected in AD at various levels
in the brain, but nobody has yet investigated the spinal cord
(Agosta et al., 2010; Salustri et al., 2013; Castellazzi et al., 2014;
Albers et al., 2015; Fu et al., 2018). Here, we have shown
that the spinal cord is significantly atrophic in established

AD patients. This is an important finding, as it demonstrates
that atrophy and neurodegeneration are widespread beyond
areas with excellent standards such as the hippocampi and
temporal lobes. Our results are, indeed, consistent with the
fact that patients present significantly different brain volumes
with respect to HC, and all segmented brain structures,
except for the right amygdala, are statistically significantly
atrophic in AD. In this context, our work goes further and
demonstrates that volumes of all cervical vertebral segments
are reduced in AD, with the CSV of the first and second
vertebrae being significantly atrophic with respect to HC.
These results are coherent with results obtained for cerebral
structures and suggest the existence of a remarkable reduction
(of the order of 10%) in the volume of the spinal cord in
dementia. This hypothesis is further supported by significant
CSA reduction for all vertebrae in patients, with CSA being
calculated considering the curvature of the spinal cord (De
Leener et al., 2017b). Previous studies have reported spinal cord
atrophy in patients with neurological diseases (Okuda et al.,
2014; Azodi et al., 2017), such as multiple sclerosis with focal
lesions in the brain and spinal cord, but to date, no studies have
explored the existence of a volumetric loss of spinal cord tissue
in dementia.

This finding has implications on the way we should assess
the cognitive and sensorimotor systems’ impairment, given that
they are both affected in established AD, in order to highlight
their possible relationship. Not to forget that the spinal cord is
also the relay of the autonomic system that has been reported as
dysfunctional in AD (Algotsson et al., 1995; Allan et al., 2007;
Allan, 2019).

Post mortem studies of AD patients will be needed to confirm
the biophysical source of spinal cord atrophy; although at first
one could imagine that any change in CSA and CSV could be
the result of retrograde Wallerian degeneration from the cerebral
cortex (Alves et al., 2015), initial spinal cord post-mortem
investigations of AD and HC has suggested that phosphorylates
tau tangles are present especially in the cervical segment of
the spinal cord of AD, even at the early stage (Dugger et al.,
2013). One of the AD models (Yuan et al., 2013) showed
that Aβ deposition in the spinal cord are visible 10 months
after disease onset and predominantly selecting the corticospinal
tract; they also show that such deposits are reduced when
ablating the sensorimotor cortex, therefore suggesting that spinal
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TABLE 7 | MMSE outcomes.

Explained variance Influence significance

Multiple linear model
MMSE = β1

∗LHip+β2
∗RHip+β3

∗LAmy+β∗

4CSA23+β5
∗GM+β6

∗WM 44% <0.001
MMSE = β1

∗LHip+β2
∗RHip+β3

∗LAmy +β∗

4GM+β5
∗WM 43% <0.001

MMSE = β1
∗LHip+β2

∗LAmy+β3
∗GM+β∗

4WM 43% <0.001
MMSE = β1

∗LHip+β2
∗GM+β3

∗WM 42% <0.001
MMSE = β1

∗LHip+β2
∗WM 40% <0.001

Linear model
MMSE = β∗WM 36% <0.001
MMSE = β∗LHip 30% <0.001
MMSE = β∗RHip 22% <0.001
MMSE = β∗GM 17% 0.001
MMSE = β∗LAmy 16% 0.001
MMSE = β∗CSA23 13% 0.005

MMSE Linear Regression Models. The model-explained variance is calculated with the R2 index. Significance was set to p = 0.05; all described model showed statistically significant
influence (ANOVA).

cord Aβ deposits are secondary to terminal synaptic release.
On the other hand, given that we have also demonstrated
that spinal cord features are independent of brain volumes, it
cannot be excluded that alterations in spinal cord morphometric
measurements (CSA and CSV) in AD are the result of primary
retrogenesis linked to myelin and axonal pathology. It is indeed
very significant that a recent study of another animal model of
AD (the 5xFAD) shows amyloid plaques accumulation in the
spinal cord tissue, with a particular concentration at cervical
level and a time-dependent accumulation that starts 11 weeks
from onset; interestingly, the same study found independent and
extensive myelopathy, while the motoneurons count at 6 months
was not altered compared to the wild type (Chu et al., 2017).
While, we cannot be conclusive on the mechanisms of spinal
cord atrophy in AD, our results are intriguing and calling for
larger studies of prodromic subjects to be followed over time;
such studies would also confirm whether the suggestion that the
motor system (neocortex, cerebellum and spinal cord) is affected
even before the cognitive one can be substantiated, or whether
the spinal cord is following similar pathophysiological global
changes as brain structures (Agosta et al., 2010; Albers et al., 2015;
Toniolo et al., 2018).

A further result of our work is that of all spinal cord
features analyzed here, the area of vertebra C2-C3 (CSA23)
significantly contributes to discrimination between HC and AD
patients. Usually, only atrophy of brain regions is investigated
in dementia (Štepán-Buksakowska et al., 2014; Tardif et al.,
2018). Indeed, spinal cord morphometric measures (CSA
and CSV) alone cannot directly discriminate between AD
and HC, but CSA23 was identified as one of the six best
features useful to distinguish between these groups of subjects.
Classifier accuracy was good and reached its best performance,
around 76% when both volumes of brain structures, such as
LHip and RHip [considered biomarkers of AD progression
(O’Callaghan et al., 2019)], WM and GM, as well as spinal
cord CSA23 were included in the classification procedure.
In addition, the ROC curve between AD and HC (shown
in Figure 4) reported high performance with AUC of 86%.
The sensitivity and specificity of the RF algorithm, reaching
74% and 78%, respectively, showed a remarkable ability to

FIGURE 4 | Receiving operating characteristics (ROC) curves for AD-HOC
classification using Random Forest feature selection. The pathological class
(AD = 1) was considered as the target class. The curve shows higher
performance (bold red line) than the majority algorithm (diagonal). TN rate is
the rate of true negatives and the FP rate is the rate of false positives.

correctly identify healthy and pathological cases. Examining
the RF feature weighting (reported in Table 6) it is also
noticeable that CSA23 had weight higher than GM, highlighting
that it should be considered as an additional feature together
with the more conventional volumes of subcortical regions
(Pearson, 1900). These results indicate the yet unexplored
potential influence that spinal cord features can play in the
classification of dementia in line with recent publications,
which have recognized that other brain structures play a
key role in identifying AD patients and in distinguishing
between different subtypes of dementia (Palesi et al., 2018;
Ferreira et al., 2019).
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Regarding the fact that CSA23 emerged as being particularly
sensitive to pathological changes in AD is in accordance with
other studies in neurodegenerative diseases such as amyotrophic
lateral sclerosis (Antonescu et al., 2018) and could be seen as
corroborating evidence of a correlation between spinal cord
atrophy and neurodegeneration. In light of the only animal
model study reported to date (Chu et al., 2017), which shows
that C2-C3 is selectively affected by greater morphological
biophysical alterations, our results become of remarkable value.
Moreover, upper limb sensorimotor impairment is known to
be clinically relevant in early AD, which is substantiating the
relevance of our findings and calls for future investigations
involving correlations with sensorimotor scores and purposely
designed prospective studies to answer mechanistic questions.

Finally, our data show that also clinical aspects of AD are
partially explained by spinal cord atrophy. Given the exploratory
nature of the present study, we assessed whether spinal cord
atrophy could be correlated with the variance of the MMSE,
which is a global test, clinically used to assess AD severity.
We found that 43% of the MMSE variance was explained with
a multiple regression model implemented with all the best
features included as independent variables, whereas CSA23 alone
explained 13% of the MMSE variance, which is a considerable
contribution indeed, after a 36% contribution of WM followed
closely by 30% contribution of LHip. As a post hoc analysis,
following these results, we assessed whether the contribution
of WM atrophy and CSA23 to MMSE could be related to
WM lesion burden. There was no correlation between these
metrics and the Fazekas index (data not shown), which is a
clinical measure that reflects vascular lesion load, therefore
confirming that WM volume and CSA23 are most likely to reflect
independent neurodegenerative mechanisms. Further studies
should also confirm this finding.

From a methodological point of view, we know that evaluating
spinal cord alterations in humans in vivo is challenging due
to technical and anatomical constraints, including subject
positioning inside the scanner, individual subject’s neck
curvature or subject’s motion. Furthermore, the spinal cord is
a small structure and optimized sequences with reduced FOV
and appropriate alignment should be used to obtain reproducible
results (De Leener et al., 2017a). Dedicated acquisition protocols
would also allow one to analyze specific alterations of spinal
cord GM and WM, that were not available with the present
data that used 3DT1-w scans, used for whole-brain or regional
brain volume calculations, to extract spinal cord features (Fonov
et al., 2014; Levy et al., 2015). Regarding feature selection and
classification, we know that recent studies have combined several
MRI findings with machine learning approaches to attempt the
classification of dementia subtypes and prediction of disease
progression. Accuracy of about 80% (Amoroso et al., 2018; Waser
et al., 2019) was achieved when AD and HC were classified while
more fluctuating results were reported when more subtypes of
dementia were considered. In the present study, an RF algorithm
with the ‘‘leave-one-out’’ approach was chosen to discriminate
between AD and HC because RF is robust with small numbers
of subjects and performs features weighting runtime with good
sensitivity and specificity.

Given the nature of this prospective study, it was not possible
to investigate the involvement of the spinal cord at different
stages of AD or in different types of dementia to explore
its full clinical potentials. Therefore, a comprehensive battery
of sensorimotor and cognitive tests should be performed to
understand how the clinical and MRI pictures are evolving
during the disease progression and to establish when spinal
cord atrophy occurs and its clinical weight. It is also essential
to promote multi-modal studies that can disentangle the
contribution of myelin, amyloid accumulation, axonal swelling
and axonal loss to brain and spinal cord alterations in
neurodegenerative diseases to understand local and global
mechanisms of damage.

In conclusion, the present work can be considered a milestone
because for the first time in humans in vivo it demonstrates
in a cohort of AD and HC subjects the contribution of spinal
cord atrophy to explain clinical indicators of dementia and
to improve disease classification, opening also mechanistic
questions for future studies. It is indeed important that we
rethink in particular of how the sensorimotor and cognitive
systems are affected by AD, integrating spinal cord with brain
information, including the temporal lobes with the hippocampi,
the motor and sensorimotor cortices, the limbic system with
the amygdala and the cerebellum, which we now know are all
implicated in AD.
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