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Mammalian retinal ganglion cells (RGCs) in the central nervous system (CNS) often
die after optic nerve injury and surviving RGCs fail to regenerate their axons,
eventually resulting in irreversible vision loss. Manipulation of a diverse group of
genes can significantly boost optic nerve regeneration of mature RGCs by reactivating
developmental-like growth programs or suppressing growth inhibitory pathways. By
injury of the vision pathway near their brain targets, a few studies have shown that
regenerated RGC axons could form functional synapses with targeted neurons but
exhibited poor neural conduction or partial functional recovery. Therefore, the functional
restoration of eye-to-brain pathways remains a greatly challenging issue. Here, we
review recent advances in long-distance optic nerve regeneration and the subsequent
reconnecting to central targets. By summarizing our current strategies for promoting
functional recovery, we hope to provide potential insights into future exploration in vision
reformation after neural injuries.
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INTRODUCTION

Retinal ganglion cells (RGCs) relay visual related information from the eye to the brain
through their axons, which collectively form the optic nerve (Laha et al, 2017). Optic nerve
injuries induced by trauma, glaucoma or neurodegenerative diseases often result in loss of
visual functions and eventually blindness. Strategies promoting RGC survival and optic nerve
regeneration are actively pursued to repair neural injury and restore visual function. As
central nervous system (CNS) neurons, mature RGCs have greatly reduced intrinsic capacity
to regenerate their axons after traumatic injuries or neurodegeneration, eventually leading
to loss of vision (Chun and Cestari, 2017; Laha et al., 2017). Also, contrary to neurons in
the peripheral nervous system (PNS), various extrinsic inhibitory molecules act to limit
axon regeneration in the CNS, including the spinal cord and optic nerves (Geoffroy and
Zheng, 2014). Previous studies showed that removing extracellular inhibitory factors, such
as Nogo and its receptors, could induce mild optic nerve regeneration (Fischer et al., 2004;
Su et al, 2008, 2009; Dickendesher et al,, 2012). In contrast, deleting phosphatase and tensin
homolog (Pten) in RGCs, which boosted the intrinsic axon regeneration capacity, promoted
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robust optic nerve regeneration, indicating promising new
avenues for enhancing CNS axon regeneration (Park et al,
2008). During the past decade, manipulation of several genes in
RGCs has been shown to significantly boost the intrinsic axon
regeneration capacity of mature RGCs, such as Kif4/9 (Moore
et al., 2009; Apara et al., 2017), Socs3 (Smith et al., 2009), B-RAF
(O’Donovan et al, 2014), c-myc (Belin et al, 2015), GSK3p
(Guo et al,, 2016; Miao et al,, 2016), Lin28 (Wang et al., 2018),
and P53 (Ma et al, 2019). Although, these genes have been
shown to regulate optic nerve regeneration, almost none of
them alone could be manipulated to induce long-distance axon
regrowth in vivo. To solve this problem, combinatorial strategies
have been tried to extend the lengths of regenerative axons.
Indeed, the synergistic or additive effects of multiple independent
pathways on RGC axon regeneration were more dramatic and
sustainable, such as Zymosan/cAMP/Pten-deletion (Kurimoto
et al., 2010), CNTF/Pten-deletion/Socs3-deletion (Sun et al,
2011), c-Myc/CNTF/Pten-deletion/Socs3-deletion (Belin et al.,
2015), and Lin28/Pten-deletion (Wang et al., 2018). In a few
studies, it was reported that regenerating RGC axons could reach
long distance, crossing the optic chiasm and entering the brain
(Kurimoto et al., 2010; Sun et al., 2011; de Lima et al., 2012;
Lim et al., 2016).

The next step after long-distance optic nerve regeneration
should be exploring how visual function could be restored
with proper axon guidance, synaptogenesis, and neural activity
transmission. To date, de novo optic nerve regeneration across
the chiasm appears to be the bottleneck for regenerating
RGC axons to enter the brain. Therefore, only a few studies
using combinatory approaches have reported very limited
reconnection between injured optic nerve axons and their targets
in the brain, such as the suprachiasmatic nucleus (SCN), the
lateral geniculate nucleus (LGN), the superior colliculus (SC),
and other visual areas with either longer period after the injury
(de Lima et al.,, 2012; Bei et al., 2016; Lim et al.,, 2016) or
performing the injury at the pre-chiasm (Li et al, 2015) or
optic tract (Bei et al.,, 2016). Although further confirmation of
these studies is still needed, the results provided some proof-

in-principle evidence that visual function recovery is possible
after optic nerve injury if each step of axon regrowth, guidance,
synaptogenesis, and remyelination could be achieved. Here, we
review recent progress in achieving the reconnection of the eye-
to-brain pathways and discuss potential future strategies for
rewiring the visual circuits after optic nerve injuries.

LONG-DISTANCE AXON REGENERATION
CAN BE ACHIEVED VIA COMBINATORY
MANIPULATION OF MULTIPLE
GENES/PATHWAYS

To restore vision after optic nerve injury, injured axons must
regenerate the full length of the eye-to-brain pathways, a
distance of more than 8 mm from the injury site to LGN
and SC in mice (Figure 1). Long-distance axon regeneration,
as the first step of the eye-to-brain reconnection, is crucial
in the restoration of visual function following optic nerve
injury. To date, conditional knocking out Pten alone in
RGCs led to probably the longest optic nerve regeneration
at 2 weeks after injury (up to 3 mm distal to the lesion site;
Park et al., 2008). Manipulations of other genes, as listed in
Table 1, have been shown to promote modest regeneration
of RGC axons reaching the medium region of the optic
nerve after injury (Table 1). In addition to manipulation of
gene expression in RGCs, the non-RGC-mediated release
of CNTF (Leaver et al., 2006), oncomodulin in response to
inflammation (Yin et al., 2006), or amacrine-specific Lin28-
mediated IGF1 potentiation (Zhang et al, 2019), have all
been shown to stimulate optic nerve regeneration, either
alone or together with other factors. Moreover, an elevated
level of zinc in amacrine cells upon optic nerve injury has
been shown to contribute to RGC cell death and failed
regeneration by slowly transferring into RGCs (Li et al,
2017). As a result, the zinc transporter ZnT-3 (encoded
by gene slc30a3) knockout enhanced RGC survival and
regeneration. Furthermore, an increased level of cAMP has
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FIGURE 1 | The promoting capacity of known treatments on optic nerve regeneration in vivo. To regain visual function, regenerating optic nerve axons need to
cross the optic chiasm (OX) and reach specific nuclei in the brain, including the suprachiasmatic nucleus (SCN), medial terminal nucleus (MTN), thalamic ventral or

colliculus (SC). Manipulation of a single factor, such as Pten knockout (PTEN KO), IL6 expression, or Sox11 overexpression (SOX11 OE), is unlikely to enhance optic
nerve regeneration to reach the OX. However, combinatorial approaches with multiple factors can induce longer distance axon regeneration to reach and cross the
OX. In a few cases, it was reported that a combination of multiple factors, such as Pten/Socs3 co-deletion, inflammation/cAMP/Pten knockout, or

Rheb1 overexpression/visual stimulation, could enhance optic nerve regeneration to reconnect with selected brain nuclei.

ucleus of the optic tract (NOT), olivary pretectal nucleus (OPN), and superior
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TABLE 1 | Genetic manipulation for promoting optic nerve regeneration in mice.

Gene Modulation Phenotype Reference

Pten Deletion Promoted axon regeneration Promoted neuronal survival Park et al. (2008)
Socs3 Deletion Promoted axon regeneration Promoted neuronal survival Smith et al. (2009)

Kif4 Deletion Promoted axon regeneration Moore et al. (2009)
Thbs1 Overexpression Promoted axon regeneration Bray et al. (2019)
Mettl14 Knockdown Attenuated axon regeneration Attenuated neuronal survival Weng et al. (2018)
Mdm4 Deletion Promoted axon regeneration Joshi et al. (2015)
Sox11 Overexpression Promoted axon regeneration Killed a-RGC Norsworthy et al. (2017)
Lin28 Overexpression Promoted axon regeneration Wang et al. (2018)
Dclk2 Overexpression Promoted axon regeneration Promoted neuronal survival Nawabi et al. (2015)
Armex1 Overexpression Promoted axon regeneration Promoted neuronal survival Cartoni et al. (2016)
Mip Overexpression Promoted axon regeneration Levin et al. (2019)

p53 Overexpression Promoted axon regeneration Ma et al. (2019)

Tet1 Knockdown Attenuated axon regeneration Weng et al. (2017)
Socs4 Knockdown Promoted axon regeneration Sekine et al. (2018)
Rab27b Deletion Promoted axon regeneration Sekine et al. (2018)
Rheb1 Overexpression Promoted axon regeneration Lim et al. (2016)

Cntf Overexpression Promoted axon regeneration Promoted neuronal survival Pernet et al. (2013a)
Stat3 Activation Promoted axon regeneration Luo et al. (2016)

Opn4 Overexpression Promoted axon regeneration Lietal. (2016)

Akt Activation Promoted axon regeneration Promoted neuronal survival Guo et al. (2016)
Gsk3b Deletion Promoted axon regeneration Leibinger et al. (2017)
Eifebs Activation Promoted axon regeneration Guo et al. (2016)

hiL-6 Expression Promoted axon regeneration Promoted neuronal survival Leibinger et al. (2016)
c-myc Overexpression Promoted axon regeneration Promoted neuronal survival Belin et al. (2015)

DIk Deletion Attenuated axon regeneration Watkins et al. (2013)
S6k1 Activation Promoted axon regeneration Yang et al. (2014)
Eif4ebp Deletion Promoted neuronal survival Yang et al. (2014)

Rtca Deletion Promoted axon regeneration Song et al. (2015)

KIf9 Knockdown Promoted axon regeneration Promoted neuronal survival Apara et al. (2017)
slc30a3 Deletion Promoted axon regeneration Promoted neuronal survival Lietal (2017)

Hdacs Dephosphorylation Promoted axon regeneration Promoted neuronal survival Pita-Thomas et al. (2019)
Hsp70 Overexpression Promoted neuronal survival Kwong et al. (2015)
Dusp14 Deletion Promoted neuronal survival Galvao et al. (2018)
Wnt3a Application Promoted axon regeneration Promoted neuronal survival Patel et al. (2017)
mir-135 Mimics Promoted axon regeneration van Battum et al. (2018)
Crmp2 Activation Promoted axon regeneration Leibinger et al. (2017)
Pedf34 Application Promoted axon regeneration Promoted neuronal survival Vigneswara et al. (2015)
Rkip Overexpression Promoted axon regeneration Promoted neuronal survival Wei et al. (2015)

B-raf Overexpression Promoted axon regeneration O’Donovan et al. (2014)
Nm1 Overexpression Promoted axon regeneration Promoted neuronal survival Sharma et al. (2015)
Ddit3 Deletion Promoted neuronal survival Hu et al. (2012)

Xbp1 Overexpression Promoted neuronal survival Hu et al. (2012)

p76ntr Suppression Promoted axon regeneration Uesugi et al. (2013)
Rtn4 Overexpression Enhanced axonal growth Attenuated neuronal survival Pernet et al. (2012)
Arg2 Deletion Enhanced axonal sprouting Promoted neuronal survival Xu et al. (2018)

NgR Deletion Promoted axon regeneration Su et al. (2009)

Lpin1 Knockdown Promoted axon regeneration Yang et al. (2020)
Lgals3 Deletion Promoted neuronal survival Abreu et al. (2017)

Trif Deletion Promoted axon regeneration Promoted neuronal survival Lin et al. (2012)

NFxB Activation Promoted neuronal survival Dvoriantchikova et al. (2016)
Crtacib Overexpression Promoted axon regeneration Hirokawa et al. (2017)
Efnb3 Deletion Promoted axon regeneration Duffy et al. (2012)

Bag1 Overexpression Promoted axon regeneration Promoted neuronal survival Planchamp et al. (2008)
Shp Knockdown Promoted axon regeneration Fuijita et al. (2011)
Dock3 Overexpression Promoted axon regeneration Namekata et al. (2010)
Uen Overexpression Promoted axon regeneration Promoted neuronal survival Tran et al. (2019)

Timp2 Overexpression Promoted axon regeneration Promoted neuronal survival Tran et al. (2019)
Crhbp Deletion Promoted axon regeneration Promoted neuronal survival Tran et al. (2019)
Mmp9 Deletion Promoted axon regeneration Promoted neuronal survival Tran et al. (2019)

been shown to enhance oncomodulin-induced optic nerve
regeneration (Kurimoto et al, 2010). Lastly, a subtype of
RGCs have shown to produce a secreted phosphorylated

glycoprotein, osteopontin

which acts together

with IGF1 or BDNF, to enhance optic nerve regeneration

(Duan et al., 2015).
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TABLE 2 | Long-distance optic nerve regeneration in mice.

Manipulation Time Assessment of regenerating axons Reference
Pten deletion 4 weeks Until the optic chiasm Park et al. (2008)
Hyper-IL-6 expression 6 weeks Within the optic chiasm and the contralateral optic Leibinger et al. (2016)
nerve
SOX11 overexpression 4 weeks >4 mm Norsworthy et al. (2017)
KLF9 knockdown 2 weeks Within the optic chiasm and the contralateral side Apara et al. (2017)
Glia-targeting AAV.DH-CNTF 8 weeks Until the optic chiasm Pernet et al. (2013a)
B-RAF expression/Pten deletion 2 weeks >3.5mm O’Donovan et al. (2014)
DCLK2 overexpression/Pten deletion 2 weeks Until the optic chiasm Nawabi et al. (2015)
Pten and Socs3 co-deletion (Pre-chiasm lesion) 8 weeks Within the core region of SCN and functionally active Lietal (2015)
synaptic connections
RHEB1 overexpression/Biased visual 3 weeks Within multiple subcortical visual targets and partial Lim et al. (2016)
stimulation recovery of visual function
Zinc chelation/Pten deletion 12 weeks Across the optic chiasm Lietal (2017)
SOX11 overexpression/Pten deletion 7 weeks Across the optic chiasm and within the optic tract Norsworthy et al. (2017)
Bax knockout/Delayed CNTF overexpression 8 + 8 weeks Within the optic chiasm and the SCN Yungher et al. (2017)
Zinc chelation/KIf9 knockdown 6 weeks Within the optic chiasm and the ipsilateral optic tract Trakhtenberg et al. (2018)
Zymosan/cAMP/Pten deletion 6 weeks Within the optic chiasm and the LGN Kurimoto et al. (2010)
10-12 weeks Within the major visual targets (the SCN, OPT, MTN, de Lima et al. (2012)
LGN, and SC) and partial recovery of visual function
10-12 weeks Within the optic tract and the SCN (3D projection) Luo et al. (2013)
12 weeks Within the contralateral SCN, dLGN and SC Goulart et al. (2018)
Pten and Socs3 co-deletion/CNTF 4 weeks Across the optic chiasm and within the SCN Sun et al. (2011)
overexpression
Pten knockdown/cAMP/ CNTF overexpression 4-6 weeks Within the optic tract and the SCN (3D projection) Yungher et al. (2015)
STAT3 and MEK co-activation/Pten deletion 10 weeks Across the optic chiasm and within the brain (3D Luo et al. (2016)
projection)
CRMP2 and GSK3 co-activation/Lens injury 3 weeks Until the optic chiasm Leibinger et al. (2017)
c-Myc and CNTF co-overexpression/Pten and 4 weeks Across the optic chiasm and within the optic tract Belin et al. (2015)

Socs3 co-deletion

(Whole-mount analysis)

Although several approaches have been shown to promote
substantial regeneration in vivo, the regrowth of sufficient
numbers of axons through the entire optic pathway remains
a major challenge. Thus, recent advances in RGC axon
regeneration not only focused on identifying novel genes
and pathways, but also revealed that combinatorial treatments
with distinct underlying mechanisms resulted in additive
or even synergistic effects (Table 2). Up to date, Pten
deletion, together with manipulation of other RGC genes or
extracellular factors, have been the dominant combinatory
strategy for promoting long-distance optic nerve regeneration.
For instance, Socs3 deletion (Sun et al, 2011), B-RAF
activation (O’Donovan et al, 2014), c-Myc overexpression
(Belin et al., 2015), DCLK2 overexpression (Nawabi et al.,
2015), hIL-6 expression (Leibinger et al., 2016), STAT3/MEK
activation (Luo et al., 2016), zinc chelation (Li et al.,, 2017),
or Lin28 overexpression (Wang et al, 2018), has each been
shown to have synergistic/additive effects with Pten deletion on
optic nerve regeneration. Also, extracellular factors described
above have all been combined with genetic manipulation of
RGCs, such as cAMP/oncomodulin/Pten-deletion (Kurimoto
et al,, 2010), CNTF/Pten-deletion/Socs3-deletion (Sun et al.,
2011). Furthermore, the additive or synergistic effects of
other combinatorial strategies have also been shown, such as
KIf9 knockdown combined with Zinc chelation (Trakhtenberg
et al, 2018) and constitutively active CRMP2 combined
with enhanced GSK3 activity (Leibinger et al., 2017). Such
combinatory effects are believed to be due to different signaling

pathways downstream of these genes and factors. Based on
previous studies, several signaling pathways have been shown
to play important roles in transducing the promoting effects
of these genes/factors. For instance, the growth-factor related
GSK3/mTOR signaling is activated downstream of Pten deletion
(Park et al., 2008; Leibinger et al., 2019), osteopontin (Duan
et al., 2015), melanopsin (Li et al., 2016), Akt (Guo et al., 2016;
Miao et al,, 2016), or Lin28 (Wang et al., 2018). Also, the MAPK
pathway downstream of B-RAF (O’Donovan et al., 2014) or MEK
(Luo et al., 2016) was involved. Moreover, the Jak-Stat cytokine
signaling could be activated downstream of CNTF (Miiller et al.,
2007), Socs3 deletion (Smith et al., 2009), or KlIf4 deletion
(Qin et al.,, 2013). Furthermore, recent studies have revealed
several novel signaling pathways functioning to promote optic
nerve regeneration, such as the phosphatidic acid phosphatase
(PAP) Lipinl that induced regeneration through regulating
glycerolipid metabolism (Yang et al., 2020), thrombospondin-1
that bound to syndecan to promote optic nerve regeneration
(Bray et al., 2019), and the actin cross-linker muscle LIM
protein (Levin et al., 2019). It is worth noting that many
optic nerve regeneration regulatory genes can simultaneously
regulate multiple downstream pathways and the downstream
signaling pathways have also been shown to crosstalk with
each other.

Collectively, it is well recognized that the combination of
molecules with different downstream pathways would result in
longer distance axon regeneration. Thus, identifying new factors
with novel signaling pathways, especially factors that can regulate
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multiple pathways, should still be one of the focused areas in
the field. Besides, exploring the optimal combination of multiple
factors based on their regulatory mechanisms is also very
important. Lastly, it should be noted that the majority (>80%)
of RGCs die a few weeks after optic nerve injury (Wang et al.,
2018; Tran et al,, 2019), making RGC survival a major obstacle
for a sufficient number of regenerating axons necessary for visual
function recovery. Intriguingly, several subtypes of RGCs have
been shown to differ in their ability to survive or regenerate
axons upon optic nerve injury (Duan et al., 2015; Norsworthy
et al., 2017; Bray et al, 2019). Recently, a systematic study by
using single-cell RNA-seq revealed the selective vulnerability of
RGC subtypes following axonal injury and provided evidence
that type-specific neuroprotective strategies could be critical for
intervention (Tran et al., 2019). Thus, genes/pathways that act to
protect RGCs or subtypes from cell death are equally important
to be identified.

PROPER GUIDANCE OF REGENERATING
AXONS PASSING THE OPTIC CHIASM
AND ENTERING THE BRAIN

Although the combinatorial approaches after optic nerve
injury could result in substantial long-distance optic nerve
regeneration, the optic chiasm is emerging to be the major
obstacle for regenerating axons to enter the brain and reach
their original targeted nuclei. By analyzing axon regeneration
at later time points after the nerve injury (ie., 4-10 weeks),
in several studies using combinatory approaches regenerating
axons could reach and even cross the optic chiasm. For
example, when Pten/Socs3 double knockout was combined
with CNTF, 4 weeks (Sun et al, 2011) or 10 weeks (Luo
et al., 2013) after nerve injury many regenerating axons could
reach the proximal end of the chiasm but stopped growing.
When c-Myc expression was added into the combination,
more axons crossed the chiasm and grew into the optic
tracts (Belin et al, 2015). Similarly, other combinatory
approaches, such as cAMP/Zymosan/Pten-deletion (de Lima
et al, 2012; Luo et al, 2013), Lipinl-deletion/CNTF (Yang
et al., 2020), and Pten-deletion/MEK/STAT3 (Luo et al., 2016),
could also induce optic nerve regeneration near or cross the
optic chiasm.

One interesting observation from some of these studies was
that many regenerating axons were turned back at the chiasm or
derailed away from the optic tract after crossing the chiasm. This
observation suggests that optic chiasm presents an inhibitory
boundary and misguidance of axons occurs in the optic tract.
Indeed, as aforementioned, deleting Nogo and its receptors in
the visual system resulted in mild optic nerve regeneration,
indicating the inhibitory nature of the mature visual system. In
an early study (Pernet et al., 2013a), by using tissue clearing
approach and confocal imaging of the whole mount optic nerve,
the study found that many regenerating axons induced by CNTF
showed irregular trajectories, with many U-turns within the
optic nerve. In a later study from the same lab (Pernet et al.,
2013b), regenerating RGC axons induced by active STAT3 also
showed wandering trajectories with frequent U-turns. However,

when the optic nerves were additionally treated with the Rho
kinase inhibitor Y27632, the Stat3-induced regenerating axons
became straighter and the U-rate was markedly reduced. Because
Rho kinase inhibitor is well known to antagonize the inhibitory
effects of myelin-based inhibitor (i.e., Nogo, MAG), these results
confirmed the presence of extracellular inhibitory molecules in
the optic nerve. In support, by using tissue clearing and advanced
light-sheet fluorescence microscopy (LSFM), three studies (Luo
et al., 2013; Yungher et al., 2015; Bray et al., 2017) performed
high-resolution 3D imaging and detailed axonal morphological
analyses at the single axon level. Specifically, the results found
that within the optic nerve most regenerating axons had a
meandering path and many of them made sharp turns. For axons
reaching the chiasm, some axons turned back at the chiasm and
enter the opposite uninjured optic nerve, confirming chiasm
as an inhibitory barrier. For axons that managed to cross the
chiasm, more axons were observed in the ipsilateral optic tract
than in the contralateral tract, indicating axon misguidance. A
few axons were identified in the SCN located directly above the
chiasm and no axon was observed in the more distant visual
targets, LGN or SC. Consistent with these findings, our recent
study using tissue clearing and 3D imaging (Wang et al., 2018)
showed that Lin28 overexpression-induced regenerating RGC
axons also showed many U-turns within the optic nerve, which
was reduced when Lin28 expression was combined with Pten
knockdown. Moreover, our latest study (Wang et al., 2020)
showed that knocking out myosin ITA/B in RGCs alone resulted
in significant optic nerve regeneration. Interestingly, when axon
trajectories were examined with tissue clearing and 3D imaging,
in wild type mice the automatically regenerated short axons
followed wandering trajectories with many U-turns, whereas
in myosin ITA/B knockout mice the regenerating axons were
much straighter with greatly reduced U-turns. More importantly,
combining Lin28 overexpression with myosin IIA/B knockout
led to long-distance optic nerve regeneration in 2 weeks after the
nerve injury (up to 4.5 mm from the injury site). Because our
previous study (Hur et al.,, 2011) showed that deleting myosin
ITA/B allowed axon growth over two major inhibitory substrates,
myelin debris, and CSPGs, the new results provided evidence
that overcoming the inhibitory signals in the optic nerve was
a promising approach for more efficient long-distance optic
nerve regeneration.

Lastly, to better examine how regenerating axons behaved at
the optic chiasm, one study (Li et al., 2015) used a pre-chiasm
injury model, in which regenerating axons only needed to grow
a short distance to reach the chiasm. The study demonstrated
that at 4 weeks after the nerve injury, many axons entered and
passed the chiasm, most of which occupied the ipsilateral side
of the hypothalamus, including the SCN. At 8 weeks, more axons
were found within the SCN. One important finding was that even
at 4 months after the nerve injury, almost no regenerating axons
reached brain targets further away from the optic chiasm, such as
the OPN and the SC. This study further confirmed that without
proper guidance cues, it is difficult for regenerating axons to
reinnervate deeper brain targets.

In summary, these studies suggested that proper axon
guidance mechanisms are necessary for regenerating

Frontiers in Cellular Neuroscience | www.frontiersin.org

May 2020 | Volume 14 | Article 119


https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Yang et al.

Optic Nerve Regeneration

Combinatorial strategies
to restore vision

Complex visual features

A0S ions to the

and

Reflexive eye movements H Visually driven

Retino-pretectal connection to the OPN sheil ' Feflexive behaviors

Axon regeneration and neuronal survival

.

Eye

Injury site

Nonphotic entrainment of circadian rhythms | .
! Whole-animal

5 ! physiological state
Retino-SCN projection pathway !

& Axonal guidance and

]
x

FIGURE 2 | Functionally rewiring the eye-to-brain connections. The first step of an ideal repair strategy should be promoting sufficient long-distance regeneration of
injured retinal ganglion cell (RGC) axons back to their original targets. Second, the regenerating axons need to be properly guided through the optic chiasm (OX) and
reach their original innervating targets in the brain, which each mediates different visual functions. Third, for functional recovery, the regenerating axons need to
reform functional synapses with the appropriate targets and remyelinate for electrical conduction. Finally, the optic nerve circuitries, governing the whole-animal
physiological state, visually-driven reflexive behaviors, and complex visual features, could be re-established to restore visual functions.
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RGC axons to reach their original targeted nuclei in the
brain and the subsequent visual functional recovery. New
experimental techniques, such as tissue clearing approaches
(3DISCO, CLARITY, etc.) and advanced 3D imaging systems
(multiphoton microscopy, LSFM, fMOST, etc.), are emerging
to be useful tools for detailed analysis of axon trajectory in
the brain.

AXON REGENERATION FROM THE EYE
TO THE BRAIN RESCUING PARTIAL
VISUAL BEHAVIORS

After regenerating axons reach their original brain targets, the
next challenge is to achieve new synaptogenesis, remyelination,
and the subsequent functional restoration of vision. To date,
only a few studies have reported functional reconnection with
brain nuclei after optic nerve crush. An early study showed
that the combination of Pten deletion with Zymosan and cAMP
resulted in long-distance axon regeneration crossing the optic
chiasm and into brain structures, including SCN, dLGN, and
SC, 10 weeks after the optic nerve injury. Histological evidence
demonstrated that regenerating axon terminals appeared to
form synapses within the targeted nuclei. Consequently, several
innate visual behaviors were partially restored, such as depth
perception, optomotor response, and circadian activity patterns
(de Lima et al, 2012). In a later study in which the same
combinatory approach was used (Luo et al, 2013), whole-
mount tissue clearing and 3D imaging analysis with LSFM
showed that regenerating axons were indeed observed into and

beyond the optic chiasm. However, in contrast to the above
study (de Lima et al., 2012), only some axons were observed
reaching the SCN and no regenerating axons were found beyond
the SCN. Many axons were observed in places that were not
associated with the optic pathway, indicating axon misguidance.
In the same study, Socs3/Pten double knockout, together with
CNTF, were used to induce long-distance axon regeneration.
Similarly, regenerating axons could reach and cross the optic
chiasm and no axons could be found beyond the SCN. To
rule out the possibility that the tissue clearing procedure might
bleach the CTB tracer signal, regular coronal brain sections
were examined. Similarly, CTB labeled regenerating axons were
mainly found in the hypothalamus area, including the SCN,
and no axons were identified in the more distant targets,
LGN and SC.

In a recent study, by enhancing RGC neural activity
and activating the mTOR signaling (Rhebl overexpression)
long-distance axon regeneration and correct pathfinding into
all major visual targets were observed as early as 3 weeks
after the optic nerve injury (Lim et al., 2016). Specifically, in
mice receiving visual stimulation and Rhebl overexpression
treatment, newly formed connections could partially restore
optomotor response by optokinetic reflex analysis (OKR),
whereas failed to rescue pupil response, depth perception, and
visual fear response (Lim et al., 2016). The study suggested
that such partial functional recovery might reflect defects in
synapse formation, insufficient numbers of regenerating axons,
and/or low precision of within-target pathfinding. Together, to
date, there are only very few studies (de Lima et al., 2012; Lim
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et al., 2016) reported long-distance optic nerve regeneration
with partial visual function recovery, among which one study
could not be repeated in a different study (Luo et al, 2013).
Thus, additional studies are necessary to confirm if after
intraorbital optic nerve injury regenerating RGC axons can be
correctly guided to reach their original innervating targets in
the brain.

Despite significant advances in promoting RGC axons beyond
the optic chiasm into the brain after optic nerve injury, it is
difficult to explore axon pathfinding across the chiasm and the
subsequent target reinnervation due to the limited number of
regenerating axons reaching the brain. To solve such a problem,
as mentioned above in one study (Li et al., 2015) pre-chiasm
optic nerve injury was performed so that more axons could reach
and cross the optic chiasm. In this study, serial sections revealed
that after a longer period more regenerating axons could be
identified at the core region of SCN. By focusing on the SCN,
the study used antibodies against both the pre-synaptic marker
vesicular glutamate transporter 2 (VgluT2) and the postsynaptic
density marker Homerl to label new synapse formation. Many
triple labeled (CTB, VgluT2, Homerl) dots were identified,
indicating excitatory synaptic sites on regenerating CTB positive
regenerating axons. Additional experiments using pseudo-rabies
virus encoding GFP provided evidence that regenerating RGC
axons formed connections with the existing brain circuitry.
Lastly, by using light pulse stimulation of the injured eye,
c-Fos gene expression was observed in the SCN after the
treatment, indicating functional synapses reformed in the SCN.
Moreover, whole-cell patch-clamp recordings of SCN neurons
with optic nerve stimulation showed evoked EPSCs, confirming
reformed excitatory synaptic connections. Based on the same
rationale, another recent study (Bei et al., 2016) adopted an
optic tract transection model (proximal to the SC) that markedly
reduced the distance between regenerating axons and the SC.
In this study, either the combination of Pten/Socs3 co-deletion
with CNTF/BCL2 or co-overexpression of OPN/IGF1/CNTF,
induced retinocollicular axon regeneration and functional
synapse formation after optic tract transection. However,
regenerating axons exhibited poor electrical conduction and
thus failed to restore significant visual function. One potential
reason for the failure is likely associated with a lack of
myelination. Voltage-gated potassium channel blockers (4-AP
or 4-AP-3-Me) has been used to improve conduction in
de-myelinated axons of patients with multiple sclerosis. As
expected, acute application of 4-AP significantly enhanced the
electrical conduction, eventually resulting in significant recovery
of visual function. Together, these two studies with axon
injury near their innervating targets provided key evidence
that when sufficient regenerating axons could reach their
brain targets synapse formation and visual function restoration
are possible.

In summary, the existing data up to date support that:
(1) with combinatorial approaches, it is possible to induce
long-distance axon regeneration to enter the brain; and (2) with
proper axon guidance and remyelination, visual function could
be restored (Figure 2). The eye-to-brain pathway contains
multiple target structures, which are associated with various

visual related functions, such as the whole-animal physiological
state, visually-driven reflexive behaviors, and encoding complex
visual features (Dhande et al., 2015). Therefore, the optimal
solution for functional recovery after optic nerve injury
requires long-distance axon regeneration from the injury
site into the brain, proper axon guidance to reach specific
central nuclei, reformation of functional synapses with the
appropriate targets, and remyelination to enable transduction of
electrical impulses.

FUTURE PROSPECTS

Despite significant progress in RGC regeneration over the past
decade, functional repair in the visual pathway still has a long
way to go. Based on the above-described studies, an important
question is where we should go soon. First, although we have
identified many genes that can be manipulated to enhance optic
nerve regeneration, our understanding of cellular and molecular
mechanisms by which axon regeneration is regulated remain
fragmented. For instance, during neuronal maturation what are
the key steps and essential regulators that gradually switch off
the ability of axon growth? What are the key differences between
neurons in the CNS that almost permanently lost their capacity
to support axon regeneration, comparing to those in the PNS that
can reactivate their intrinsic capacity? Of all the neurons in the
same tissue, do they all have the same ability to support axon
regeneration? How do other cells in the retina, such as Miiller
cells, amacrine cells, contribute to the loss of axon regeneration
ability of RGCs during maturation and failed regeneration
after injuries? Recently developed multiomics approach, such
as RNA-, ATAC, and Hi-C sequencing, either at bulk or
single-cell level, supported by the advanced bioinformatics
analyses, will be very useful tools to address these questions
(Tran et al., 2019). On the other hand, the rapid updated
CRISPR/CAS9-dCAS9 systems (Liu et al., 2018; Tian et al., 2019)
are becoming mature and reliable techniques, which can be used
for high-throughput functional screen of novel genes regulating
RGC survival and regeneration. The application of these new
techniques will not only help us better elucidate the molecular
mechanisms underlying axon regeneration but also guide us
to discover novel genes and pathways regulating RGC survival
and regeneration.

Second, after long-distance axon regeneration, the next
challenge is to guide the regenerating axons to reach their specific
targets in the brain, form functional synapses, remyelinate the
proper axons, and regain specific visual function. Unfortunately,
up to date research in this area remains very limited. Although
a few studies have shown long-distance regeneration of optic
nerve axons back to all the brain nuclei and some visual
function recovery, more studies are needed to confirm these
findings. Several previous studies (Luo et al, 2013; Yungher
et al, 2015; Wang et al., 2020) have shown clearly that
high-resolution 3D imaging at the single axon level is an optimal
approach to follow the trajectories of regenerating axons in
the brain.

Third, the current most used animal model of visual
injury is the optic nerve crush that is surgically easy and
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reproducible. However, multiple clinically relevant diseases
result in optic nerve injury, such as glaucoma, optic neuritis, optic
neuropathy, and optic nerve atrophy. Because different diseases
may induce different cellular responses, different animal models
mimicking each disease should be utilized before a potential
translational application.
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