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Many studies supported that bone marrow mesenchymal stem cells (BM-MSCs) can
differentiate into neural cells, but few researchers detected mature and function of
nerve cells, especially in vivo study. Some researchers even suggested that BM-MSCs
transplantation would not be able to differentiate into functional neural cells. To figure
out the dispute, this study examined bone marrow-derived sphere-like cells, harvested
via neural stem cell suspension culture, then identified as bone marrow-derived neural
progenitor cells (BM-NPCs) by finding the expression of neural progenitor cells genes
and proteins, neural progenitor cells characteristic and nerve cell differentiation induced
through both methods. Moreover, BM-NPCs transplantation showed long-term survival
and improved the ethological and histological indexes of brain injury rats, demonstrating
functional nervous cells differentiated from BM-NPCs. These in vitro and in vivo results
confirmed BM-NPCs differentiating into mature and functional nerve cells. This study
provided valuable experimental data for BM-NPCs, suggesting a potential alternative
treatment of central nervous injury disease.

Keywords: mesenchymal stem cells, bone marrow-derived neural progenitor cells, nerve cells, differentiation, cell
transplantation

INTRODUCTION

Research on stem cells and regenerativemedicine is themost popular in current life science frontiers
(Chen et al., 2019; Dupont et al., 2019; Stoddard-Bennett and Reijo Pera, 2019; Yamada et al., 2019).
Differentiating into functional neural cells plays an important role in the neural network plasticity
after brain injury. The stem cell transplant to treat central nervous injury has made great progress
(Xu et al., 2017; Hosseini et al., 2018; Ludwig et al., 2018; Zamproni et al., 2019).
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Mesenchymal stem cells (MSCs) are the most studied
potential stem cells (Bhartiya, 2019). Global clinical trials on
MSCs have been over 750 projects1. The United States approved
more than 40 items in brain injury in Clinical trials. MSCs
will be promising treatment strategies for the recovery of brain
damage (Sherman et al., 2019). One of the reasons is that MSCs
with strong proliferation and multi-directional differentiation
potential can transdifferentiate into neurons and glial cells of
ectoderm cells in vivo or in vitro in an appropriate environment,
and plays a vital role of nerve repair (Kabos et al., 2002; Zhang
et al., 2004; Munoz et al., 2005; Robinson et al., 2011; Tang et al.,
2012; Huat et al., 2015). However, there are some problems in
the transplantation of MSCs, such as lack of long-term survival
in intracranial and limited direct evidence of nerve regeneration
(Matsuse et al., 2011).

Although in recent years, lots of studies supported that
bone-marrow MSCs (BM-MSCs) could transdifferentiate into
neural cells, in vitro most of them (Long et al., 2005; Lei
et al., 2007; Sun et al., 2007; Mu et al., 2018; Luo et al.,
2019; Ruan et al., 2019), but few researchers could detect
mature and function nerve cells, especially in vivo study (Tomita
et al., 2006; Raedt et al., 2007; Nojiri et al., 2008). Even
some researchers suggested that transplanted BM-MSCs were
not able to differentiate into functional neural cells, at least
expressed a limited set of neural markers and no cells replaced
effect (Raedt et al., 2007). But in most cases of BM-MSCs
transplantation, functional recovery was recognized even if just
a few transplanted cells survived in the host tissue (Parr et al.,
2008). The main role of promoting neural functional recovery
probably was raised by inhibiting apoptosis, regulating the
body’s immune response to reduce inflammation, and so on
(Shi et al., 2018).

It is much more than that. The possibility of committed
tissue-specific stem cells pre-existing in the bone marrow
has not been dealt with adequately. Any trans-differentiation
studies employing populations of bone marrow cells should
rule out the possibility that the apparently pure hematopoietic
stem cell population could, in fact, contain pre-existing
tissue-specific stem/progenitors (Kucia et al., 2004). It is
reported that mRNA of several early markers for neural
is detectable in peripheral blood mononuclear cells (Kucia
et al., 2004). Our previous study examined the nerve cells
culture environment, including which bone marrow-derived
nerve cells may exist a phase of bone marrow-derived neural
progenitor cells (BM-NPCs). BM-NPCs might be more suitable
than BM-MSCs, served as seed cells for cell transplantation,
playing the role of cell replacement therapy in the central
nervous injury disease (Bai et al., 2013). Therefore, how to
isolate neural progenitor cells from BM-MSCs and directly
differentiate these progenitor cells into functional neural cells,
looking the convincing proof for BM-NPCs, and observing
the bone marrow derived neurons in long-term intracranial
survival, and participating in nerve regeneration, are the
urgent problems to be solved in clinical cell transplantation
for treating brain injury. here, our study provide evidence

1https://clinicaltrials.gov/

that a neural progenitor cell population (BM-NPCs) could be
separated from BM-MSCs and these BM-NPCs are able to
further differentiate into neural cells in vitro based on the cell
morphology and cell marker expression, and improve damaged
brain function after cell transplantation. These results provide
valuable experimental data for BM-NPCs in the central nerve
regeneration application.

MATERIALS AND METHODS

Isolation and Culture of BM-MSCs
Adult (3 weeks) specific-pathogen-free (SPF)-class SD rats were
purchased from the Laboratory Animal Centre of Sun Yat-sen
University. Rats BM-MSCs were generated using the whole
bone marrow adherent culture method. Briefly, bone marrow
was obtained as in our previous study (Bai et al., 2013) and
then centrifuged at 1,500 rpm for 5 min. The supernatant
was discarded, and the cell pellet was re-suspended in α-MEM
medium plus with 10% FBS, transferred into a petri dish, and
cultured in an incubator at 37◦C and 5% CO2. The medium was
replaced every 2 days, as the cells were subcultured when the cell
confluency reaches 90%.

Isolation and Culture of BM-NPCs
After two generations of BM-MSCs, cells were detached by
trypsin-EDTA and cultured in a serum-free medium of neural
stem cells culture medium Neurobal-A with 1% N2-supplement,
2 mmol/L L-glutamine and 20 ng/ml b-FGF and EGF in
suspension culture bottles induction. After 48 h, there were
cells in suspended growth, using AccutaseTM enzyme digestion
batches, some of these cells have the ability of proliferation as a
sphere suspension growth.

Flow Cytometry Analysis of BM-MSCs and
BM-NPCs
BM-MSCs or BM-NPCs were harvested with trypsin and washed
twice with PBS. After filtering through a 200-mesh screen,
the cell density was adjusted to 2–6 × 106/ml. The surface
markers molecules on the BM-MSCs were then examined by flow
cytometry with the following antibodies: CD3-PE, CD4-FITC,
CD11b-PE, CD29-FITC, CD34-APC, CD14-APC, CD45-FITC,
CD105-APC, and CD133-PE.

Immunofluorescent Staining
Cells were plated on the coverslips on the six-well plates.
After attaching to the plates, the cells were fixed with 4%
Paraformaldehyde (PFA) for 30 min, and then washed with
PBS, permeabilized with 0.1% Triton X-100 for 5 min, and
blocked with 1% BSA for 30 min. The cells were added
to the primary antibody against Nestin/SOX2/CD133/Tuj1 or
Texas Red conjugated phalloidin (Invitrogen, Waltham, MA,
USA) for 2 h and FITC-conjugated second antibody. The
samples were washed three additional times then mounted using
Mowiol. The stained cells were viewed by a confocal microscope
(TCS SP5, Leica, German). Antibodies and dilutions were as
follows: rabbit polyclonal antibody Nestin (1:200) and SOX2
(1:100) both from Capital Bio Corporation in Beijing; mouse
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monoclonal CD133 (1:40, Miltenyi Biotec, Auburn, CA, USA);
polyclonal antibody Tuj-1 (1:500, Life Technologies, Carlsbad,
CA, USA).

RT-PCR and qPCR
Total RNAwas isolated from cells samples by Trizol Reagent. The
quality and purity of RNA were assessed by the ratio of OD260
and OD280, which of the value of all samples ranged from 1.8 to
2.2. RNA integrity assessed the Agilent 2100 bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). The RNA integrity number
(RIN) value of all samples ranged from 8.1 to 8.9 (scale1–10),
indicating high-quality RNA.

First-strand cDNA was prepared from total RNA (1 µg)
by Prime ScriptTM RT reagent Kit With gDNA Eraser form
RNA (Takara, Dalian China) according to the manufacturer’s
specifications. One microliter of 5-fold dilution of cDNA and
0.4 µM of primer pair (Supplementary Table S1) were used in
20 µl reaction volume with SYBRs Premix Ex Taq II (Perfect
Real Time; Takara, Dalian, China) in master cycler real plex
(Eppendorf, Germany), 5 ng of template cDNA, 45 cycles:
95◦C/15 s, 60◦C/15 s. These qRT-PCR procedures were run in
duplicate to correct for variances in loading. All PCR results were
determined using the relative quantification method (2−∆∆Ct)
with GADPH as the normalization control.

Adipogenesis Differentiation
BM-MSCs (6 × 104 cells/well) were seeded in 24-well plates
and cultured at 37◦C in a humidified atmosphere with 5%
CO2 in DMEM supplemented with 10% volume fraction of
FBS, 10 mmol/L dexamethasone, 10 mg/L insulin, 100 mg/L
1-methyl-3-isobutyl xanthine, 100mg/L indomethacin, 100U/ml
penicillin, and 100 mg/L streptomycin. This adipogenesis
differentiation medium was replaced every 3–4 days. After
14 days of culture, the cells can be processed for Oil Red O
staining, to detect adipogenesis.

Animal Model
Brain injury rat models were divided randomly into cell group
(n = 20) and control group (n = 20; device as Supplementary
Figure S2). Cell group rat tracer injected with CD-Dil
tagged BM-NPCs 10 µl (1 million) through the microsyringe
transplantation to cerebral injury rats, under the condition of
the same set as control group with injecting medium. Movement
function Wayne Clark test and grooming test were carried out
respectively after transplantation of 1 day, 3 days, 7 days, and
30 days and 60 days. At the same time, 7 days, 30 days and 90 days
after transplantation, brain tissue pathological conditions were
detected, using immunofluorescence test to analyze Dil tagged
BM-NPCs migration in brain injury and nerve cell markers
NeuN. Antibodies and dilutions were as follows: neuron-specific
enolase (NeuN) monoclonal, 1:200 (BD Bioscience).

Histological Observations
After treatment, the brains were carefully excised, rinsed in PBS,
and then fixed in 4% PFA. The samples were dehydrated in
a graded ethanol series (70–100%) and embedded in paraffin.
Five-micrometer sections were prepared. According to the

standard procedures, samples were stained with hematoxylin and
eosin (HE).

Animal Behavior Test
Wayne Clark and grooming scores were carried out according to
the score table (Bertelli and Mira, 1994; Finnie, 2001).

Statistical Analysis
Data were expressed as mean ± SEM. Comparisons of mean
values among the groups were compared using Student’s t-test.
A five percent probability (P < 0.05) was used as the level of
significance. Differences were considered statistically significant
with P < 0.01.

RESULTS

Characterization of BM-MSCs
BM-MSCs were generated using the whole bone marrow
adherent culture method, identified by analysis extending cell
morphology and the surface markers using flow cytometry
(Figure 1A). The results showed that characteristic of BM-MSCs
in accordance with the international appraisal standard of MSCs,
identified bymicroscopemorphological observation and the flow
cytometry of CD34/45/3/4/11b/14/133 (−) and CD29/105 (+)
(Figure 1B).

Characterization of BM-NPCs
Through the method of neural stem cell suspension culture,
bonemarrow-derived sphere-like cells were harvested, which was
measured by the flow cytometry cycle, and the results showed
that 79.2% of the third generation of sphere-like cells was in
G0/G1 phase (Figure 2A).

To analyze cell differentiation potential of sphere-like cells,
cell immunofluorescence and RT-PCR method were carried
out to detect the pluripotent surface markers expression. The
results showed sphere-like cells express protein CD133, Sox2, and
Nestin (Figure 2B).

To detect the mRNA level, semi-quantitative RT-PCR was
executed. Pluripotent stem cell gene namely c-myc, klf4, sox2,
Sca-1, oct4 and neural progenitor cells gene including Muashil1,
CD184, CD133, CD56, Nestin, Muashil2, Notch1 were both
stronger expressed in sphere-like cells (Figures 2C,D). To further
confirm the pluripotency, sphere-like cells were induced to
adipose differentiation. The result showed positive lipid drops
with oil O staining (Figure 2E).

BM-NPCs Differentiation Into Neuron-Like
Cells
To analyze the differentiation ability of BM-NPCs to nerve cells,
genetic level changes in the process of cell differentiation was
detected using both direct adherent differentiation and neuron
co-culture induction method.

The third generation of BM-NPCs was cultured in
neurons medium for 15 days. BM-NPCs adhered to the
wall directly and neuron-like cells can be observed after
10 days, some of which like glial cells, linked with each
other to grow. When continue to induce the other 5 days, a
typical morphology of nerve cells, similar to normal cortex
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FIGURE 1 | Characterization of bone marrow-derived mesenchymal stem cells (BM-MSCs). (A) Microscope morphological observation of BM-MSCs. (B) Analysis
of BM-MSCs for the expression of surface markers by flow cytometric analysis.

FIGURE 2 | Characterization of bone marrow-derived neural progenitor cells. (A) The cell cycle by flow cytometry. (B–D) Identification of cell differentiation potential
and neural progenitor cells related to gene protein expression using cell immunofluorescence staining and RT-PCR method. (E) Oil Red O staining to detect
adipogenesis differentiation.

neuron cells and completely different from BM-MSCs, can be
observed (Figure 3).

Then analysis of neuronal markers was detected. Using
semi-quantitative RT-PCR and quantitative qPCR to detect

mRNA expression level before and after inducing BM-NPCs
about neural stem cell marker genes (Nestin/CD56/CD133),
the nerve cells marker genes (the beta-III-tubulin/Neun/5-
HT/ACHE/GABA, and CNPase and neurotrophic factor gene
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FIGURE 3 | Direct adherent induces differentiation of bone marrow neural progenitor cells into neuron-like cells.

NGF/BDNF/GDNF gene (Figures 4A–C). Quantitative gene
expression results showed BM-NPCs was higher expression
of neural progenitor cell gene CD56 and CD133 compared
to BM-MSCs. What’s more, results showed higher CNPase
expression and NGF nutrition factor gene-level increased
significantly (Figure 4D). To confirm the expression of neuronal
markers. Tuj-1/NF200 and glial cell marker GFAP were
detected by immunofluorescence technique. These nerve-like
cells expressed Tuj-1 (+)/NF200 (−) and GFAP (+)/S100 (+)
(Figure 5).

In addition, the CM-Dil cells tracer tagged BM-NPCs
was cocultured with the original generation cortex neurons
for 10 days, the result showed neurons-like morphology and
network growth with neurons (Figure 6A), like primary
cortex neurons (Supplementary Figure S1). For 15 days,
using an inverted microscope and immunofluorescence
observations to detect neuronal markers Tuj-1 expression.
When CM-Dil cells tracer tagged BM-NPCs in the more
suitable environment for neuronal growth was co-culture with
the original generation of cortex neuron cell, BM-NPCs can
be differentiated into more typical neuron morphological
characteristics, with Tuj1 fluorescent protein-positive
expression, and normal neural network connected into
the growth cells (Figure 6B). However, unlike BM-NPCs,

BM-MSCs cocultured with neurons did not show the
appearance (Figure 6C).

Long-Term Survival of Bone
Marrow-Derived Neurons Involved in Nerve
Regeneration
Bone marrow-derived neural progenitor cells (BM-NPCs)
transplantation in the brain injury rats was carried out followed
by a search for the evidence about long-term survival in vivo, and
participating in nerve regeneration of brain damage.

First, the immunofluorescence results showed that 7 days of
transplantation, the Dil labeled cells transplanted into the area
of injury around brain tissue. However, Dil labeled cells still not
show NeuN positive. Transplantation for 30 days, brain damage
tissue around GFAP positive astrocytes, some Dil+ cells, in the
region of the hippocampus and cerebral cortex neurons, with
normal nerve cells express integration expressed NeuN. After
4 weeks, cell group was still visible Dil tagged positive cells
expressed NeuN, which integrated in normal nerve cells in the
brain tissue, and the damage zone of the surrounding tissue
growth (Figure 7A).

Second, HE staining showed 1 week after cell transplantation,
the control group damage surrounding tissue with edema, oven
visible cystic cavity, significantly reduced the number of nerve
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FIGURE 4 | Direct adherent induces differentiation of bone marrow neural progenitor cells into neuron-like cells, whose neuronal markers were detected by
semi-quantitative RT-PCR (A–C from BM-NC) and quantitative qPCR (D).

FIGURE 5 | Direct adherent induced differentiation of bone marrow neural progenitor cells into neuron-like cells, whose neuronal markers Tuj-1 (+)/NF200 (−) and
S100 (+)/GFAP (+) was detected by immunofluorescence.

cells, inflammatory cells infiltration around, cell group edema,
lighter, cystic cavity range limit, glial cells. Transplantation for
4 weeks, focal brain injury recovered from the surrounding
tissue, compared with the control group. The cystic cavity was
small in a cell group, and the row of the surrounding cell of the
class was neat, tissue edema and inflammatory cells disappeared
(Figure 7B).

Third, the behavioral score showed two groups of Wayne
Clark and grooming score results were no significant
difference (P < 0.05) on 1 day. But transplantation for
3 days, 7 days, 30 days, 60 days, Wayne Clark, grooming
score results had significant difference (P < 0.05 or
P < 0.01). The cell group had better functional
recovery (Figures 8A,B).
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FIGURE 6 | Neuron co-culture induced differentiation of bone marrow neural progenitor cells into neuron-like cells followed by immunofluorescence observations.
(A) BM-NPCs cocultured with cortical neurons for 10 days. (B) BM-NPCs cocultured with cortical neurons for 15 days. (C) BM-MSCs (left) and BM-NPCs cocultured
with the cortical neuron. CM-Dil (red), Tuj1 (green) and DAPI (blue).

FIGURE 7 | Bone marrow-derived neurons can long-term survival in brain injury rats and promote nerve regeneration. (A) The immunofluorescence staining results
showed that the Dil labeled cells after 4 weeks of transplantation. Dil (red), NeuN(green), DAPI (blue). (B) HE staining after 1 or 4 weeks of transplantation.

DISCUSSION

More and more focus on the capacity of stem cell-derived
neural progenitor cells following brain injury (Pati
et al., 2016), but less evidence ensure that these cells
transdifferentiate into neural cells (Shinoyama et al., 2013).
This article explored that bone marrow sphere-like cells
were obtained from the BM-MSCs using the method of
neural stem cell suspension culture, identified as BM-NPCs
by neural progenitor cells gene and protein expression,

and neural progenitor cells characteristic and nerve cell
differentiation in vitro. Moreover, BM-NPCs transplantation
improved the behavior and histological indexes of brain
injury rats.

First, the pluripotent stem cell gene and neural progenitor
cells gene were both stronger expressed in sphere-like cells,
that suggested the bone marrow-derived sphere-like cells was
pluripotent and able to differentiate into neural cells, in other
words, they were bone marrow-derived neural progenitor cells
(BM-NPCs; Figures 2A–E).
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FIGURE 8 | The behavioral score of brain damage rats after BM-NPCs transplantation. (A) Wayne Clark and (B) grooming score after transplantation for different
time points. *P < 0.05, #P < 0.01.

These cells adhered to the wall directly, then showed a typical
morphology of neuron-like cells and nerve cells, different from
BM-MSCs (Figure 3). Further, after induced differentiation of
BM-NPCs, the Nestin, NCAM1, and CD133 gene expression
decreased obviously because maybe the cells differentiate into
different nerve cells. beta-III-tubulin/Neun/5-HT/ACHE gene
expression also decreased obviously, which suggested that the
‘‘stick-to-wall’’ differentiation environment was not conducive
to neuron differentiation, so these cells were unable to form
mature neurons with neurotransmitter expression. Cells may
easily differentiate into glial cells with cultivation over a long
time because glial cells were more easy to survive and proliferate,
then with higher CNPase and NGF nutrition factor expression
(Figures 4A–D). What’s more, expression of neuronal markers
suggested the more appropriate neuron growth environment,
BM-NPCs might have the capacity to differentiate into mature
functional neurons.

These results in vitro showed that suspension-cultured
BM-NPCs have more ability to differentiate into nerve
cells compared with BM-MSCs and that BM-NPCs induced
neuronal cells were similar to fully mature neurons cell,
however, a certain difference in the gene expression still
exists. BM-NPCs probably have the ability to differentiate
into functional neural cells in the appropriate environment,
playing a role in the central nervous system injury disease
(Figures 5, 6).

Finally, the results that BM-NPCs transplantation can
promote brain injury of limb motor function recovery in rats,
that supply the evidence of long-term survival in intracranial,
integrating into damage brain and participating in nerve
regeneration (Figures 7, 8). The behavioral score of brain
damage rats improved 3 days after BM-NPCs transplantation.
This time point was in accord with the study that concludes
that the critical time period for manipulating endogenous
NPCs following a spinal cord injury in rats was between
24 h when Nestin expression in ependymal cells increased
and 1 week when astrocytes were activated in large numbers
(Mao et al., 2016).

CONCLUSION

This study identified the BM-NPCs and provided valuable
experimental basis data for BM-NPCs transplantation,
suggesting the alternative treatment of central nervous
injury disease.
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