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Plasticity in the central nervous system (CNS) allows for responses to changing
environmental signals. While the majority of studies on brain plasticity focus on neuronal
synapses, myelin plasticity has now begun to emerge as a potential modulator of
neuronal networks. Oligodendrocytes (OLs) produce myelin, which provides fast signal
transmission, allows for synchronization of neuronal inputs, and helps to maintain
neuronal function. Thus, myelination is also thought to be involved in learning.
OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed
throughout the adult brain, and myelination continues into late adulthood. This process
is orchestrated by numerous cellular and molecular signals, such as axonal diameter,
growth factors, extracellular signaling molecules, and neuronal activity. However, the
relative importance of, and cooperation between, these signaling pathways is currently
unknown. In this review, we focus on the current knowledge about myelin plasticity in the
CNS. We discuss new insights into the link between this type of plasticity, learning and
behavior, as well as mechanistic aspects of myelin formation that may underlie myelin
plasticity, highlighting OPC diversity in the CNS.
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INTRODUCTION

In the central nervous system (CNS), myelin is produced by oligodendrocytes (OLs) that
differentiate from oligodendrocyte precursor cells (OPCs) (Fields, 2014). OPCs are distributed
throughout the adult brain and represent the main self-renewing population of cells in the CNS
(Dawson et al., 2003). Myelination has generally been studied in a developmental context and is
often described as a process that terminates after juvenile development. However, recent work
shows that myelination continues into late adulthood, with adult OPCs providing a continuous
supply of new myelinating OLs (Rivers et al., 2008; Hughes et al., 2013, 2018; Young et al., 2013;
Hill et al., 2018). This suggests that protracted myelination may allow for fine-tuning of neural
circuits throughout life. While studies of brain plasticity mostly focus on neuronal synapses, myelin
plasticity, defined as the myelination of previously unmyelinated axons or changes in the structure
of already-myelinated axons (e.g., ion channel surface expression, changes in internode number
and length, myelin thickness or geometry of the nodal area), is now also thought to modulate
neural networks (Sampaio-Baptista et al., 2013; Gibson et al., 2014; McKenzie et al., 2014; Pajevic
et al., 2014). Indeed, changes in myelin sheath stability, length and thickness can alter conduction
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velocity, and therefore modulate input synchronization
(Waxman, 1997; Fields, 2015). While myelin plasticity is a
novel field of study, and the mechanisms underlying it are
poorly understood, it is likely that several processes governing
developmental myelination are applicable in the context of
plasticity (Figure 1). In particular, developmental myelination
is thought to occur either in a neuronal activity-independent or
-dependent mode (Lundgaard et al., 2013). Here, we will briefly
review both modes of myelination, along with the role of motor,
cognitive and sensory learning, and OPC diversity, in the context
of myelin plasticity.

THE DIFFERENTIAL PATH OF
MYELINATION

Activity-Independent Myelination
Developing OPCs are proliferative, self-renewing cells that
possess the capability to differentiate into myelinating OLs
(Rosenberg et al., 2008). Notwithstanding, several external
cues regulate this differentiation capacity. Neuronal activity,
through neurotransmitter signaling, is a regulatory signal for
OPC proliferation and differentiation. However, OPCs can
differentiate into OLs that wrap inert fibers with compact myelin,
and have internodes of expected lengths, clearly indicating
that the initiation of OL differentiation and some forms of
myelination does not require neuronal activity (Rosenberg et al.,
2008; Lee et al., 2012) (Table 1). Nevertheless, the presence of the
axon, or an axon-like structure, remains a strong inductive signal
for differentiation, suggesting that the biophysical characteristics
of the axon, such as the shape and the caliber, regulate OPC
differentiation. Axon caliber has been shown to influence myelin
thickness (Voyvodic, 1989) and the internodal distribution
(Trapp and Kidd, 2000). Similarly, increasing axonal diameter
by knocking out Pten in axons induces myelination of normally
unmyelinated parallel fibers (Goebbels et al., 2017), and retinal
ganglion axons following enucleation (i.e., the surgical removal
of one eye) (Mayoral et al., 2018). Eye enucleation in a
non-degenerative mouse model reduces axonal diameter and
myelination, supporting the notion that axon caliber is a main
regulatory factor of myelination. Although there is a correlation
between axon diameter and myelination, it is important to note
that knocking out Pten alters growth factor signaling (Goebbels
et al., 2017), and that enucleation alters spontaneous firing in
the control eye (Failor et al., 2018), raising the possibility that
diameter alone is not the only mechanism regulating myelination
(Friede, 1972; Lee et al., 2012), or that different axons are
myelinated by different mechanisms (Koudelka et al., 2016).
Additionally, diameter alone does not explain how the same
axon can be differentially myelinated along its length, nor how
axons of the same diameter can be either myelinated or remain
unmyelinated (Tomassy et al., 2014). Using a neuron-free in vitro
system in which OPCs from either the spinal cord or cortex
differentiate into OLs that ensheath inert fibers, it has been
found that spinal cord OLs produced longer sheaths along the
microfibers than cortical OLs, consistent with their length in
the CNS (Bechler et al., 2015). These data suggest that sheath

length may be intrinsic, region-specific, and programmed before
differentiation. Intriguingly, Schwann cells, the myelinating glia
of the peripheral nervous system (PNS), were not able to
myelinate the microfibers, implying that the capacity to myelinate
without axonal cues is exclusive to the CNS. However, Schwann
cells usually myelinate larger diameter axons than OLs, thus
another interpretation could be that the size of the fibers used
in this study was insufficient to initiate Schwann cell myelination.
This region-specific property points to local cues which regulate
OL lineage progression and OL properties.

The physical properties of the microenvironment, such
as proximity to an axon or cellular density, may induce
differentiation by altering OPC size or shape, thus generating
structural rearrangement within the cells (Ingber, 1997; McBeath
et al., 2004). This rearrangement could allow for interactions
between different effectors in a signaling pathway, and thus,
promote differentiation (Boudreau and Jones, 1999). Another
potential explanation is that changes in cell shape might directly
modify the nuclear size or structure, inducing the transcriptional
activity necessary for OPC differentiation (Maniotis et al., 1997).
This possibility is supported by work showing that mechanically
deforming OPCs or plating them in the presence of neurons,
beads, or at high density, promotes differentiation by altering the
chromatin structure (Hernandez et al., 2016).

A recent study by the Chalut group further supports the
idea that the mechanical environment modulates OPC function.
By mimicking the stiffness of young brains using scaffolds in
culture, they demonstrated that OPCs isolated from aged rats
and cultured in these softer conditions became molecularly and
functionally similar to neonatal OPCs. Disrupting mechanical
signaling in these aged OPCs increased their proliferation and
differentiation rate, indicating that increasing brain stiffening
with age downregulates the proliferation and differentiation
potential of OPCs (Segel et al., 2019). During development,
the maturation of the extracellular matrix (ECM) stabilizes
neural networks by limiting changes in synaptic connectivity
(Bikbaev et al., 2015). Conversely, removing the ECM promotes
synaptic plasticity (Lazarevich et al., 2020). It is possible that
ECM maturation also limits differentiation and myelination rates
with aging to prevent hypermyelination and stabilize neural
networks. However, local changes in the ECM may allow for local
differentiation and could therefore be a mechanism underlying
myelin plasticity.

Changes in the physical environment can also affect the
chemical signaling by altering the extra cellular volume, for
instance altering growth factor concentration. This could
influence OPC development as platelet-derived growth factor
(PDGF) activates the α receptor (PDGFRα) on OPCs and
regulates both their proliferation and survival (Raff et al., 1988;
Richardson et al., 1988; Barres and Raff, 1993). However, not
all OPCs respond equally to PDGF. Although PDGFRα protein
expression is similar in both gray and white matter OPCs,
cells in the white matter of early postnatal organotypic slice
cultures proliferate more in response to PDGF than those in the
gray matter (Hill et al., 2013). Consistent with this finding, it
has been shown that while all adult OPCs continue to divide,
white matter cells divide at a higher rate than gray matter cells
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FIGURE 1 | OPC heterogeneity and axonal factors allow for differential myelination and myelin plasticity. (A) OPC proliferation, differentiation and myelination are
orchestrated by numerous mechanical, cellular, and chemical signals. These include axonal diameter, growth factors, extracellular signaling molecules, extracellular
matrix composition, cellular intrinsic deposition, neurotransmitters (such as glutamate), and neuronal activity. However, the relative importance of and cooperation
between these signaling pathways is currently unclear. (B) Several studies indicate that myelination can be modified by activity- and experience-driven mechanisms.
Glutamate and growth factor release from electrically active neurons can regulate OPC proliferation, differentiation and myelination. Additionally, motor and possibly
cognitive learning, and sensory experience also influence myelination changes. However, myelination can also occur independently of neuronal activity. Non activity
driven myelination could be regulated by the physical and mechanical properties of the extracellular environment, such as cellular density and extracellular matrix.
OPCs are depicted in light gray. OLs are represented in different colors to illustrate the differential myelination.

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 June 2020 | Volume 14 | Article 156

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-14-00156 June 11, 2020 Time: 17:11 # 4

Bonetto et al. Unraveling Myelin Plasticity

TABLE 1 | Summary of current literature on activity-independent and activity-dependent myelination in the CNS.

Myelination modes Activity-independent Biophysical properties of the axon Friede, 1972
Voyvodic, 1989
Fukui et al., 1991
Colello et al., 1995
Shrager and Novakovic, 1995
Trapp and Kidd, 2000 (review)
Lee et al., 2012
Tomassy et al., 2014 (provides evidence that biophysical constraints
alone cannot explain differential myelination)
Goebbels et al., 2017
Mayoral et al., 2018

Microenvironmental characteristics Raff et al., 1988
Richardson et al., 1988
Maniotis et al., 1997
Rosenberg et al., 2008
Hernandez et al., 2016
Segel et al., 2019

Cell properties Hill et al., 2013
Bechler et al., 2015

Activity-dependent Neuronal regulation of OPC proliferation and
differentiation, and myelination

Gyllensten and Malmfors, 1963
Tauber et al., 1980
Barres and Raff, 1993
Demerens et al., 1996
Stevens et al., 1998
Liu et al., 2012, 2016
Makinodan et al., 2012
Mangin et al., 2012
Gibson et al., 2014
Hill et al., 2014
Mensch et al., 2015
Gautier et al., 2015
Etxeberria et al., 2016
Koudelka et al., 2016
Mitew et al., 2018
Ortiz et al., 2019

Glutamate signaling Gallo et al., 1996
Yuan et al., 1998
Bergles et al., 2000
Karadottir et al., 2005, 2008
Micu et al., 2006
Kukley et al., 2007
Ziskin et al., 2007
De Biase et al., 2011
Wake et al., 2011
Cavaliere et al., 2012
Guo et al., 2012
Li et al., 2013
Lundgaard et al., 2013
Fannon et al., 2015
Gautier et al., 2015
Saab et al., 2016
Spitzer et al., 2016 (review)
Kougioumtzidou et al., 2017
Spitzer et al., 2019

This table summarises the reviewed literature, showing selected papers which provide support (if not indicated otherwise) for the mechanisms shown.

(Young et al., 2013). It could be argued that the differential
response of gray and white matter OPCs to PDGF stems from
the microenvironment (physical properties) rather than a cell
intrinsic process. Addressing this question, the Nishiyama group
showed, by using small tissue section transplant experiments,
that regional identity, and not environment, determined the
proliferative response to PDGF (Hill et al., 2013). On the other

hand, studies looking into differences due to the developmental
origin of OPCs, with a transgenic approach (Psachoulia et al.,
2009), or regional identity using cell transplantation (Vigano
et al., 2013), have failed to find differences in OPC proliferation.
A possible explanation of the difference in results is that
using small tissue sections, instead of isolated cells, may have
provided sufficient environmental signals of the original region to
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influence OPCs’ response to PDGF in the transplanted area, and,
given a longer period of time for the section to integrate into the
host slice, these experiments may have yielded a different result.
These studies show that physical properties and environment
influence OPC proliferation, differentiation and myelination.
Although it is unclear whether these properties can mediate
myelin plasticity in response to learning and sensory inputs,
their contribution cannot be ruled out. Another mechanism
such as neuronal activity, known to influence physical properties
(Lazarevich et al., 2020), release of growth factors (Barres and
Raff, 1993; Balkowiec and Katz, 2000) and regulate myelination, is
perhaps more amenable to plasticity changes, as we shall discuss
in the next paragraph.

Activity-Dependent Myelination
(Glutamate Signaling)
Numerous studies have shown that neuronal activity can regulate
myelination (Table 1). In addition to growth factors, glutamate
release from active neurons is a likely mechanism underlying
activity-dependent myelination, as OPCs receive synaptic inputs
from neurons and express glutamate receptors (Bergles et al.,
2000; Karadottir et al., 2005, 2008; Micu et al., 2006; Kukley et al.,
2007; Ziskin et al., 2007; Lundgaard et al., 2013; Gautier et al.,
2015; Spitzer et al., 2019), allowing them to monitor and respond
to neuronal activity. However, it is important to note that OPCs
display a range of electrophysiological profiles, with ion channel
and glutamate receptor densities varying with age and brain
region. OPCs acquire voltage-gated potassium channels (KV)
and sodium channels (NaV), α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs), kainate receptors
(KARs), and N-methyl-D-aspartate receptors (NMDARs) during
development, but at different rates, which appear to be regulated
by the environment (Spitzer et al., 2019).

Neuronal activity regulates OPC proliferation in vivo (Barres
and Raff, 1993; Mangin et al., 2012; Gibson et al., 2014; Mitew
et al., 2018) (Table 1). Numerous studies show that blocking
activity blocks proliferation (Barres and Raff, 1993), while
increasing activity promotes proliferation (Gibson et al., 2014;
Mitew et al., 2018). Axonal activity also regulates differentiation
(Table 1): decreasing activity by whisker removal or raising
mice in social isolation impedes differentiation (Liu et al.,
2012, 2016; Makinodan et al., 2012; Hill et al., 2014), although
ocular deprivation leads to enhanced differentiation, albeit with
reduced internode length (Etxeberria et al., 2016). However, it is
important to note that ocular deprivation did not block neuronal
firing, but rather altered it (Etxeberria et al., 2016), suggesting
that changes in activity modulate differentiation. Similarly,
enhancing activity with optogenetics, chemogenetics, receptor
agonists/antagonists, or physiological manipulations, promotes
differentiation (Gibson et al., 2014; Mitew et al., 2018), or
enhances myelination (Tauber et al., 1980; Demerens et al., 1996;
Mensch et al., 2015; Mitew et al., 2018). However, other studies
using similar approaches have failed to show an effect of neuronal
activity on developmental myelination (Fukui et al., 1991; Colello
et al., 1995; Shrager and Novakovic, 1995). Nonetheless, blocking
neuronal activity decreases myelination and prevents myelin

repair after demyelination (Gyllensten and Malmfors, 1963;
Demerens et al., 1996; Stevens et al., 1998; Gautier et al., 2015;
Mensch et al., 2015; Mitew et al., 2018) while enhancing activity
improves remyelination (Ortiz et al., 2019).

Neuronal activity not only promotes myelination
through glutamate signaling, but also induces a switch
to the activity-dependent mode of myelination. Indeed,
activity-dependent release of neuregulin (NRG) or brain-derived
neurotrophic factor (BDNF) enhances NMDAR functional
expression in OPCs and switches myelination to an activity-
dependent mode in neuron-OPC co-cultures (Lundgaard
et al., 2013). Activity-dependent myelination occurs faster
than activity-independent myelination, and crucially, blocking
neuronal activity, NMDARs, or AMPARs once the activity-
dependent mode is activated by NRG or BDNF significantly
reduces myelination (Lundgaard et al., 2013). However, blocking
activity, NMDARs or AMPARs does not affect myelination
in the absence of NRG or BDNF (Lundgaard et al., 2013). In
mice, blocking activity-dependent BDNF release or deleting
the BDNF receptor TrkB in OPCs blocks activity-dependent
myelination (Geraghty et al., 2019). Nevertheless, NRG/ErbB
(the NRG receptor) signaling plays a complicated role in the CNS
(Lyons et al., 2005; Brinkmann et al., 2008). Despite evidence
indicating a function in OL differentiation, myelination, and
survival in vitro (Flores et al., 2000; Kim et al., 2003; Taveggia
et al., 2008), knocking out ErbB3 and ErbB4 in OL lineage cells
does not prevent myelination (Brinkmann et al., 2008), although
it is unclear whether there was a delay in myelination, it does
seem to prevent experience-dependent myelination (Makinodan
et al., 2012). The controversial actions of NRG/ErbB signaling
can be explained by the ability of NRG to switch OPCs from
activity-independent myelination to the activity-dependent
mode through the increase of NMDAR-mediated currents in
OL lineage cells (Lundgaard et al., 2013). It is likely that in
the absence of ErbB3 and ErbB4, NRG could not enhance
NMDAR expression in OPCs, and therefore, could not induce
the switch to activity-dependent myelination. Therefore, a
delay in myelination, but no myelination defect, would be
expected, although this was not tested. Moreover, the release
of NRG itself is activity-dependent (Ozaki et al., 2004). The
resulting interaction of NRG with glutamate signaling increases
myelination on active neurons, providing a mechanism by
which activity plays a role in myelination and myelin plasticity
(Spitzer et al., 2016).

The importance of glutamate signaling in activity-dependent
myelination is revealed by studies of myelin repair following
demyelinating lesions. Blocking neuronal activity, vesicular
release, AMPARs or NMDARs at the lesion site impedes myelin
regeneration after toxin-induced demyelination (Lundgaard
et al., 2013; Gautier et al., 2015). However, the exact role of
glutamate signaling in vivo remains elusive. In vitro studies
report that AMPA/KAR activation reduces both proliferation
and differentiation (Gallo et al., 1996; Yuan et al., 1998;
Fannon et al., 2015), while activating NMDARs promotes
myelination (Wake et al., 2011; Cavaliere et al., 2012; Li et al.,
2013; Lundgaard et al., 2013). Nevertheless, the importance
of glutamate signaling through AMPARs and NMDARs for
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myelination in vivo is disputed due to the mild deficits
observed in the respective knockouts (De Biase et al., 2011;
Guo et al., 2012; Saab et al., 2016; Kougioumtzidou et al.,
2017). However, both receptors may have been knocked
out in OPCs prior to the activation of AMPA/KARs or
NMDARs (Spitzer et al., 2019). Even if neurons released
NRG or BDNF onto OPCs, myelination would not have
switched to the activity-dependent mode, as OPCs did not
have NMDARs or AMPARs, and therefore, NRG could not
enhance NMDAR expression. If this were the case, a delay
in myelination would be expected, due to compensation by
the slower activity-independent mode of myelination. While
this was not tested in all of the studies above, two groups
found that both the AMPAR and NMDAR knockouts lead
to a delay in myelination (Saab et al., 2016; Kougioumtzidou
et al., 2017). As activity-independent myelination occurs slower
than activity-dependent myelination, these studies indicate
that it is possible that compensation may have occurred by
defaulting to the slower activity-independent myelination mode.
Whereas, altering AMPAR receptors, postnatally, during the peak
of the myelination period increased OPC proliferation while
reducing their differentiation (Chen et al., 2018), suggesting that
modifying receptor properties at specific timepoints can alter
OPC dynamics. These studies indicate that glutamate signaling
through AMPA/KARs and NMDARs depends on a complex
interplay of factors, such as the receptor subtype and density,
the frequency, the amount, and probability of glutamate release
from active neurons. Nonetheless, glutamate signaling remains
an integral mechanism of activity-dependent myelination in
the context of both normal developmental myelination and
myelin plasticity.

OPC HETEROGENEITY

Myelin plasticity includes both de novo myelination and
structural changes to existing myelin. De novo myelination is
thought to occur through the differentiation of adult OPCs,
which receive cues – presumably axon-derived – following motor,
sensory or social experience. Thus, to study myelin plasticity,
we must investigate how OPCs integrate these cues. This is
made more complex by several groups reporting that OPCs are a
heterogeneous population, with differences in their proliferation
and differentiation potentials with age or between brain regions
(Rivers et al., 2008; Vigano et al., 2013; Young et al., 2013;
Moshrefi-Ravasdjani et al., 2017; Spitzer et al., 2019). In addition,
bulk-RNA sequencing shows that OPCs exhibit age- related
changes in transcriptome (Marques et al., 2018; Spitzer et al.,
2019), and single-cell experiments suggest that proliferation and
differentiation gene expression is altered with age (Marques et al.,
2016, 2018). OPCs also display differential responses to growth
factors and cytokines (Mason and Goldman, 2002; Lin et al.,
2009; Hill et al., 2013; Lentferink et al., 2018). Furthermore, in
zebrafish, two populations of OPCs were identified in the spinal
cord: a population that mostly proliferates in response to activity,
but does not differentiate, and a second population arising from
the first one, which differentiates into myelinating OLs (Marisca

et al., 2020). These differences must be considered, especially
when attempting to study myelin plasticity through the lens of
developmental myelination (Table 2).

Given the role of neuronal activity, via glutamate signaling,
in regulating OPC proliferation, differentiation, and myelination,
and its potential role in myelin plasticity regulation, it
is important to understand if all OPCs display the same
physiological properties. While some reports indicate that OPCs
from the hippocampus and corpus callosum are homogeneous
(De Biase et al., 2010; Clarke et al., 2012), differences in
ion channels between gray and white matter OPCs have
been described (Chittajallu et al., 2004; Spitzer et al., 2019).
Furthermore, age-dependent changes in ion channels have also
been described (Karram et al., 2008; Moshrefi-Ravasdjani et al.,
2017; Spitzer et al., 2019) (Table 2). An in-depth study of
mouse OPC membrane properties in different brain regions
between embryonic day 13 and postnatal day 330 indicates
that the density of NaV, KV, AMPA/KARs and NMDARs
differs. Specifically, at embryonic day 13, when they first
appear in the brain, OPCs have no ion channels or glutamate
receptors, and acquire them with age at different rates, and
differentially between brain regions (Spitzer et al., 2019).
Functional expression of ion channels and glutamate receptors
can be linked to the proliferation and differentiation potential of
OPCs (Spitzer et al., 2019).

These data led to the identification of several OPC states.
First, embryonic-like “naïve” OPCs, lacking ion channels and
glutamate receptors, which cannot sense neuronal activity.
Second, “highly proliferative” OPCs, with KV, AMPA/KARs,
and a high density of NaV. Third, OPCs that are “primed”

TABLE 2 | Reviewed literature on OPC heterogeneity.

OPC
heterogeneity

Differences in transcriptomics Marques et al., 2016, 2018
Spitzer et al., 2019
Marisca et al., 2020

Differential response to growth
factors and cytokines

Mason and Goldman, 2002
Lin et al., 2009
Hill et al., 2013
Lentferink et al., 2018

Region and age-dependent
changes in physiological
properties

Chittajallu et al., 2004
Karram et al., 2008
De Biase et al., 2010
Clarke et al., 2012
Moshrefi-Ravasdjani et al.,
2017
Spitzer et al., 2019
Marisca et al., 2020

Diverse proliferation and
differentiation potential

Rivers et al., 2008
Vigano et al., 2013
Young et al., 2013
Marques et al., 2016
Moshrefi-Ravasdjani et al.,
2017
Spitzer et al., 2019
Marisca et al., 2020

This table summarises the reviewed literature showing selected papers
describing OPC heterogeneity. The references in blue suggest that OPCs are
physiologically homogeneous.
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for differentiation, with KV, AMPA/KARs, a high NaV density,
and a high density of NMDARs, indicative of a high sensitivity
to neuronal activity. Lastly, “quiescent” OPCs, who have lost
NMDARs, and have acquired a high density of AMPA/KARs
(Spitzer et al., 2019). Importantly, at every postnatal time point
and brain region tested, a range of electrophysiological profiles
of OPCs can be detected, although in differing proportions,
suggesting that this functional diversity may represent cell states
rather than heterogeneity.

Understanding OPC states is crucial for our understanding of
both activity-dependent and activity-independent myelination.
For instance, most embryonic OPCs are naïve, yet proliferate,
and, in the spinal cord, have begun to differentiate, perhaps
indicating that early developmental myelination may proceed
in an activity-independent mode, presumably to ensure that
critical processes like breathing are functional by birth (Foran
and Peterson, 1992; Spitzer et al., 2019). In addition, the
majority of OPCs are in the primed state during the first
three postnatal months, at the time where differentiation and
myelination are proceeding at the highest rate, and NMDAR
expression is highest, suggesting that at this time, myelination
is activity-dependent (Spitzer et al., 2019). Most studies on
motor or sensory myelination and myelin plasticity have
been performed at this time. It is therefore not surprising
that activity-dependent myelination is thought to underlie
myelin plasticity.

This poses the problem of what happens in mature brains,
once most OPCs have become quiescent. Does myelination
stop, and does myelin plasticity remain possible? Is plasticity
limited to a critical window, defined by OPC ion channel
expression? The majority of OPCs were described as quiescent
by nine months, yet OPC differentiation and myelination
have been reported to continue in the mouse cortex until
2 years of age (Young et al., 2013; Hill et al., 2018;
Hughes et al., 2018; Spitzer et al., 2019). In addition, a
study examining plasticity in adult mice showed that sensory
enrichment increased the formation of new myelin in the
somatosensory cortex of 10–14 month old mice (Hughes et al.,
2018). The signaling mechanism driving this plasticity was not
investigated, but sensory enrichment alters neuronal activity,
which may in turn lead to the release of NRG or BDNF
from neurons, promoting NMDAR functional expression in
OPCs, and a shift to the primed state (Lundgaard et al.,
2013; Spitzer et al., 2019). Indeed, glutamate receptors in
OPCs can be regulated by growth factors (Gallo et al., 1994;
Lundgaard et al., 2013). Thus, growth factors may regulate
state transitions, and allow for activity-dependent myelination
following major sensory events.

OPC states may also influence the different myelination
strategies employed by different brain regions. For instance,
in the rodent optic nerve, myelin tends to be remodeled
(with changes on already myelinated axons), while in the
corpus callosum, the tendency is more toward de novo
myelination of unmyelinated axons (Young et al., 2013). It
is therefore critical that we understand both OPC states
and their regulators to better understand myelination, and
myelin plasticity.

REGULATION OF MYELINATION BY
MOTOR LEARNING, SOCIAL BEHAVIOR
AND SENSORY EXPERIENCE

Recent evidence suggests that myelination may be dynamically
regulated by learning and experience, and may therefore play a
role in learning (Table 3). Structural changes in human white
matter occur with learning new tasks, such as playing the piano
(Bengtsson et al., 2005) or learning how to juggle (Scholz et al.,
2009), though whether these changes indicate myelin remodeling
remains unclear (Zatorre et al., 2012; Walhovd et al., 2014).
Nevertheless, experiments combining diffusion MRI fractional
anisotropy (as in human studies) and immunohistochemistry
have shown that motor learning in adult mice leads to white
matter structural changes which correlate with an increased
myelin density (Sampaio-Baptista et al., 2013). Furthermore, the
Richardson group showed that motor learning increases OPC
differentiation into myelinating OLs in the motor cortex and
corpus callosum, and that motor learning is in fact dependent on
this (McKenzie et al., 2014; Xiao et al., 2016).

A current outstanding question in the field is whether
myelination is initiated only during sensory-motor learning
or in all types of learning. In human studies, changes in
white matter have been observed following reading (Carreiras
et al., 2009) or learning a second language (Schlegel et al.,
2012), suggesting that modifications in myelin may also occur
following cognitive learning. In addition to various reports
demonstrating that sensory experience or neuronal activity
modulate myelination in the somatosensory system (Hughes
et al., 2018; Mitew et al., 2018), a recent publication suggests
that myelin plasticity is important for normal cognitive function.
Activity-regulated myelination fails in a model of chemo-
therapy-related cognitive impairment (CRCI), a syndrome
characterized by deficits in attention and memory (Koppelmans
et al., 2012), and this is linked to a reduced BDNF-TrkB signaling
in OPCs, as demonstrated by the deficits in cognitive behavioral
performance following the OPC-specific TrkB receptor loss
(Geraghty et al., 2019).

TABLE 3 | Summary of reviewed literature on learning and experience.

Learning and
experience

Motor learning Bengtsson et al., 2005
Scholz et al., 2009
Sampaio-Baptista et al., 2013
McKenzie et al., 2014
Xiao et al., 2016

Cognitive functions Carreiras et al., 2009
Schlegel et al., 2012
Geraghty et al., 2019

Social behavior Liu et al., 2012
Makinodan et al., 2012

Sensory experience Mangin et al., 2012
Hill et al., 2014
Hughes et al., 2018

Table recapitulating the most relevant studies linking myelin modifications with
learning, social behavior and sensory experience. Human studies are indicated in
red, while rodent studies are indicated in black.
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It seems that changes in myelination as a response to the
environment have important long-term behavioral and cognitive
consequences. Indeed, rearing juvenile mice in social isolation
alters myelin in the medial prefrontal cortex (mPFC) (Liu et al.,
2012; Makinodan et al., 2012). In one of these studies, NRG
was shown to be decreased following social isolation, and the
modifications in myelin were phenocopied by an OL ErbB3
receptor knockout (Makinodan et al., 2012). Together, these data
indicate that social experience, presumably via neuronal activity,
regulates myelination and that this is important for normal
cognitive function.

Sensory experience also influences myelin plasticity. Whisker
deprivation, by unilateral removal, leads to a decrease in the
number of mature OLs, but an increase in OPC density and
proliferation (Mangin et al., 2012; Hill et al., 2014). However,
whisker deprivation also increases apoptosis of proliferating
OPCs (Hill et al., 2014). Thus, these data suggest that whisker
deprivation leads to a decrease in mature OL numbers, which
may in turn lead to over proliferation of OPCs, although
the increase in apoptosis may be a mechanism to maintain
homeostasis (Hill et al., 2014).

The surprisingly rapid dynamics of OL production in
response to motor learning (within 2 h) (Xiao et al., 2016)
and myelin basic protein (MBP) translation in response to
neuronal activity (within minutes to hours) (Wake et al., 2011)
occur on a timescale that is similar to that of dendritic spine
changes underlying synaptic plasticity (Xu et al., 2009). Like
synaptic plasticity, myelin plasticity following motor or cognitive
learning and sensory experience is thought to be regulated
by activity-dependent myelination, as motor, cognitive and
sensory events lead to changes in neuronal activity (although
the contribution of activity-independent myelination cannot be
excluded) (Figure 1). These data suggest that myelin plasticity
and synaptic plasticity may be complementary mechanisms
underlying learning and memory.

OUTLOOK AND FUTURE PERSPECTIVE

Until recently, myelination was considered a static process,
and studies examining circuit function and plasticity mostly
focused on synaptic plasticity. However, a number of studies
described above demonstrate that myelination is far from static,
and does not only change in response to injury, but also as a
result of motor, sensory and cognitive events. Although some

progress has been recently made, our knowledge of myelin
plasticity and the mechanisms underlying it remains restricted
by regional differences, OPC diversity, a lack of understanding
of the neuronal dynamics required to regulate OL lineage
progression, and a limited comprehension of how OL lineage
cells integrate the various activity-independent and activity-
dependent signals (Figure 1).

The study of myelin plasticity requires morphological
analyses, both at the sub microscopic scale and the macroscopic
scale, but also a combination of behavioral, electrophysiological
and molecular analyses. This can only be achieved by combining
both in vitro and in vivo experimental models.

One area that deserves major investigation is examining
whether activity-dependent myelination proceeds similarly in
different brain regions. From the studies reviewed in this paper,
it appears that, akin to synaptic plasticity, neuronal activity-
dependent myelin plasticity may be an important mechanism
underlying learning and cognition. Activity-dependent release
of growth factors and glutamate may be particularly important
for this process, and thus, it is crucial to understand these
mechanisms of myelination. Moreover, dynamic myelin changes
in the hippocampus and mPFC, two regions that are comprised
of both gray and white matter, are likely to have long-lasting
effects on brain function. In humans, myelination of these regions
continues for decades, suggesting that lifelong myelination
and myelin plasticity tune neuronal networks and regulate
normal brain function.
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